Skip to main content

Immune Signaling and Autophagy Regulation

  • Chapter
  • First Online:
Autophagy: Biology and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1206))

Abstract

Autophagy is one of the key degradation systems in organisms. Starvation and nutrient deprivation induce autophagy activation, providing energy and anabolic substances to maintain energy homeostasis. A variety of signals participate in the induction of autophagy, including endoplasmic reticulum stress, oxidative stress, and activation of immune signals. Autophagy is closely related to immunity and inflammation. Autophagy-related gene mutations increase the risk of infectious diseases and malignancies. Autophagy can be regarded as an effector of the immune system to eliminate invading pathogens and is also involved in the immune system recognizing the invasion of pathogens. Autophagy plays important roles in regulating innate immunity and adaptive immunity. In terms of innate immunity, autophagy not only participates in the clearance of pathogens and cell debris after apoptosis but also plays a protective role against toxins, regulates cytokine production, and activates the inflammasome. In the adaptive immune response, autophagy plays an important regulatory role in thymic selection, T cell maturation, T cell polarization, T cell and B cell homeostasis, antigen processing, antigen presentation, and antibody response. On the other hand, autophagy is regulated by immunological and stress signals. The crosstalk between these signaling pathways helps maintain homeostasis and physiological functions. Dysfunction of these regulatory networks is the cause of several kinds of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Acidic activation domain

ADAR1:

dsRNA-specific adenosine deaminase

AICD:

Activation-induced cell death

ALIS:

Aggresome-like induced structures

APCs:

Antigen presenting cells

BCR:

B cell receptor

CARDs:

Caspase recruitment domains

CLRs:

C-type lectin receptors

CRD:

Carbohydrate recognition domain

CTLA-4:

Cytotoxic T lymphocyte-associated antigen-4

DAPK:

Death-associated protein kinase

DAMPs:

Damage-associated molecular patterns

DC:

Dendritic cell

DD:

Death domain

GBP:

Guanylate-binding protein

GRP78:

Glucose-regulated protein

HMGB1:

High mobility group box 1

IPS-1:

IFN-β-promoter stimulator 1

IRE1:

Inositol-requiring enzyme 1

IRE1α:

Inositol-requiring enzyme 1α

ITAM:

Immunoreceptor tyrosine-based activation motif

JNK:

c-Jun N-terminal kinase

LRR:

Leucine-rich repeat

LPS:

Lipopolysaccharide

MD2:

Myeloid differentiation factor 2

MHC:

Major histocompatibility complex antigen

NLRs:

NOD-like receptors

p38IP:

p38 interacting protein

PAMPs:

Pathogen-associated molecular patterns

PI3P:

Phosphatidylinositol-3-phosphate

PI3KC3:

Class III phosphatidylinositol 3-kinase

ROS:

Reactive oxygen species

SOCS:

Suppressor of cytokine Signaling

TCGF:

T cell growth factor

TCR:

T cell receptor

TLRs:

Toll-like receptors

TIR:

Toll-Interleukin 1 Receptor

TRAF6:

Tumor necrosis factor receptor (TNFR)-associated factor 6

TNF-α:

Tumor necrosis factor alpha

TGF-β:

Transforming growth factor beta

UPR:

Unfolded protein response

References

  • Anand PK, Tait SW, Lamkanfi M, Amer AO, Nunez G, Pages G, Pouyssegur J, McGargill MA, Green DR, Kanneganti TD (2011) TLR2 and RIP2 pathways mediate autophagy of Listeria monocytogenes via extracellular signal-regulated kinase (ERK) activation. J Biol Chem 286:42981–42991

    Article  CAS  Google Scholar 

  • Andrade-Silva M, Cenedeze MA, Perandini LA, Felizardo RJF, Watanabe IKM, Agudelo JSH, Castoldi A, Goncalves GM, Origassa CST, Semedo P, Hiyane MI, Foresto-Neto O, Malheiros D, Reis MA, Fujihara CK, Zatz R, Pacheco-Silva A, Camara NOS, de Almeida DC (2018) TLR2 and TLR4 play opposite role in autophagy associated with cisplatin-induced acute kidney injury. Clin Sci (Lond) 132:1725–1739

    Article  CAS  Google Scholar 

  • Cosin-Roger J, Simmen S, Melhem H, Atrott K, Frey-Wagner I, Hausmann M, de Valliere C, Spalinger MR, Spielmann P, Wenger RH, Zeitz J, Vavricka SR, Rogler G, Ruiz PA (2017) Hypoxia ameliorates intestinal inflammation through NLRP3/mTOR downregulation and autophagy activation. Nat Commun 8:98

    Article  Google Scholar 

  • Ding Y, Choi ME (2014) Regulation of autophagy by TGF-β: emerging role in kidney fibrosis. Semin Nephrol 34:62–71

    Article  CAS  Google Scholar 

  • Dolasia K, Bisht MK, Pradhan G, Udgata A, Mukhopadhyay S (2018) TLRs/NLRs: shaping the landscape of host immunity. Int Rev Immunol 37:3–19

    Article  CAS  Google Scholar 

  • Dzamko N, Gysbers A, Perera G, Bahar A, Shankar A, Gao J, Fu Y, Halliday GM (2017) Toll-like receptor 2 is increased in neurons in Parkinson’s disease brain and may contribute to alpha-synuclein pathology. Acta Neuropathol 133:303–319

    Article  CAS  Google Scholar 

  • Fan J-B, Miyauchi-Ishida S, Arimoto K-I, Liu D, Yan M, Liu C-W, Győrffy B, Zhang D-E (2015) Type I IFN induces protein ISGylation to enhance cytokine expression and augments colonic inflammation. Proc Natl Acad Sci USA 112:14313–14318

    Article  CAS  Google Scholar 

  • Feng D, Park O, Radaeva S, Wang H, Yin S, Kong X, Zheng M, Zakhari S, Kolls JK, Gao B (2012) Interleukin-22 ameliorates cerulein-induced pancreatitis in mice by inhibiting the autophagic pathway. Int J Biol Sci 8:249–257

    Article  CAS  Google Scholar 

  • Harris J (2011) Autophagy and cytokines. Cytokine 56:140–144

    Article  CAS  Google Scholar 

  • Harris J, de Haro SA, Master SS, Keane J, Roberts EA, Delgado M, Deretic V (2007) T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27:505–517

    Article  CAS  Google Scholar 

  • Kang R, Tang D, Lotze MT, Zeh III HJ (2013) Autophagy is required for IL-2-mediated fibroblast growth. Exp Cell Res 319:556–565

    Article  CAS  Google Scholar 

  • Li X, Luo H, Ye Y, Chen X, Zou Y, Duan J, Xiang D (2019) Betaglucan, a dectin1 ligand, promotes macrophage M1 polarization via NFkappaB/autophagy pathway. Int J Oncol 54:271–282

    CAS  PubMed  Google Scholar 

  • Lin H, Yan J, Wang Z, Hua F, Yu J, Sun W, Li K, Liu H, Yang H, Lv Q, Xue J, Hu ZW (2013) Loss of immunity-supported senescence enhances susceptibility to hepatocellular carcinogenesis and progression in Toll-like receptor 2-deficient mice. Hepatology 57:171–182

    Article  CAS  Google Scholar 

  • Liu H, Mi S, Li Z, Hua F, Hu Z-W (2013) Interleukin 17A inhibits autophagy through activation of PIK3CA to interrupt the GSK3B-mediated degradation of BCL2 in lung epithelial cells. Autophagy 9:730–742

    Article  CAS  Google Scholar 

  • Mi S, Li Z, Yang HZ, Liu H, Wang JP, Ma YG, Wang XX, Liu HZ, Sun W, Hu ZW (2011) Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-beta1-dependent and -independent mechanisms. J Immunol 187:3003–3014

    Article  CAS  Google Scholar 

  • Mocholi E, Dowling SD, Botbol Y, Gruber RC, Ray AK, Vastert S, Shafit-Zagardo B, Coffer PJ, Macian F (2018) Autophagy is a tolerance-avoidance mechanism that modulates TCR-mediated signaling and cell metabolism to prevent induction of T cell anergy. Cell Rep 24:1136–1150

    Article  CAS  Google Scholar 

  • Munz C (2016) Autophagy beyond intracellular MHC class II antigen presentation. Trends Immunol 37:755–763

    Article  CAS  Google Scholar 

  • Schmeisser H, Fey SB, Horowitz J, Fischer ER, Balinsky CA, Miyake K, Bekisz J, Snow AL, Zoon KC (2013) Type I interferons induce autophagy in certain human cancer cell lines. Autophagy 9:683–696

    Article  CAS  Google Scholar 

  • Wang L, Zhang H, Qian J, Wang K, Zhu J (2014) Interleukin-10 blocks in vitro replication of human cytomegalovirus by inhibiting the virus-induced autophagy in MRC5 cells. Biochem Biophys Res Commun 448:448–453

    Article  CAS  Google Scholar 

  • Wang Z, Yan J, Lin H, Hua F, Wang X, Liu H, Lv X, Yu J, Mi S, Wang J, Hu ZW (2013) Toll-like receptor 4 activity protects against hepatocellular tumorigenesis and progression by regulating expression of DNA repair protein Ku70 in mice. Hepatology 57:1869–1881

    Article  CAS  Google Scholar 

  • Wen X, Han XR, Wang YJ, Wang S, Shen M, Zhang ZF, Fan SH, Shan Q, Wang L, Li MQ, Hu B, Sun CH, Wu DM, Lu J, Zheng YL (2018) MicroRNA-421 suppresses the apoptosis and autophagy of hippocampal neurons in epilepsy mice model by inhibition of the TLR/MYD88 pathway. J Cell Physiol 233:7022–7034

    Article  CAS  Google Scholar 

  • Xu X, Araki K, Li S, Han JH, Ye L, Tan WG, Konieczny BT, Bruinsma MW, Martinez J, Pearce EL, Green DR, Jones DP, Virgin HW, Ahmed R (2014) Autophagy is essential for effector CD8(+) T cell survival and memory formation. Nat Immunol 15:1152–1161

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuowei Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hua, F., Li, K., Shang, S., Wang, F., Hu, Z. (2019). Immune Signaling and Autophagy Regulation. In: Qin, ZH. (eds) Autophagy: Biology and Diseases. Advances in Experimental Medicine and Biology, vol 1206. Springer, Singapore. https://doi.org/10.1007/978-981-15-0602-4_26

Download citation

Publish with us

Policies and ethics