Skip to main content

Innate Immune Signaling in Cardiac Homeostasis and Cardiac Injuries

  • Chapter
  • First Online:
Systems and Synthetic Immunology
  • 919 Accesses

Abstract

Cardiovascular disease is the leading cause of death worldwide, despite the growing advances that have been made in the development of therapeutics. Almost all aspects of the pathogenesis underlying a cardiac injury are critically influenced by the inflammatory response. Over the past two decades, researchers have shown that the myocardium triggers an intense innate immune response that activates various immune effectors including the pattern recognition receptors.

In this chapter, we will give an overview of the innate immune cells involved in the cardiac homeostasis and their responses after cardiac injuries, focusing on the role of innate immune signaling pathways in the progression of various cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Apo E:

apolipoprotein E

CARD:

caspase recruitment domains

CD:

cluster of differentiation

CVD:

cardiovascular disease

DAMP:

danger-associated molecular pattern

ECM:

extracellular matrix

HF:

heart failure

HMGB1:

high-mobility group box 1

HSP:

heat shock protein

IFN:

interferon

IKK:

inhibitor of kappa B kinase

IL:

interleukin

IRAK:

IL-1 receptor-associated kinase

LRR:

leucine-rich repeat

MDA5:

melanoma differentiation-associated protein 5

MMP9:

matrix metalloproteinase 9

MyD88:

myeloid differentiation primary response protein 88

NETs:

neutrophil extracellular traps

NF-κB:

nuclear factor κ-light-chain-enhancer of activated B cells

NLR:

NOD-like receptor

NLRP:

NOD-, LRR-, and pyrin domain-containing protein 3

NOD:

nucleotide-binding oligomerization domain

PAMP:

pathogen-associated molecular pattern

PRR:

pattern recognition receptor

RIG-I:

retinoic acid-inducible gene I

RLR:

RIG-I-like receptor

TAK:

transforming growth factor-β–activated kinase

TLR:

toll-like receptor

TNF-α:

tumor necrosis factor-α

TRAF:

tumor necrosis factor receptor-associated factor

TRAM:

TRIF-related adaptor molecule

TRIF:

toll/IL-1 receptor homology domain–containing adapter inducing IFN-β

References

  1. Gupta R (2004) Trends in hypertension epidemiology in India. J Hum Hypertens 18(2):73–78

    Article  CAS  PubMed  Google Scholar 

  2. Gupta R, Mohan I, Narula J (2016) Trends in coronary heart disease epidemiology in India. Ann Glob Health 82(2):307–315

    Article  PubMed  Google Scholar 

  3. Ndrepepa G (2017) Atherosclerosis & ischaemic heart disease: Here to stay or gone tomorrow. Indian J Med Res 146(3):293–297

    PubMed  PubMed Central  Google Scholar 

  4. Prabhakaran D, Jeemon P, Roy A (2016) Cardiovascular diseases in India: current epidemiology and future directions. Circulation 133(16):1605–1620

    Article  PubMed  Google Scholar 

  5. Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298(5601):2188–2190

    Article  CAS  PubMed  Google Scholar 

  6. Porrello ER et al (2011) Transient regenerative potential of the neonatal mouse heart. Science 331(6020):1078–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kikuchi K et al (2010) Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464(7288):601–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Senyo SE et al (2013) Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493(7432):433–436

    Article  CAS  PubMed  Google Scholar 

  9. Yancy CW et al (2013) ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128(16):1810–1852

    Article  PubMed  Google Scholar 

  10. Levine B et al (1990) Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 323(4):236–241

    Article  CAS  PubMed  Google Scholar 

  11. Yu L, Feng Z (2018) The role of toll-like receptor signaling in the progression of heart failure. Mediat Inflamm 2018:9874109

    Google Scholar 

  12. Pinto AR et al (2016) Revisiting cardiac cellular composition. Circ Res 118(3):400–409

    Article  CAS  PubMed  Google Scholar 

  13. Zhou P, Pu WT (2016) Recounting cardiac cellular composition. Circ Res 118(3):368–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bergmann O et al (2015) Dynamics of cell generation and turnover in the human heart. Cell 161(7):1566–1575

    Article  CAS  PubMed  Google Scholar 

  15. Zhang W et al (2015) Necrotic myocardial cells release damage-associated molecular patterns that provoke fibroblast activation in vitro and trigger myocardial inflammation and fibrosis in vivo. J Am Heart Assoc 4(6):e001993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Furtado MB et al (2016) View from the heart: cardiac fibroblasts in development, scarring and regeneration. Development 143(3):387–397

    Article  CAS  PubMed  Google Scholar 

  17. Shinde AV, Frangogiannis NG (2014) Fibroblasts in myocardial infarction: a role in inflammation and repair. J Mol Cell Cardiol 70:74–82

    Article  CAS  PubMed  Google Scholar 

  18. Tallquist MD, Molkentin JD (2017) Redefining the identity of cardiac fibroblasts. Nat Rev Cardiol 14(8):484–491

    Article  PubMed  PubMed Central  Google Scholar 

  19. Maqbool A et al (2016) Tenascin C upregulates interleukin-6 expression in human cardiac myofibroblasts via toll-like receptor 4. World J Cardiol 8(5):340–350

    Article  PubMed  PubMed Central  Google Scholar 

  20. Turner NA (2016) Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs). J Mol Cell Cardiol 94:189–200

    Article  CAS  PubMed  Google Scholar 

  21. He L et al (2017) Preexisting endothelial cells mediate cardiac neovascularization after injury. J Clin Invest 127(8):2968–2981

    Article  PubMed  PubMed Central  Google Scholar 

  22. Klotz L et al (2015) Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature 522(7554):62–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Haubner BJ et al (2012) Complete cardiac regeneration in a mouse model of myocardial infarction. Aging (Albany NY) 4(12):966–977

    Article  CAS  Google Scholar 

  24. Porrello ER, Olson EN (2014) A neonatal blueprint for cardiac regeneration. Stem Cell Res 13(3 Pt B):556–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Haubner BJ et al (2016) Functional recovery of a human neonatal heart after severe myocardial infarction. Circ Res 118(2):216–221

    Article  CAS  PubMed  Google Scholar 

  26. Ye L et al (2018) Early regenerative capacity in the porcine heart. Circulation 138(24):2798–2808

    Article  PubMed  Google Scholar 

  27. Ali H, Braga L, Giacca M (2019) Cardiac regeneration and remodelling of the cardiomyocyte cytoarchitecture. FEBS J

    Google Scholar 

  28. Heallen TR et al (2019) Stimulating Cardiogenesis as a treatment for heart failure. Circ Res 124(11):1647–1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tzahor E, Poss KD (2017) Cardiac regeneration strategies: staying young at heart. Science 356(6342):1035–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Uygur A, Lee RT (2016) Mechanisms of cardiac regeneration. Dev Cell 36(4):362–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sattler S, Rosenthal N (2016) The neonate versus adult mammalian immune system in cardiac repair and regeneration. Biochim Biophys Acta 1863(7 Pt B):1813–1821

    Article  CAS  PubMed  Google Scholar 

  32. Aurora AB et al (2014) Macrophages are required for neonatal heart regeneration. J Clin Invest 124(3):1382–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lavine KJ et al (2014) Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc Natl Acad Sci U S A 111(45):16029–16034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leid J et al (2016) Primitive embryonic macrophages are required for coronary development and maturation. Circ Res 118(10):1498–1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Epelman S et al (2014) Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40(1):91–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Frangogiannis NG et al (1999) Histochemical and morphological characteristics of canine cardiac mast cells. Histochem J 31(4):221–229

    Article  CAS  PubMed  Google Scholar 

  37. Gersch C et al (2002) Mast cells and macrophages in normal C57/BL/6 mice. Histochem Cell Biol 118(1):41–49

    Article  CAS  PubMed  Google Scholar 

  38. Bonner F et al (2012) Resident cardiac immune cells and expression of the ectonucleotidase enzymes CD39 and CD73 after ischemic injury. PLoS One 7(4):e34730

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Janicki JS, Brower GL, Levick SP (2015) The emerging prominence of the cardiac mast cell as a potent mediator of adverse myocardial remodeling. Methods Mol Biol 1220:121–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Swirski FK, Nahrendorf M (2018) Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat Rev Immunol 18(12):733–744

    Article  CAS  PubMed  Google Scholar 

  41. Yu YR et al (2016) A protocol for the comprehensive flow cytometric analysis of immune cells in normal and inflamed murine non-lymphoid tissues. PLoS One 11(3):e0150606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Farbehi N et al (2019) Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. Elife:8

    Google Scholar 

  43. Frangogiannis NG et al (1998) Resident cardiac mast cells degranulate and release preformed TNF-alpha, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation 98(7):699–710

    Article  CAS  PubMed  Google Scholar 

  44. McDonald B et al (2010) Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330(6002):362–366

    Article  CAS  PubMed  Google Scholar 

  45. Soehnlein O, Lindbom L (2010) Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 10(6):427–439

    Article  CAS  PubMed  Google Scholar 

  46. Lorchner H et al (2015) Myocardial healing requires Reg3beta-dependent accumulation of macrophages in the ischemic heart. Nat Med 21(4):353–362

    Article  PubMed  CAS  Google Scholar 

  47. Pase L et al (2012) Neutrophil-delivered myeloperoxidase dampens the hydrogen peroxide burst after tissue wounding in zebrafish. Curr Biol 22(19):1818–1824

    Article  CAS  PubMed  Google Scholar 

  48. Brinkmann V et al (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535

    Article  CAS  PubMed  Google Scholar 

  49. O’Neil LJ, Kaplan MJ, Carmona-Rivera C (2019) The role of neutrophils and neutrophil extracellular traps in vascular damage in systemic lupus erythematosus. J Clin Med 8(9)

    Google Scholar 

  50. Sorensen OE et al (2014) Papillon-Lefevre syndrome patient reveals species-dependent requirements for neutrophil defenses. J Clin Invest 124(10):4539–4548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Knight JS et al (2014) Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circ Res 114(6):947–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rohrbach AS et al (2012) Activation of PAD4 in NET formation. Front Immunol 3:360

    Article  PubMed  PubMed Central  Google Scholar 

  53. Franck G et al (2018) Roles of PAD4 and NETosis in experimental atherosclerosis and arterial injury: implications for superficial erosion. Circ Res 123(1):33–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li Y et al (2018) Neutrophil extracellular traps formation and aggregation orchestrate induction and resolution of sterile crystal-mediated inflammation. Front Immunol 9:1559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Wang H et al (2018) Obesity-induced endothelial dysfunction is prevented by neutrophil extracellular trap inhibition. Sci Rep 8(1):4881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Pinto AR, Godwin JW, Rosenthal NA (2014) Macrophages in cardiac homeostasis, injury responses and progenitor cell mobilisation. Stem Cell Res 13(3 Pt B):705–714

    Article  CAS  PubMed  Google Scholar 

  57. Yamasaki S et al (2008) Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol 9(10):1179–1188

    Article  CAS  PubMed  Google Scholar 

  58. Hulsmans M et al (2017) Macrophages facilitate electrical conduction in the heart. Cell 169(3):510–522.e20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bajpai G et al (2019) Tissue resident CCR2- and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ Res 124(2):263–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nahrendorf M et al (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204(12):3037–3047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Molawi K et al (2014) Progressive replacement of embryo-derived cardiac macrophages with age. J Exp Med 211(11):2151–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yan X et al (2013) Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J Mol Cell Cardiol 62:24–35

    Article  CAS  PubMed  Google Scholar 

  63. Cheng B et al (2017) Harnessing the early post-injury inflammatory responses for cardiac regeneration. J Biomed Sci 24(1):7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Nahrendorf M, Swirski FK (2013) Monocyte and macrophage heterogeneity in the heart. Circ Res 112(12):1624–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. van der Laan AM et al (2014) Monocyte subset accumulation in the human heart following acute myocardial infarction and the role of the spleen as monocyte reservoir. Eur Heart J 35(6):376–385

    Article  PubMed  CAS  Google Scholar 

  66. Choi JH et al (2009) Identification of antigen-presenting dendritic cells in mouse aorta and cardiac valves. J Exp Med 206(3):497–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Anzai A et al (2012) Regulatory role of dendritic cells in postinfarction healing and left ventricular remodeling. Circulation 125(10):1234–1245

    Article  PubMed  Google Scholar 

  68. Nagai T et al (2014) Decreased myocardial dendritic cells is associated with impaired reparative fibrosis and development of cardiac rupture after myocardial infarction in humans. J Am Heart Assoc 3(3):e000839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Zouggari Y et al (2013) B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med 19(10):1273–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Epelman S, Liu PP, Mann DL (2015) Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat Rev Immunol 15(2):117–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mann DL (2011) The emerging role of innate immunity in the heart and vascular system: for whom the cell tolls. Circ Res 108(9):1133–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mann DL (2015) Innate immunity and the failing heart: the cytokine hypothesis revisited. Circ Res 116(7):1254–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ohto U et al (2018) Toll-like receptor 9 contains two DNA binding sites that function cooperatively to promote receptor dimerization and activation. Immunity 48(4):649–658.e4

    Article  CAS  PubMed  Google Scholar 

  74. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384

    Article  CAS  PubMed  Google Scholar 

  75. Kawasaki T, Kawai T (2014) Toll-like receptor signaling pathways. Front Immunol 5:461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Nishimura M, Naito S (2005) Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol Pharm Bull 28(5):886–892

    Article  CAS  PubMed  Google Scholar 

  77. Jin MS et al (2007) Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130(6):1071–1082

    Article  CAS  PubMed  Google Scholar 

  78. Latz E et al (2007) Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nat Immunol 8(7):772–779

    Article  CAS  PubMed  Google Scholar 

  79. Xu Y et al (2000) Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 408(6808):111–115

    Article  CAS  PubMed  Google Scholar 

  80. Kawai T, Akira S (2009) The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 21(4):317–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Medzhitov R et al (1998) MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 2(2):253–258

    Article  CAS  PubMed  Google Scholar 

  82. Reparaz L et al (1992) The epidemiology and cost/effectiveness analysis of diabetic angiopathy in vascular surgery. Angiologia 44(6):225–233

    CAS  PubMed  Google Scholar 

  83. Lin SC, Lo YC, Wu H (2010) Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465(7300):885–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dobaczewski M, Chen W, Frangogiannis NG (2011) Transforming growth factor (TGF)-beta signaling in cardiac remodeling. J Mol Cell Cardiol 51(4):600–606

    Article  CAS  PubMed  Google Scholar 

  85. Frantz S, Kelly RA, Bourcier T (2001) Role of TLR-2 in the activation of nuclear factor kappaB by oxidative stress in cardiac myocytes. J Biol Chem 276(7):5197–5203

    Article  CAS  PubMed  Google Scholar 

  86. Holloway JW, Yang IA, Ye S (2005) Variation in the toll-like receptor 4 gene and susceptibility to myocardial infarction. Pharmacogenet Genomics 15(1):15–21

    Article  CAS  PubMed  Google Scholar 

  87. Michelsen KS et al (2004) Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci U S A 101(29):10679–10684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mullick AE, Tobias PS, Curtiss LK (2005) Modulation of atherosclerosis in mice by Toll-like receptor 2. J Clin Invest 115(11):3149–3156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sakata S et al (2007) Transcoronary gene transfer of SERCA2a increases coronary blood flow and decreases cardiomyocyte size in a type 2 diabetic rat model. Am J Physiol Heart Circ Physiol 292(2):H1204–H1207

    Article  CAS  PubMed  Google Scholar 

  90. Chong AJ et al (2004) Toll-like receptor 4 mediates ischemia/reperfusion injury of the heart. J Thorac Cardiovasc Surg 128(2):170–179

    Article  CAS  PubMed  Google Scholar 

  91. Feng Y et al (2008) Innate immune adaptor MyD88 mediates neutrophil recruitment and myocardial injury after ischemia-reperfusion in mice. Am J Physiol Heart Circ Physiol 295(3):H1311–H1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kim SC et al (2007) Toll-like receptor 4 deficiency: smaller infarcts, but no gain in function. BMC Physiol 7:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Oyama J et al (2004) Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation 109(6):784–789

    Article  CAS  PubMed  Google Scholar 

  94. Shishido T et al (2003) Toll-like receptor-2 modulates ventricular remodeling after myocardial infarction. Circulation 108(23):2905–2910

    Article  CAS  PubMed  Google Scholar 

  95. Riad A et al (2008) Toll-like receptor-4 modulates survival by induction of left ventricular remodeling after myocardial infarction in mice. J Immunol 180(10):6954–6961

    Article  CAS  PubMed  Google Scholar 

  96. Arslan F et al (2010) Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody. Circulation 121(1):80–90

    Article  CAS  PubMed  Google Scholar 

  97. Volz HC et al (2012) HMGB1 is an independent predictor of death and heart transplantation in heart failure. Clin Res Cardiol 101(6):427–435

    Article  CAS  PubMed  Google Scholar 

  98. Hemmi H et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408(6813):740–745

    Article  CAS  PubMed  Google Scholar 

  99. Latz E et al (2004) TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 5(2):190–198

    Article  CAS  PubMed  Google Scholar 

  100. Lohner R et al (2013) Toll-like receptor 9 promotes cardiac inflammation and heart failure during polymicrobial sepsis. Mediators Inflamm 2013:261049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Koulis C et al (2014) Protective role for Toll-like receptor-9 in the development of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 34(3):516–525

    Article  CAS  PubMed  Google Scholar 

  102. Bliksoen M et al (2016) Extracellular mtDNA activates NF-kappaB via toll-like receptor 9 and induces cell death in cardiomyocytes. Basic Res Cardiol 111(4):42

    Article  PubMed  CAS  Google Scholar 

  103. Oka T et al (2012) Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485(7397):251–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hardison SE, Brown GD (2012) C-type lectin receptors orchestrate antifungal immunity. Nat Immunol 13(9):817–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lech M et al (2012) Quantitative expression of C-type lectin receptors in humans and mice. Int J Mol Sci 13(8):10113–10131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13(6):397–411

    Article  CAS  PubMed  Google Scholar 

  107. Lu A et al (2014) Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156(6):1193–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bertin J et al (2000) CARD9 is a novel caspase recruitment domain-containing protein that interacts with BCL10/CLAP and activates NF-kappa B. J Biol Chem 275(52):41082–41086

    Article  CAS  PubMed  Google Scholar 

  109. Kayagaki N et al (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479(7371):117–121

    Article  CAS  PubMed  Google Scholar 

  110. Kesavardhana S, Kanneganti TD (2017) Mechanisms governing inflammasome activation, assembly and pyroptosis induction. Int Immunol 29(5):201–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Man SM, Kanneganti TD (2016) Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat Rev Immunol 16(1):7–21

    Article  CAS  PubMed  Google Scholar 

  112. Zimmer S, Grebe A, Latz E (2015) Danger signaling in atherosclerosis. Circ Res 116(2):323–340

    Article  CAS  PubMed  Google Scholar 

  113. Stachon P et al (2015) Two-year survival of patients screened for transcatheter aortic valve replacement with potentially malignant incidental findings in initial body computed tomography. Eur Heart J Cardiovasc Imaging 16(7):731–737

    Article  PubMed  PubMed Central  Google Scholar 

  114. O’Brien LC et al (2014) Interleukin-18 as a therapeutic target in acute myocardial infarction and heart failure. Mol Med 20:221–229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Huet F et al (2017) Anti-inflammatory drugs as promising cardiovascular treatments. Expert Rev Cardiovasc Ther 15(2):109–125

    Article  CAS  PubMed  Google Scholar 

  116. Nidorf SM et al (2013) Low-dose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol 61(4):404–410

    Article  CAS  PubMed  Google Scholar 

  117. Zimmer A et al (2019) Innate immune response in the pathogenesis of heart failure in survivors of myocardial infarction. Am J Physiol Heart Circ Physiol 316(3):H435–H445

    Article  CAS  PubMed  Google Scholar 

  118. Asdonk T et al (2012) Endothelial RIG-I activation impairs endothelial function. Biochem Biophys Res Commun 420(1):66–71

    Article  CAS  PubMed  Google Scholar 

  119. Wang F et al (2012) Interferon regulator factor 1/retinoic inducible gene I (IRF1/RIG-I) axis mediates 25-hydroxycholesterol-induced interleukin-8 production in atherosclerosis. Cardiovasc Res 93(1):190–199

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Drs. M Rahman and MK Zakaria for helpful comments and suggestions.

Conflicts of Interest

The authors have no conflicts to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hashim Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naseem, A., Ali, H. (2020). Innate Immune Signaling in Cardiac Homeostasis and Cardiac Injuries. In: Singh, S. (eds) Systems and Synthetic Immunology . Springer, Singapore. https://doi.org/10.1007/978-981-15-3350-1_7

Download citation

Publish with us

Policies and ethics