Skip to main content

Fluid Management

  • Chapter
  • First Online:
Clinical Thoracic Anesthesia
  • 583 Accesses

Abstract

Fluid management in thoracic anaesthesia produces a unique challenge to the anaesthesiologist. There is no fixed directive on its management. In this chapter, we endeavour to address this problem and find a workable solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gopaldas RR, Bakaeen FG, Dao TK, et al. Video-assisted thoracoscopic versus open thoracotomy lobectomy in a cohort of 13 619 patients. Ann Thorac Surg. 2010;89:1563–70.

    Article  Google Scholar 

  2. Louie BE, Farivar AS, Aye RW, et al. Early experience with robotic lung resection results in similar operative outcomes and morbidity when compared with matched video-assisted thoracoscopic surgery cases. Ann Thorac Surg. 2012;93:1598–604.

    Google Scholar 

  3. Parquin F, Marchal M, Mehiri S, et al. Postpneumonectomy pulmonary edema: analysis and risk factors. Eur J Cardiothorac Surg. 1996;10:929–32.

    Article  CAS  Google Scholar 

  4. Licker M, de Perrot M, Spiliopoulos A, et al. Risk factors for acute lung injury after thoracic surgery for lung cancer. Anesth Analg. 2003;97:1558–65.

    Article  Google Scholar 

  5. Alam N, Park BJ, Wilton A, et al. Incidence and risk factors for lung injury after lung cancer resection. Ann Thorac Surg. 2007;84:1085–91.

    Article  Google Scholar 

  6. Marret E, Miled F, Bazelly B, et al. Risk and protective factors for major complications after pneumonectomy for lung cancer. Inter Cardiovasc Thorac Surg. 2010;10:936–9.

    Article  Google Scholar 

  7. Becker BF, Chappell D, Jacob M. Endothelial glycocalyx and coronary vascular permeability: the fringe benefit. Basic Res Cardiol. 2010;105:687–701.

    Article  CAS  Google Scholar 

  8. Pries AR, Secomb TW, Gaehtgens P. The endothelial surface layer. Pflugers Arch. 2000;440:653–66.

    Article  CAS  Google Scholar 

  9. Chappell D, Jacob M, Hofmann-Kiefer K, et al. A rational approach to perioperative fluid management. Anesthesiology. 2008;109:723–40.

    Google Scholar 

  10. Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108:384–94.

    Article  CAS  Google Scholar 

  11. Rehm M, Bruegger D, Christ F, et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation. 2007;116:1896–906.

    Google Scholar 

  12. Chappell D, Jacob M. Role of the glycocalyx in fluid management: small things matter. Best Pract Res Clin Anaesthesiol. 2014;28:227–34.

    Article  Google Scholar 

  13. Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108:384–94.

    Article  CAS  Google Scholar 

  14. Rehm M, Haller M, Orth V, et al. Changes in blood volume and hematocrit during acute preoperative volume loading with 5% albumin or 6% hetastarch solutions in patients before radical hysterectomy. Anesthesiology. 2001;95:849–56.

    Google Scholar 

  15. Bruegger D, Schwartz L, Chappell D, et al. Release of atrial natriuretic peptide precedes shedding of the endothelial glycocalyx equally in patients undergoing on- and off-pump coronary artery bypass surgery. Basic Res Cardiol. 2011;106:1111–21.

    Google Scholar 

  16. Chappell D, Bruegger D, Potzel J, et al. Hypervolemia increases release of atrial natriuretic peptide and shedding of the endothelial glycocalyx. Crit Care. 2014;18:538.

    Google Scholar 

  17. Chappell D, Dorfler N, Jacob M, et al. Glycocalyx protection reduces leukocyte adhesion after ischemia/reperfusion. Shock. 2010;34:133–9.

    Google Scholar 

  18. Chappell D, Heindl B, Jacob M, et al. Sevoflurane reduces leukocyte and platelet adhesion after ischemia-reperfusion by protecting the endothelial glycocalyx. Anesthesiology. 2011;115:483–91.

    Google Scholar 

  19. Schmidt EP, Yang Y, Janssen WJ, et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med. 2012;18:1217–23.

    Google Scholar 

  20. Constantinescu AA, Vink H, Spaan JA. Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler Thromb Vasc Biol. 2003;23:1541–7.

    Article  CAS  Google Scholar 

  21. Vink H, Constantinescu AA, Spaan JA. Oxidized lipoproteins degrade the endothelial surface layer: implications for platelet-endothelial cell adhesion. Circulation. 2000;101:1500–2.

    Article  CAS  Google Scholar 

  22. Huxley VH, Williams DA. Role of a glycocalyx on coronary arteriole permeability to proteins: evidence from enzyme treatments. Am J Physiol Heart Circ Physiol. 2000;278:1177–85.

    Article  Google Scholar 

  23. Collins SR, Blank RS, Deatherage LS, et al. Special article: the endothelial glycocalyx: emerging concepts in pulmonary edema and acute lung injury. Anesth Analg. 2013;117:664–74.

    Google Scholar 

  24. Dull RO, Mecham I, McJames S. Heparan sulfates mediate pressure-induced increase in lung endothelial hydraulic conductivity via nitric oxide/reactive oxygen species. Am J Physiol Lung Cell Mol Physiol. 2007;292:1452–8.

    Article  Google Scholar 

  25. Dull RO, Jo H, Sill H, et al. The effect of varying albumin concentration and hydrostatic pressure on hydraulic conductivity and albumin permeability of cultured endothelial monolayers. Microvasc Res. 1991;41:390–407.

    Google Scholar 

  26. Zeldin RA, Normandin D, Landtwing D, et al. Postpneumonectomy pulmonary edema. J Thorac Cardiovasc Surg. 1984;87:359–65.

    Google Scholar 

  27. Blank RS, Hucklenbruch C, Gurka KK, et al. Intraoperative factors and the risk of respiratory complications after pneumonectomy. Ann Thorac Surg. 2011;92:1188–94.

    Google Scholar 

  28. Kutlu CA, Williams EA, Evans TW, et al. Acute lung injury and acute respiratory distress syndrome after pulmonary resection. Ann Thorac Surg. 2000;69:376–80.

    Google Scholar 

  29. Jacob M, Chappell D, Rehm M. The ‘third space’—fact or fiction? Best Pract Res Clin Anaesthesiol. 2009;23:145–57.

    Article  Google Scholar 

  30. Slinger P. Fluid management during pulmonary resection surgery. Ann Card Anaesth. 2002;5:220–4.

    PubMed  Google Scholar 

  31. Chau EH, Slinger P. Perioperative fluid management for pulmonary resection surgery and esophagectomy. Semin Cardiothorac Vasc Anesth. 2014;18:36–44.

    Article  Google Scholar 

  32. Zarins CK, Rice CL, Peters RM, et al. Lymph and pulmonary response to isobaric reduction in plasma oncotic pressure in baboons. Circ Res. 1978;43:925–30.

    Google Scholar 

  33. Nohl-Oser HC. An investigation of the anatomy of the lymphatic drainage of the lungs as shown by the lymphatic spread of bronchial carcinoma. Ann R Coll Surg Engl. 1972;51:157–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Turnage WS, Lunn JJ. Postpneumonectomy pulmonary edema. A retrospective analysis of associated variables. Chest. 1993;103:1646–50.

    Article  CAS  Google Scholar 

  35. Verheijen-Breemhaar L, Bogaard JM, van den Berg B, et al. Postpneumonectomy pulmonary oedema. Thorax. 1988;43:323–6.

    Google Scholar 

  36. Laine GA, Allen SJ, Katz J, et al. Effect of systemic venous pressure elevation on lymph flow and lung edema formation. J Appl Physiol. 1986;61:1634–8.

    Google Scholar 

  37. Pedoto A, Amar D. Right heart function in thoracic surgery: role of echocardiography. Curr Opin Anaesth. 2009;22:44–9.

    Article  Google Scholar 

  38. Reed CE, Dorman BH, Spinale FG. Mechanisms of right ventricular dysfunction after pulmonary resection. Ann Thorac Surg. 1996;62:225–31.

    Article  CAS  Google Scholar 

  39. Okada M, Ota T, Matsuda H, et al. Right ventricular dysfunction after major pulmonary resection. J Thorac Cardiovasc Surg. 1994;108:503–11.

    Google Scholar 

  40. Abbas SM, Hill AG. Systematic review of the literature for the use of oesophageal Doppler monitor for fluid replacement in major abdominal surgery. Anaesthesia. 2008;63:44–51.

    Article  CAS  Google Scholar 

  41. Phan TD, Ismail H, Heriot AG, et al. Improving perioperative outcomes: fluid optimization with the esophageal Doppler monitor, a metaanalysis and review. J Am Coll Surg. 2008;207:935–41.

    Google Scholar 

  42. Brandstrup B. Fluid therapy for the surgical patient. Best Pract Res Clin Anaesthesiol. 2006;20:265–83.

    Article  Google Scholar 

  43. Corcoran T, Rhodes JE, Clarke S, et al. Perioperative fluid management strategies in major surgery: a stratified meta-analysis. Anesth Analg. 2012;114:640–51.

    Google Scholar 

  44. Chong MA, Wang Y, Berbenetz NM, et al. Does goal-directed haemodynamic and fluid therapy improve peri-operative outcomes?: a systematic review and meta-analysis. Eur J Anaesthesiol. 2018;35:469–83.

    Google Scholar 

  45. Bundgaard-Nielsen M, Holte K, Secher NH, et al. Monitoring of peri-operative fluid administration by individualized goal-directed therapy. Acta Anaesthesiol Scand. 2007;51:331–40.

    Google Scholar 

  46. Cecconi M, Parsons AK, Rhodes A. What is a fluid challenge? Curr Opin Crit Care. 2011;17:290–5.

    Article  Google Scholar 

  47. Ansari BM, Zochios V, Falter F, et al. Physiological controversies and methods used to determine fluid responsiveness: a qualitative systematic review. Anaesthesia. 2016;71:94–105.

    Google Scholar 

  48. Funk DJ, Moretti EW, Gan TJ. Minimally invasive cardiac output monitoring in the perioperative setting. Anesth Analg. 2009;108:887–97.

    Article  Google Scholar 

  49. Thiele RH, Bartels K, Gan TJ. Inter-device differences in monitoring for goal-directed fluid therapy. Can J Anaesth. 2015;62:169–81.

    Article  Google Scholar 

  50. Ahn HJ, Kim JA, Lee AR, et al. The risk of acute kidney injury from fluid restriction and hydroxyethyl starch in thoracic surgery. Anesth Analg. 2016;122:186–93.

    Google Scholar 

  51. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wiedemann HP, Wheeler AP, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564-2575.

    Google Scholar 

  52. Licker M, Fauconnet P, Villiger Y, et al. Acute lung injury and outcomes after thoracic surgery. Curr Opin Anaesthesiol. 2009;22:61–7.

    Google Scholar 

  53. Staub N. Pulmonary edema due to increased microvascular permeability to fluid and protein. Circ Res. 1978;43:143–51.

    Article  CAS  Google Scholar 

  54. Klein J. Normobaric pulmonary oxygen toxicity. Anesth Analg. 1990;70:195–207.

    Article  CAS  Google Scholar 

  55. Kohl B, Deutschman CS. The inflammatory response to surgery and trauma. Curr Opin Crit Care. 2006;12:325–32.

    Article  Google Scholar 

  56. Ray JF 3rd, Yost L, Moallem S, et al. Immobility, hypoxemia, and pulmonary arteriovenous shunting. Arch Surg. 1974;109:537–41.

    Article  Google Scholar 

  57. Kobayashi M, Koh M, Irinoda T, et al. Stroke volume variation as a predictor of intravascular volume depression and possible hypotension during the early postoperative period after esophagectomy. Ann Surg Oncol. 2009;16:1371–7.

    Google Scholar 

  58. Michard F. Bedside assessment of extravascular lung water by dilution methods: temptations and pitfalls. Crit Care Med. 2007;35:1186–92.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, S. (2020). Fluid Management. In: Sood, J., Sharma, S. (eds) Clinical Thoracic Anesthesia. Springer, Singapore. https://doi.org/10.1007/978-981-15-0746-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0746-5_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0745-8

  • Online ISBN: 978-981-15-0746-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics