Skip to main content

Lung Physiology Relevant to Thoracic Anesthesia

  • Chapter
  • First Online:
Clinical Thoracic Anesthesia
  • 669 Accesses

Abstract

Anesthesia practice involves manipulating respiratory system and respiratory events are major cause of morbidity and mortality even in non thoracic patients. Understanding mechanisms of deranged pulmonary functions during one lung ventilation, patient position and thoracic surgery is desirable for managing such patients. This should begin with examining normal pulmonary functions and it’s mechanism in health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kavanach B, Hedenstierna G. Respiratory physiology and pathophysiology. In: Miller RS, editor. Miller’s anaesthesia. 8th ed. Philadelphia: Elsevier; 2015. p. 444–72.

    Google Scholar 

  2. Grassino AE, Rpissos G. Static properties of the lung and chest wall. In: Crystal RG, West JB, Weibel ER, et al. editors. The lung: scientific foundations. 2nd ed. Philadelphia: Lippincott-Raven; 1997. p. 1187.

    Google Scholar 

  3. Pedley TJ, Kamm RD. Dynamics of gas flow and pressure flow relationship. In: Crystal RG, West JB, Weibel, Barnes PJ, editors. The lung: scientific foundations. 2nd ed. Philadelphia: Lippincott Raven; 1997. p. 1365.

    Google Scholar 

  4. Slats AM, Janssen K, van Schadewijk A, et al. Bronchial inflammation and airway responses to deep inspiration in asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;176(2):121–8.

    Google Scholar 

  5. Calverley PM, Koulouris NG. Flow limitation and dynamic hyperinflation: key concepts in modern respiratory physiology. Eur Respir J. 2005;25(1):186–99.

    Article  CAS  Google Scholar 

  6. Mead J, Turner JM, Macklem PT, et al. Significance of the relationship between lung recoil and maximum expiratory flow. J Appl Physiol. 1967;22(1):95–108.

    Google Scholar 

  7. Verbeken EK, Cauberghs M, Mertens I, et al. Tissue and airway impedance of excised normal, senile, and emphysematous lungs. J Appl Physiol (1985). 1992;72(6):2343–53.

    Google Scholar 

  8. Bachofen H, Scherrer M. Lung tissue resistance in diffuse interstitial pulmonary fibrosis. J Clin Invest. 1967;46(1):133–40.

    Article  CAS  Google Scholar 

  9. Hubmayr RD. Perspective on lung injury and recruitment: a skeptical look at the opening and collapse story. Am J Respir Crit Care Med. 2002;165(12):1647–53.

    Article  Google Scholar 

  10. Milic-Emile J. Ventilation distribution. In: Hammid Q, Shannon J, Martin J, editors. Physiologic bases of respiratory disease. Hamilton, ON: BC Decker; 2005.

    Google Scholar 

  11. Ganesan S, Lai-Fook SJ, SchĂ¼rch S. Alveolar liquid pressures in nonedematous and kerosene-washed rabbit lung by micropuncture. Respir Physiol. 1989;78(3):281–95.

    Article  CAS  Google Scholar 

  12. Mayo JR, MacKay AL, Whittall KP, et al. Measurement of lung water content and pleural pressure gradient with magnetic resonance imaging. J Thorac Imaging. 1995;10(1):73–81.

    Google Scholar 

  13. Petersson J, SĂ¡nchez-Crespo A, Rohdin M, et al. Physiological evaluation of a new quantitative SPECT method measuring regional ventilation and perfusion. J Appl Physiol (1985). 2004;96(3):1127–36.

    Google Scholar 

  14. Bryan AC, Bentivoglio LG, Beerel F, et al. Factors affecting regional distribution of ventilation and perfusion in the lung. J Appl Physiol. 1964;19:395–402.

    Google Scholar 

  15. Bake B, Wood L, Murphy B, et al. Effect of inspiratory flow rate on regional distribution of inspired gas. J Appl Physiol. 1974;37(1):8–17.

    Google Scholar 

  16. Milic-Emili J, Torchio R, D’Angelo E. Closing volume: a reappraisal (1967–2007). Eur J Appl Physiol. 2007;99(6):567–83.

    Article  Google Scholar 

  17. Teculescu DB, Damel MC, Costantino E, et al. Computerized single-breath nitrogen washout: predicted values in a rural French community. Lung. 1996;174(1):43–55.

    Google Scholar 

  18. Haefeli-Bleuer B, Weibel ER. Morphometry of the human pulmonary acinus. Anat Rec. 1988;220(4):401–14.

    Article  CAS  Google Scholar 

  19. Adaro F. Limiting role of stratification in alveolar exchange of oxygen. Respir Physiol. 1976;26(2):195–206.

    Article  CAS  Google Scholar 

  20. Hughes JMB. Distribution of pulmonary blood flow. In: Crystal RG, West JB, Weibel ER, Barnes PJ, editors. The lung: scientific foundations. 2nd ed. Philadelphia: Lippincott-Raven; 1997. p. 1523–36.

    Google Scholar 

  21. West JB, Dollery CT, Naimark A. Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol. 1964;19:713–24.

    Article  CAS  Google Scholar 

  22. Hughes JM, Glazier JB, Maloney JE, et al. Effect of lung volume on the distribution of pulmonary blood flow in man. Respir Physiol. 1968;4:58–72.

    Google Scholar 

  23. West JB. Studies of pulmonary and cardiac function using short-lived isotopes oxygen-15, nitrogen-13 and carbon-11. Prog At Med. 1968;2:39–64.

    CAS  PubMed  Google Scholar 

  24. Glenny RW. Blood flow distribution in the lung. Chest. 1998;114(1 Suppl):8S–16S.

    Article  CAS  Google Scholar 

  25. Robertson HT, Hlastala MP. Microsphere maps of regional blood flow and regional ventilation. J Appl Physiol (1985). 2007;102(3):1265–72.

    Article  Google Scholar 

  26. Dawson CA, Linehan JH. Dynamics of blood flow and pressure flow relationships. In: Crystal RG, West JB, Weibel ER, Barnes PJ, editors. The lung: scientific foundations. 2nd ed. Philadelphia: Lippincott-Raven; 1997. p. 1503–22.

    Google Scholar 

  27. Bachofen H, Schurch S, Weibel ER. Experimental hydrostatic pulmonary edema in rabbit lungs. Barrier lesions. Am Rev Respir Dis. 1993;147:997–1004.

    Article  CAS  Google Scholar 

  28. Jeffery PK. Remodeling and inflammation of bronchi in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2004;1:176–83.

    Article  CAS  Google Scholar 

  29. Townsley MI, Fu Z, Mathieu-Costello O, et al. Pulmonary microvascular permeability. Responses to high vascular pressure after induction of pacing induced heart failure in dogs. Circ Res. 1995;77:317–25.

    Google Scholar 

  30. Sommer N, Dietrich A, Schermuly RT, et al. Regulation of hypoxic pulmonary vasoconstriction: basic mechanisms. Eur Respir J. 2008;32(6):1639–51.

    Article  CAS  Google Scholar 

  31. Archer SL, Weir EK, Reeve HL, et al. Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation. Adv Exp Med Biol. 2000;475:219–40.

    Google Scholar 

  32. Sham JS, Crenshaw BR Jr, Deng LH, et al. Effects of hypoxia in porcine pulmonary arterial myocytes: roles of K(V) channel and endothelin-1. Am J Physiol Lung Cell Mol Physiol. 2000;279(2):L262–72.

    Google Scholar 

  33. McMahon TJ, Moon RE, Luschinger BP, et al. Nitric oxide in the human respiratory cycle. Nat Med. 2002;8(7):711–7.

    Article  CAS  Google Scholar 

  34. O’Brien RF, Robbins RJ, McMurtry IF. Endothelial cells in culture produce a vasoconstrictor substance. J Cell Physiol. 1987;132(2):263–70.

    Article  Google Scholar 

  35. Hieda HS, Gomez-Sanchez CE. Hypoxia increases endothelin release in bovine endothelial cells in culture, but epinephrine, norepinephrine, serotonin, histamine and angiotensin II do not. Life Sci. 1990;47(3):247–51.

    Article  CAS  Google Scholar 

  36. Rakugi H, Tabuchi Y, Nakamaru M, et al. Evidence for endothelin-1 release from resistance vessels of rats in response to hypoxia. Biochem Biophys Res Commun. 1990;169(3):973–7.

    Article  CAS  Google Scholar 

  37. Bjertnaes LJ, Hauge A, Nakken KF, et al. Hypoxic pulmonary vasoconstriction: inhibition due to anesthesia. Acta Physiol Scand. 1976;96(2):283–5.

    Google Scholar 

  38. Hedenstierna G. Contribution of multiple inert gas elimination technique to pulmonary medicine. Ventilation-perfusion relationships during anaesthesia. Thorax. 1995;50(1):85–91.

    Article  CAS  Google Scholar 

  39. Moller JT, Cluitmans P, Rasmussen LS, Houx P, et al. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International study of post-operative cognitive dysfunction. Lancet. 1998;351(9106):857–61.

    Google Scholar 

  40. Hedenstierna G. Effects of body position on ventilation/perfusion matching. In: Gulio A, editor. Anaestheisa, pain, intensive carfe and emergency medicine—APICE. Milan: Springer; 2005. p. 3–15.

    Chapter  Google Scholar 

  41. Tenling A, Hachenberg T, Tydén H, et al. Hedenstierna G. Atelectasis and gas exchange after cardiac surgery. Anesthesiology. 1998;89(2):371–8.

    Google Scholar 

  42. Lindberg P, Gunnarsson L, Tokics L, et al. Atelectasis and lung function in the postoperative period. Acta Anaesthesiol Scand. 1992;36(6):546–53.

    Google Scholar 

  43. Hedenstierna G, Edmark L. The effects of anesthesia and muscle paralysis on the respiratory system. Intensive Care Med. 2005;31(10):1327–35.

    Article  Google Scholar 

  44. Musch G, Harris RS, Vidal Melo MF, et al. Mechanism by which a sustained inflation can worsen oxygenation in acute lung injury. Anesthesiology. 2004;100(2):323–30.

    Google Scholar 

  45. Rothen HU, Sporre B, Engberg G, et al. Influence of gas composition on recurrence of atelectasis after a reexpansion maneuver during general anesthesia. Anesthesiology. 1995;82(4):832–42.

    Google Scholar 

  46. Hedenstierna G, Tokics L, Lundquist H, et al. Phrenic nerve stimulation during halothane anesthesia. Effects of atelectasis. Anesthesiology. 1994;80(4):751–60.

    Google Scholar 

  47. Pelosi P, Ravagnan I, Giurati G, et al. Positive end-expiratory pressure improves respiratory function in obese but not in normal subjects during anesthesia and paralysis. Anesthesiology. 1999;91(5):1221–31.

    Google Scholar 

  48. Coussa M, Proietti S, Schnyder P, et al. Prevention of atelectasis formation during the induction of general anesthesia in morbidly obese patients. Anesth Analg. 2004;98(5):1491–5.

    Google Scholar 

  49. Ishikawa S, Nakazata K, Makita K. Progressive changes in arterial oxygenation during one-lung anaesthesia are related to the response to compression of the non dependent lung. Br J Anaesth. 2003;90:21–6.

    Article  CAS  Google Scholar 

  50. Benumof JL. One-lung ventilation and hypoxic pulmonary vasoconstriction: implications for anesthetic management. Anesth Analg. 1985;64(8):821–33.

    Article  CAS  Google Scholar 

  51. Karzai W, Schwarzkopf K. Hypoxemia during one-lung ventilation: prediction, prevention, and treatment. Anesthesiology. 2009;110(6):1402–11.

    Article  Google Scholar 

  52. Hedenstierna G, Reber A. Manipulating pulmonary blood flow during one-lung anaesthsia. Acta Anaesthesiol Scand. 1996;40(1):2–4.

    Article  CAS  Google Scholar 

  53. Klingstedt C, Hedenstierna G, Baehrendtz S, et al. Ventilation-perfusion relationships and atelectasis formation in the supine and lateral positions during conventional mechanical and differential ventilation. Acta Anaesthesiol Scand. 1990;34:421–9.

    Google Scholar 

  54. Tusman G, Böhm SH, Melkun F, et al. Alveolar recruitment strategy increases arterial oxygenation during one-lung ventilation. Ann Thorac Surg. 2002;73:1204–9.

    Google Scholar 

  55. Tusman G, Böhm SH, Sipmann FS, et al. Lung recruitment improves the efficiency of ventilation and gas exchange during one-lung ventilation anesthesia. Anesth Analg. 2004;98:1604–9.

    Google Scholar 

  56. Slinger PD, Kruger M, McRae K, et al. Relation of the static compliance curve and positive end-expiratory pressure to oxygenation during one-lung ventilation. Anesthesiology. 2001;95:1096–102.

    Google Scholar 

  57. Ishikawa S, Nakazawa K, Makita K. Progressive changes in arterial oxygenation during one-lung anaesthesia are related to the response to compression of the non-dependent lung. Br J Anaesth. 2003;90:21–6.

    Article  CAS  Google Scholar 

  58. Pfitzer J. Acute lung injury following one-lung anaesthesia. Br J Anaesth. 2003author reply;91:153–4.

    Article  CAS  Google Scholar 

  59. Moutafis M, Liu N, Dalibon N, et al. The effects of inhaled nitric oxide and its combination with intravenous almitrine on Pao2 during one-lung ventilation in patients undergoing thoracoscopic procedures. Anesth Analg. 1997;85:1130–5.

    Google Scholar 

  60. Silva-Costa-Gomes T, L. Gallart, J. Vallès, et al. Low- vs high-dose almitrine combined with nitric oxide to prevent hypoxia during open-chest one-lung ventilation. Br J Anaesth. 2005;95:410–6.

    Google Scholar 

  61. Lefevre GR, Kowalski SE, Girling LG, et al. Improved arterial oxygenation after oleic acid lung injury in the pig using a computer-controlled mechanical ventilator. Am J Respir Crit Care Med. 1996;154(5):1567–72.

    Article  CAS  Google Scholar 

  62. Boker A, Graham MR, Walley KR, et al. Improved arterial oxygenation with biologically variable or fractal ventilation using low tidal volumes in a porcine model of acute respiratory distress syndrome. Am J Respir Crit Care Med. 2002;165(4):456–62.

    Google Scholar 

  63. Boker A, Haberman CJ, Girling L, et al. Variable ventilation improves perioperative lung function in patients undergoing abdominal aortic aneurysmectomy. Anesthesiology. 2004;100(3):608–16.

    Google Scholar 

  64. Lloyd TC Jr. Influence of blood pH on hypoxic pulmonary vasoconstriction. J Appl Physiol. 1966;21(2):358–64.

    Article  CAS  Google Scholar 

  65. Benumof JL, Mathers JM, Wahrenbrock EA. Cyclic hypoxic pulmonary vasoconstriction induced by concomitant carbon dioxide changes. J Appl Physiol. 1976;41(4):466–9.

    Article  CAS  Google Scholar 

  66. Benumof JL, Wahrenbrock EA. Blunted hypoxic pulmonary vasoconstriction by increased lung vascular pressures. J Appl Physiol. 1975;38(5):846–50.

    Article  CAS  Google Scholar 

  67. Bergofsky EH, Lehr DE, Fishman AP. The effect of changes in hydrogen ion concentration on the pulmonary circulation. J Clin Invest. 1962;41:1492–502.

    Article  CAS  Google Scholar 

  68. Bardoczky GI, Szegedi LL, d’Hollander AA, et al. Two-lung and one-lung ventilation in patients with chronic obstructive pulmonary disease: the effects of position and FiO2. Anesth Analg. 2000;90(1):35–41.

    Google Scholar 

  69. Albert RK. Prone ventilation. Clin Chest Med. 2000;21(3):511–7.

    Article  CAS  Google Scholar 

  70. Pelosi P, Croci M, Calappi E, et al. The prone positioning during general anesthesia minimally affects respiratory mechanics while improving functional residual capacity and increasing oxygen tension. Anesth Analg. 1995;80(5):955–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, A.K. (2020). Lung Physiology Relevant to Thoracic Anesthesia. In: Sood, J., Sharma, S. (eds) Clinical Thoracic Anesthesia. Springer, Singapore. https://doi.org/10.1007/978-981-15-0746-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0746-5_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0745-8

  • Online ISBN: 978-981-15-0746-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics