Skip to main content

Portrait Style Transfer with Generative Adversarial Networks

  • Conference paper
  • First Online:
Proceedings of the 9th International Conference on Computer Engineering and Networks

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1143))

Abstract

Portrait style transfer is a hot and practical direction for in-depth learning. As a deep learning model, Generative Adversarial Networks (GANs) have been widely used in image style conversion. We study Generative Adversarial Networks as a solution to the portrait style transfer problem. Here, we use GANs to recognize facial features. With large training in the conversion from plain to cosmetic drawings, this algorithm can make up the plain faces better intelligently. The experimental results provide the representation of facial image features by GANs and show the ability of character transformation and operation of portrait style.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xie, S., Huang, X., Tu, Z.: Top-down learning for structured labeling with convolutional pseudoprior. In: European Conference on Computer Vision, pp. 302–317 (2015)

    Google Scholar 

  2. Zhao, H.H., Liu, H.: Multiple classifiers fusion and CNN feature extraction for handwritten digits recognition. Granul. Comput. 1–8 (2019)

    Google Scholar 

  3. Zhao, H.H., Rosin, P., Lai, Y.K., Zheng, J.H., Wang, Y.N.: Adaptive gradient-based block compressive sensing with sparsity for noisy images. Multimed. Tools Appl. 1–23 (2019)

    Google Scholar 

  4. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: CVPR, vol. 2, pp. 60–65 (2005)

    Google Scholar 

  5. Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using a laplacian pyramid of adversarial networks. In: NIPS, pp. 1486–1494 (2015)

    Google Scholar 

  6. Tyleček, R.: Spatial pattern templates for recognition of objects with regular structure. In: GCPR, Saarbrucken, Germany (2013)

    Google Scholar 

  7. Zhao, H.H., Rosin, P., Lai, Y.K.: Image neural network style transfer with global and local optimization fusion. IEEE Access (2019)

    Google Scholar 

  8. Zhao, H., Rosin, P.L., Lai, Y.K.: Automatic semantic style transfer using deep convolutional neural networks and soft masks. Vis. Comput. (2019)

    Google Scholar 

  9. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: SIGGRAPH, pp. 341–346 (2001)

    Google Scholar 

  10. Efros, A.A., Leung, T.K.: Texture synthesis by nonparametric sampling. In: ICCV, vol. 2, pp. 1033–1038 (1999)

    Google Scholar 

  11. Gatys, L.A., Ecker, A.S., Bethge, M.: Texture synthesis and the controlled generation of natural stimuli using convolutional neural networks. Preprint at arXiv:1505.07376 (2015)

  12. Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vis. 40(1), 49–70 (2000)

    Article  Google Scholar 

  13. Efros, A.A., Leung, T.K.: Texture synthesis by nonparametric sampling. In: Proceedings of International Conference Computer Vision, Washington, DC, USA (1999)

    Google Scholar 

  14. Isola, P., Zhu, J.Y., Zhou, T.H., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  15. Reinhard, E., Ashikhmin, M., Gooch, B., Shirley, P.: Colortransfer between images. IEEE Comput. Graph. Appl. 21, 34–41 (2001)

    Article  Google Scholar 

  16. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. IJCV 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  17. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: European Conference on Computer Vision, pp. 818–833 (2014)

    Google Scholar 

  18. Zhao, J., Mathieu, M., LeCun, Y.: Energy-based generative adversarial network. Preprint at arXiv:1609.03126 (2016)

  19. Zhu, J.Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: ECCV (2016)

    Google Scholar 

  20. Theis, L., Bethge, M.: Generative image modeling using spatial lstms. Adv. Neural Inf. Process. Syst. 28 (2015)

    Google Scholar 

  21. Laffont, P.Y., Ren, Z., Tao, X., Qian, C., Hays, J.: Transient attributes for high-level understanding and editing of outdoor scenes. ACM Trans. Graph. (TOG) 33(4), 149 (2014)

    Article  Google Scholar 

  22. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  23. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. Preprint at arXiv:1502.03167 (2015)

  24. Yoo, D., Kim, N., Park, S., Paek, A.S., Kweon, I.S.: Pixel level domain transfer. In: ECCV (2016)

    Google Scholar 

  25. Gatys, L.A., Ecker, A.S.: Image style transfer using convolutional neural networks. In: CVPR (2016)

    Google Scholar 

  26. Li, C., Wand, M.: Combining markov random fields and convolutional neural networks for image synthesis. Preprint at arXiv:1601.04589 (2016)

  27. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. Preprint at arXiv:1511.06434 (2015)

  28. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: MICCAI, pp. 234–241 (2015)

    Google Scholar 

  29. Wang, X., Gupta, A.: Generative image modeling using style and structure adversarial networks. In: ECCV (2016)

    Google Scholar 

  30. Li, C., Wand, M.: Precomputed real-time texture synthesis with markovian generative adversarial networks. In: ECCV (2016)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Hunan Provincial Natural Science Foundation of China (No. 2019JJ40005), the Science and Technology Plan Project of Hunan Province (No. 2016TP1020), the General Scientific Research Fund of Hunan Provincial Education Department (No. 17C0223), the Double First-Class University Project of Hunan Province (No. Xiangjiaotong [2018]469), and Postgraduate Research and Innovation Projects of Hunan Province (No. Xiangjiaotong [2019]248–998). Hengyang guided science and technology projects and application-oriented special disciplines (No. Hengkefa [2018]60–31).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyun Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Q., Zhang, F., Lin, M., Wang, Y. (2021). Portrait Style Transfer with Generative Adversarial Networks. In: Liu, Q., Liu, X., Li, L., Zhou, H., Zhao, HH. (eds) Proceedings of the 9th International Conference on Computer Engineering and Networks . Advances in Intelligent Systems and Computing, vol 1143. Springer, Singapore. https://doi.org/10.1007/978-981-15-3753-0_36

Download citation

Publish with us

Policies and ethics