Skip to main content

Structural Biology of NOD-Like Receptors

  • Chapter
  • First Online:
Structural Immunology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1172))

Abstract

The nucleotide-binding domain (NBD) and leucine-rich repeat (LRR) containing (NLR) proteins are a large family of intracellular immune receptors conserved in both animals and plants. Mammalian NLRs function as pattern recognition receptors (PRRs) to sense pathogen-associated molecular patterns (PAMPs) or host-derived danger associated molecular patterns (DAMPs). PAMP or DAMP perception activates NLRs which consequently recruit pro-caspase-1 directly or indirectly. These sequential events result in formation of large multimeric protein complexes termed inflammasomes that mediate caspase-1 activation for pyroptosis and cytokine secretion. Recent structural and biochemical studies provide significant insights into the acting mechanisms of NLR proteins. In this chapter, we review and discuss these studies concerning autoinhibition, ligand recognition, activation of NLRs, and assembly of NLR inflammasomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaparakis M, Philpott DJ, Ferrero RL (2007) Mammalian NLR proteins; discriminating foe from friend. Immunol Cell Biol 85:495–502. Published online EpubAug–Sep. https://doi.org/10.1038/sj.icb.7100105

    Article  CAS  PubMed  Google Scholar 

  2. Meunier E, Broz P (2017) Evolutionary convergence and divergence in NLR function and structure. Trends Immunol 38:744–757. Published online EpubOct. https://doi.org/10.1016/j.it.2017.04.005

    Article  CAS  PubMed  Google Scholar 

  3. Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16:407–420. Published online EpubJul. https://doi.org/10.1038/nri.2016.58

    Article  CAS  PubMed  Google Scholar 

  4. Lamkanfi M, Dixit VM (2014) Mechanisms and functions of inflammasomes. Cell 157:1013–1022. Published online EpubMay 22. https://doi.org/10.1016/j.cell.2014.04.007

    Article  CAS  PubMed  Google Scholar 

  5. Jones JD, Vance RE, Dangl JL (2016) Intracellular innate immune surveillance devices in plants and animals. Science 354. Published online EpubDec 2. https://doi.org/10.1126/science.aaf6395

    Article  PubMed  CAS  Google Scholar 

  6. Riedl SJ, Li W, Chao Y, Schwarzenbacher R, Shi Y (2005) Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature 434:926–933. Published online EpubApr 14. https://doi.org/10.1038/nature03465

    Article  CAS  PubMed  Google Scholar 

  7. Maekawa T, Kufer TA, Schulze-Lefert P (2011) NLR functions in plant and animal immune systems: so far and yet so close. Nat Immunol 12:817–826. Published online EpubAug 18. https://doi.org/10.1038/ni.2083

    Article  CAS  PubMed  Google Scholar 

  8. Zhou M, Li Y, Hu Q, Bai XC, Huang W, Yan C, Scheres SH, Shi Y (2015) Atomic structure of the apoptosome: mechanism of cytochrome c- and dATP-mediated activation of Apaf-1. Genes Dev 29:2349–2361. Published online EpubNov 15. https://doi.org/10.1101/gad.272278.115

    Article  CAS  Google Scholar 

  9. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832. Published online EpubMar 19. https://doi.org/10.1016/j.cell.2010.01.040

    Article  CAS  PubMed  Google Scholar 

  10. Hu Z, Chai J (2016) Structural mechanisms in NLR inflammasome assembly and signaling. Curr Top Microbiol Immunol 397:23–42. https://doi.org/10.1007/978-3-319-41171-2_2

    Google Scholar 

  11. Yin Q, Fu TM, Li J, Wu H (2015) Structural biology of innate immunity. Annu Rev Immunol 33:393–416. https://doi.org/10.1146/annurev-immunol-032414-112258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481:278–286. Published online EpubJan 18. https://doi.org/10.1038/nature10759

    Article  CAS  PubMed  Google Scholar 

  13. Shi J, Gao W, Shao F (2017) Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42:245–254. Published online EpubApr. https://doi.org/10.1016/j.tibs.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  14. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–665. Published online EpubOct 29. https://doi.org/10.1038/nature15514

    Article  CAS  PubMed  Google Scholar 

  15. Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, Liu PS, Lill JR, Li H, Wu J, Kummerfeld S, Zhang J, Lee WP, Snipas SJ, Salvesen GS, Morris LX, Fitzgerald L, Zhang Y, Bertram EM, Goodnow CC, Dixit VM (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526:666–671. Published online EpubOct 29. https://doi.org/10.1038/nature15541

    Article  CAS  PubMed  Google Scholar 

  16. Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, Sun H, Wang DC, Shao F (2016) Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535:111–116. Published online EpubJul 7. https://doi.org/10.1038/nature18590

    Article  CAS  PubMed  Google Scholar 

  17. Aglietti RA, Estevez A, Gupta A, Ramirez A, Liu PS, Kayagaki N, Ciferri C, Dixit VM, Dueber EC (2016) GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc Natl Acad Sci USA 113:7858–7863. Published online EpubJul 12. https://doi.org/10.1073/pnas.1607769113

    Article  CAS  Google Scholar 

  18. Allen IC (2014) Non-inflammasome forming NLRs in inflammation and tumorigenesis. Front Immunol 5:169. https://doi.org/10.3389/fimmu.2014.00169

  19. Lukens JR, Gurung P, Shaw PJ, Barr MJ, Zaki MH, Brown SA, Vogel P, Chi H, Kanneganti TD (2015) The NLRP12 sensor negatively regulates autoinflammatory disease by modulating interleukin-4 production in T cells. Immunity 42:654–664. Published online EpubApr 21. https://doi.org/10.1016/j.immuni.2015.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Allen IC, Moore CB, Schneider M, Lei Y, Davis BK, Scull MA, Gris D, Roney KE, Zimmermann AG, Bowzard JB, Ranjan P, Monroe KM, Pickles RJ, Sambhara S, Ting JP (2011) NLRX1 protein attenuates inflammatory responses to infection by interfering with the RIG-I-MAVS and TRAF6-NF-kappaB signaling pathways. Immunity 34:854–865. Published online EpubJun 24. https://doi.org/10.1016/j.immuni.2011.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schneider M, Zimmermann AG, Roberts RA, Zhang L, Swanson KV, Wen H, Davis BK, Allen IC, Holl EK, Ye Z, Rahman AH, Conti BJ, Eitas TK, Koller BH, Ting JP (2012) The innate immune sensor NLRC3 attenuates Toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-kappaB. Nat Immunol 13:823–831. Published online EpubSep. https://doi.org/10.1038/ni.2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477:596–600. Published online EpubSep 14. https://doi.org/10.1038/nature10510

    Article  CAS  PubMed  Google Scholar 

  23. Kofoed EM, Vance RE (2011) Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477:592–595. Published online EpubAug 28. https://doi.org/10.1038/nature10394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hu Z, Zhou Q, Zhang C, Fan S, Cheng W, Zhao Y, Shao F, Wang HW, Sui SF, Chai J (2015) Structural and biochemical basis for induced self-propagation of NLRC4. Science 350:399–404. Published online EpubOct 23. https://doi.org/10.1126/science.aac5489

    Article  CAS  PubMed  Google Scholar 

  25. Zhang L, Chen S, Ruan J, Wu J, Tong AB, Yin Q, Li Y, David L, Lu A, Wang WL, Marks C, Ouyang Q, Zhang X, Mao Y, Wu H (2015) Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350:404–409. Published online EpubOct 23. https://doi.org/10.1126/science.aac5789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tenthorey JL, Haloupek N, Lopez-Blanco JR, Grob P, Adamson E, Hartenian E, Lind NA, Bourgeois NM, Chacon P, Nogales E, Vance RE (2017) The structural basis of flagellin detection by NAIP5: a strategy to limit pathogen immune evasion. Science 358:888–893. Published online EpubNov 17. https://doi.org/10.1126/science.aao1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Broz P, von Moltke J, Jones JW, Vance RE, Monack DM (2010) Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 8:471–483. Published online EpubDec 16. https://doi.org/10.1016/j.chom.2010.11.007

    Article  CAS  Google Scholar 

  28. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, Hornung V, Latz E (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183:787–791. Published online EpubJul 15. https://doi.org/10.4049/jimmunol.0901363

    Article  CAS  PubMed  Google Scholar 

  29. Elliott EI, Sutterwala FS (2015) Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev 265:35–52. Published online EpubMay. https://doi.org/10.1111/imr.12286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chavarria-Smith J, Vance RE (2015) The NLRP1 inflammasomes. Immunol Rev 265:22–34. Published online EpubMay. https://doi.org/10.1111/imr.12283

    Article  PubMed  CAS  Google Scholar 

  31. Van Opdenbosch N, Gurung P, Vande Walle L, Fossoul A, Kanneganti TD, Lamkanfi M (2014) Activation of the NLRP1b inflammasome independently of ASC-mediated caspase-1 autoproteolysis and speck formation. Nat Commun 5:3209. https://doi.org/10.1038/ncomms4209

  32. Liao KC, Mogridge J (2013) Activation of the Nlrp1b inflammasome by reduction of cytosolic ATP. Infect Immun 81:570–579. Published online EpubFeb. https://doi.org/10.1128/IAI.01003-12

    Article  PubMed  CAS  Google Scholar 

  33. Chavarria-Smith J, Vance RE (2013) Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor. PLoS Pathog 9:e1003452. https://doi.org/10.1371/journal.ppat.1003452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Finger JN, Lich JD, Dare LC, Cook MN, Brown KK, Duraiswami C, Bertin J, Gough PJ (2012) Autolytic proteolysis within the function to find domain (FIIND) is required for NLRP1 inflammasome activity. J Biol Chem 287:25030–25037. Published online EpubJul 20. https://doi.org/10.1074/jbc.M112.378323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Levinsohn JL, Newman ZL, Hellmich KA, Fattah R, Getz MA, Liu S, Sastalla I, Leppla SH, Moayeri M (2012) Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLoS Pathog 8:e1002638. https://doi.org/10.1371/journal.ppat.1002638

    Article  PubMed  PubMed Central  Google Scholar 

  36. Newman ZL, Printz MP, Liu S, Crown D, Breen L, Miller-Randolph S, Flodman P, Leppla SH, Moayeri M (2010) Susceptibility to anthrax lethal toxin-induced rat death is controlled by a single chromosome 10 locus that includes rNlrp1. PLoS Pathog 6:e1000906. Published online EpubMay 20. https://doi.org/10.1371/journal.ppat.1000906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hu Z, Yan C, Liu P, Huang Z, Ma R, Zhang C, Wang R, Zhang Y, Martinon F, Miao D, Deng H, Wang J, Chang J, Chai J (2013) Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 341:172–175. Published online EpubJul 12. https://doi.org/10.1126/science.1236381

    Article  CAS  PubMed  Google Scholar 

  38. Maekawa S, Ohto U, Shibata T, Miyake K, Shimizu T (2016) Crystal structure of NOD2 and its implications in human disease. Nat Commun 7:11813. Published online EpubJun 10. https://doi.org/10.1038/ncomms11813

  39. Reubold TF, Wohlgemuth S, Eschenburg S (2011) Crystal structure of full-length Apaf-1: how the death signal is relayed in the mitochondrial pathway of apoptosis. Structure 19:1074–1083. Published online EpubAug 10. https://doi.org/10.1016/j.str.2011.05.013

    Article  CAS  PubMed  Google Scholar 

  40. Lukasik E, Takken FL (2009) STANDing strong, resistance proteins instigators of plant defence. Curr Opin Plant Biol 12:427–436. Published online EpubAug. https://doi.org/10.1016/j.pbi.2009.03.001

    Article  CAS  PubMed  Google Scholar 

  41. Tanabe T, Chamaillard M, Ogura Y, Zhu L, Qiu S, Masumoto J, Ghosh P, Moran A, Predergast MM, Tromp G, Williams CJ, Inohara N, Nunez G (2004) Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition. EMBO J 23:1587–1597. Published online EpubApr 7. https://doi.org/10.1038/sj.emboj.7600175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pellegrini E, Desfosses A, Wallmann A, Schulze WM, Rehbein K, Mas P, Signor L, Gaudon S, Zenkeviciute G, Hons M, Malet H, Gutsche I, Sachse C, Schoehn G, Oschkinat H, Cusack S (2018) RIP2 filament formation is required for NOD2 dependent NF-kappaB signalling. Nat Commun 9:4043. Published online EpubOct 2. https://doi.org/10.1038/s41467-018-06451-3

  43. Zhong FL, Mamai O, Sborgi L, Boussofara L, Hopkins R, Robinson K, Szeverenyi I, Takeichi T, Balaji R, Lau A, Tye H, Roy K, Bonnard C, Ahl PJ, Jones LA, Baker PJ, Lacina L, Otsuka A, Fournie PR, Malecaze F, Lane EB, Akiyama M, Kabashima K, Connolly JE, Masters SL, Soler VJ, Omar SS, McGrath JA, Nedelcu R, Gribaa M, Denguezli M, Saad A, Hiller S, Reversade B (2016) Germline NLRP1 mutations cause skin inflammatory and cancer susceptibility syndromes via inflammasome activation. Cell 167:187–202 e117. Published online EpubSep 22. https://doi.org/10.1016/j.cell.2016.09.001

    Article  PubMed  CAS  Google Scholar 

  44. Zhong FL, Robinson K, Teo DET, Tan KY, Lim C, Harapas CR, Yu CH, Xie WH, Sobota RM, Au VB, Hopkins R, D’Osualdo A, Reed JC, Connolly JE, Masters SL, Reversade B (2018) Human DPP9 represses NLRP1 inflammasome and protects against auto-inflammatory diseases via both peptidase activity and FIIND domain binding. J Biol Chem. Published online EpubOct 5. https://doi.org/10.1074/jbc.RA118.004350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Johnson DC, Taabazuing CY, Okondo MC, Chui AJ, Rao SD, Brown FC, Reed C, Peguero E, de Stanchina E, Kentsis A, Bachovchin DA (2018) DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat Med 24:1151–1156. Published online EpubAug. https://doi.org/10.1038/s41591-018-0082-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kitamura A, Sasaki Y, Abe T, Kano H, Yasutomo K (2014) An inherited mutation in NLRC4 causes autoinflammation in human and mice. J Exp Med 211:2385–2396. Published online EpubNov 17. https://doi.org/10.1084/jem.20141091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Williams SJ, Sornaraj P, deCourcy-Ireland E, Menz RI, Kobe B, Ellis JG, Dodds PN, Anderson PA (2011) An autoactive mutant of the M flax rust resistance protein has a preference for binding ATP, whereas wild-type M protein binds ADP. Mol Plant-Microbe Interact: MPMI 24:897–906. Published online EpubAug. https://doi.org/10.1094/MPMI-03-11-0052

    Article  CAS  PubMed  Google Scholar 

  48. Takken FL, Albrecht M, Tameling WI (2006) Resistance proteins: molecular switches of plant defence. Curr Opin Plant Biol 9:383–390. Published online EpubAug. https://doi.org/10.1016/j.pbi.2006.05.009

    Article  CAS  PubMed  Google Scholar 

  49. Howles P, Lawrence G, Finnegan J, McFadden H, Ayliffe M, Dodds P, Ellis J (2005) Autoactive alleles of the flax L6 rust resistance gene induce non-race-specific rust resistance associated with the hypersensitive response. Mol Plant-Microbe Interact: MPMI 18:570–582. Published online EpubJun. https://doi.org/10.1094/MPMI-18-0570

    Article  CAS  PubMed  Google Scholar 

  50. Hara H, Seregin SS, Yang D, Fukase K, Chamaillard M, Alnemri ES, Inohara N, Chen GY, Nunez G (2018) The NLRP6 inflammasome recognizes lipoteichoic acid and regulates gram-positive pathogen infection. Cell. Published online EpubOct 26. https://doi.org/10.1016/j.cell.2018.09.047

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Dodds PN, Lawrence GJ, Catanzariti AM, Teh T, Wang CI, Ayliffe MA, Kobe B, Ellis JG (2006) Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc Natl Acad Sci USA 103:8888–8893. Published online EpubJun 6. https://doi.org/10.1073/pnas.0602577103

    Article  CAS  Google Scholar 

  52. Liao KC, Mogridge J (2009) Expression of Nlrp1b inflammasome components in human fibroblasts confers susceptibility to anthrax lethal toxin. Infect Immun 77:4455–4462. Published online EpubOct. https://doi.org/10.1128/IAI.00276-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Khare S, Dorfleutner A, Bryan NB, Yun C, Radian AD, de Almeida L, Rojanasakul Y, Stehlik C (2012) An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity 36:464–476. Published online EpubMar 23. https://doi.org/10.1016/j.immuni.2012.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Qi D, DeYoung BJ, Innes RW (2012) Structure-function analysis of the coiled-coil and leucine-rich repeat domains of the RPS5 disease resistance protein. Plant Physiol 158:1819–1832. Published online EpubApr. https://doi.org/10.1104/pp.112.194035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tenthorey JL, Kofoed EM, Daugherty MD, Malik HS, Vance RE (2014) Molecular basis for specific recognition of bacterial ligands by NAIP/NLRC4 inflammasomes. Mol cell 54:17–29. Published online EpubApr 10. https://doi.org/10.1016/j.molcel.2014.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang X, Yang F, Wang W, Lin G, Hu Z, Han Z, Qi Y, Zhang L, Wang J, Sui SF, Chai J (2018) Structural basis for specific flagellin recognition by the NLR protein NAIP5. Cell Res 28:35–47. Published online EpubJan. https://doi.org/10.1038/cr.2017.148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Yang J, Zhao Y, Li P, Yang Y, Zhang E, Zhong M, Li Y, Zhou D, Cao Y, Lu M, Shao F, Yan H (2018) Sequence determinants of specific pattern-recognition of bacterial ligands by the NAIP-NLRC4 inflammasome. Cell Discov 4:22. https://doi.org/10.1038/s41421-018-0018-1)

  58. Davis BK, Roberts RA, Huang MT, Willingham SB, Conti BJ, Brickey WJ, Barker BR, Kwan M, Taxman DJ, Accavitti-Loper MA, Duncan JA, Ting JP (2011) Cutting edge: NLRC5-dependent activation of the inflammasome. J Immunol 186:1333–1337. Published online EpubFeb 1. https://doi.org/10.4049/jimmunol.1003111

    Article  PubMed  CAS  Google Scholar 

  59. Man SM, Hopkins LJ, Nugent E, Cox S, Gluck IM, Tourlomousis P, Wright JA, Cicuta P, Monie TP, Bryant CE (2014) Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proc Natl Acad Sci USA 111:7403–7408. Published online EpubMay 20. https://doi.org/10.1073/pnas.1402911111

    Article  CAS  Google Scholar 

  60. Qu Y, Misaghi S, Newton K, Maltzman A, Izrael-Tomasevic A, Arnott D, Dixit VM (2016) NLRP3 recruitment by NLRC4 during Salmonella infection. J Exp Med 213:877–885. Published online EpubMay 30. https://doi.org/10.1084/jem.20132234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Innes RW (2004) Guarding the goods. New insights into the central alarm system of plants. Plant Physiol 135:695–701. Published online EpubJun. https://doi.org/10.1104/pp.104.040410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Keestra AM, Winter MG, Auburger JJ, Frassle SP, Xavier MN, Winter SE, Kim A, Poon V, Ravesloot MM, Waldenmaier JF, Tsolis RM, Eigenheer RA, Baumler AJ (2013) Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1. Nature 496:233–237. Published online EpubApr 11. https://doi.org/10.1038/nature12025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xu H, Yang J, Gao W, Li L, Li P, Zhang L, Gong YN, Peng X, Xi JJ, Chen S, Wang F, Shao F (2014) Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513:237–241. Published online EpubSep 11. https://doi.org/10.1038/nature13449

    Article  CAS  PubMed  Google Scholar 

  64. Thulasi Devendrakumar K, Li X, Zhang Y (2018) MAP kinase signalling: interplays between plant PAMP- and effector-triggered immunity. Cell Mol Life Sci: CMLS 75:2981–2989. Published online EpubAug. https://doi.org/10.1007/s00018-018-2839-3

    Article  CAS  PubMed  Google Scholar 

  65. Romberg N, Al Moussawi K, Nelson-Williams C, Stiegler AL, Loring E, Choi M, Overton J, Meffre E, Khokha MK, Huttner AJ, West B, Podoltsev NA, Boggon TJ, Kazmierczak BI, Lifton RP (2014) Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet 46:1135–1139. Published online EpubOct. https://doi.org/10.1038/ng.3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Canna SW, de Jesus AA, Gouni S, Brooks SR, Marrero B, Liu Y, DiMattia MA, Zaal KJ, Sanchez GA, Kim H, Chapelle D, Plass N, Huang Y, Villarino AV, Biancotto A, Fleisher TA, Duncan JA, O’Shea JJ, Benseler S, Grom A, Deng Z, Laxer RM, Goldbach-Mansky R (2014) An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet 46:1140–1146. Published online EpubOct. https://doi.org/10.1038/ng.3089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vladimer GI, Weng D, Paquette SW, Vanaja SK, Rathinam VA, Aune MH, Conlon JE, Burbage JJ, Proulx MK, Liu Q, Reed G, Mecsas JC, Iwakura Y, Bertin J, Goguen JD, Fitzgerald KA, Lien E (2012) The NLRP12 inflammasome recognizes Yersinia pestis. Immunity 37:96–107. Published online EpubJul 27. https://doi.org/10.1016/j.immuni.2012.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK, Vos MR, Schroder GF, Fitzgerald KA, Wu H, Egelman EH (2014) Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156:1193–1206. Published online EpubMar 13. https://doi.org/10.1016/j.cell.2014.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cai X, Chen J, Xu H, Liu S, Jiang QX, Halfmann R, Chen ZJ (2014) Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 156:1207–1222. Published online EpubMar 13. https://doi.org/10.1016/j.cell.2014.01.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li Y, Fu TM, Lu A, Witt K, Ruan J, Shen C, Wu H (2018) Cryo-EM structures of ASC and NLRC4 CARD filaments reveal a unified mechanism of nucleation and activation of caspase-1. Proc Natl Acad Sci USA 115:10845–10852. Published online EpubOct 23. https://doi.org/10.1073/pnas.1810524115

    Article  CAS  Google Scholar 

  71. He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, Yang ZH, Zhong CQ, Han J (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res 25:1285–1298. Published online EpubDec. https://doi.org/10.1038/cr.2015.139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Okondo MC, Johnson DC, Sridharan R, Go EB, Chui AJ, Wang MS, Poplawski SE, Wu W, Liu Y, Lai JH, Sanford DG, Arciprete MO, Golub TR, Bachovchin WW, Bachovchin DA (2017) DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis. Nat Chem Biol 1346–53. Published online EpubJan. https://doi.org/10.1038/nchembio.2229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Lu A, Li Y, Schmidt FI, Yin Q, Chen S, Fu TM, Tong AB, Ploegh HL, Mao Y, Wu H (2016) Molecular basis of caspase-1 polymerization and its inhibition by a new capping mechanism. Nat Struct Mol Biol 23:416–425. Published online EpubMay. https://doi.org/10.1038/nsmb.3199

    Article  CAS  Google Scholar 

  74. Matyszewski M, Zheng W, Lueck J, Antiochos B, Egelman EH, Sohn J (2018) Cryo-EM structure of the NLRC4(CARD) filament provides insights into how symmetric and asymmetric supramolecular structures drive inflammasome assembly. J Biol Chem. Published online EpubNov 1. https://doi.org/10.1074/jbc.RA118.006050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li Y, Zhou M, Hu Q, Bai XC, Huang W, Scheres SH, Shi Y (2017) Mechanistic insights into caspase-9 activation by the structure of the apoptosome holoenzyme. Proc Natl Acad Sci USA 114:1542–1547. Published online EpubFeb 14. https://doi.org/10.1073/pnas.1620626114

    Article  CAS  Google Scholar 

  76. Cheng TC, Hong C, Akey IV, Yuan S, Akey CW (2016) A near atomic structure of the active human apoptosome. eLife 5. Published online EpubOct 4. https://doi.org/10.7554/eLife.17755

  77. Nambayan RJT, Sandin SI, Quint DA, Satyadi DM, de Alba E (2018) The inflammasome adapter ASC assembles into filaments with integral participation of its two death domains, PYD and CARD. J Biol Chem. Published online EpubNov 20. https://doi.org/10.1074/jbc.RA118.004407

    Article  PubMed  PubMed Central  Google Scholar 

  78. Cheng TC, Akey IV, Yuan S, Yu Z, Ludtke SJ, Akey CW (2017) A near-atomic structure of the dark apoptosome provides insight into assembly and activation. Structure 25:40–52. Published online EpubJan 3. https://doi.org/10.1016/j.str.2016.11.002

    Article  CAS  PubMed  Google Scholar 

  79. Pang Y, Bai XC, Yan C, Hao Q, Chen Z, Wang JW, Scheres SH, Shi Y (2015) Structure of the apoptosome: mechanistic insights into activation of an initiator caspase from Drosophila. Genes Dev 29:277–287. Published online EpubFeb 1. https://doi.org/10.1101/gad.255877.114

    Article  CAS  Google Scholar 

  80. Halff EF, Diebolder CA, Versteeg M, Schouten A, Brondijk TH, Huizinga EG (2012) Formation and structure of a NAIP5-NLRC4 inflammasome induced by direct interactions with conserved N- and C-terminal regions of flagellin. J Biol Chem 287:38460–38472. Published online EpubNov 9. https://doi.org/10.1074/jbc.M112.393512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Danot O, Marquenet E, Vidal-Ingigliardi D, Richet E (2009) Wheel of life, wheel of death: a mechanistic insight into signaling by STAND proteins. Structure 17:172–182. Published online EpubFeb 13. https://doi.org/10.1016/j.str.2009.01.001

    Article  CAS  PubMed  Google Scholar 

  82. Kim HE, Du F, Fang M, Wang X (2005) Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1. Proc Natl Acad Sci USA 102:17545–17550. Published online EpubDec 6. https://doi.org/10.1073/pnas.0507900102

    Article  CAS  Google Scholar 

  83. Bao Q, Lu W, Rabinowitz JD, Shi Y (2007) Calcium blocks formation of apoptosome by preventing nucleotide exchange in Apaf-1. Mol Cell 25:181–192. Published online EpubJan 26. https://doi.org/10.1016/j.molcel.2006.12.013

    Article  CAS  PubMed  Google Scholar 

  84. Reubold TF, Wohlgemuth S, Eschenburg S (2009) A new model for the transition of APAF-1 from inactive monomer to caspase-activating apoptosome. J Biol Chem 284:32717–32724. Published online EpubNov 20. https://doi.org/10.1074/jbc.M109.014027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. van der Biezen EA, Jones JD (1998) The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol: CB 8:R226–227. Published online EpubMar 26

    Google Scholar 

  86. Song N, Li T (2018) Regulation of NLRP3 inflammasome by phosphorylation. Front Immunol 9:2305. https://doi.org/10.3389/fimmu.2018.02305

  87. Py BF, Kim MS, Vakifahmetoglu-Norberg H, Yuan J (2013) Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol Cell 49:331–338. Published online EpubJan 24. https://doi.org/10.1016/j.molcel.2012.11.009

    Article  CAS  PubMed  Google Scholar 

  88. Qu Y, Misaghi S, Izrael-Tomasevic A, Newton K, Gilmour LL, Lamkanfi M, Louie S, Kayagaki N, Liu J, Komuves L, Cupp JE, Arnott D, Monack D, Dixit VM (2012) Phosphorylation of NLRC4 is critical for inflammasome activation. Nature 490:539–542. Published online EpubOct 25. https://doi.org/10.1038/nature11429

    Article  CAS  PubMed  Google Scholar 

  89. Lu B, Nakamura T, Inouye K, Li J, Tang Y, Lundback P, Valdes-Ferrer SI, Olofsson PS, Kalb T, Roth J, Zou Y, Erlandsson-Harris H, Yang H, Ting JP, Wang H, Andersson U, Antoine DJ, Chavan SS, Hotamisligil GS, Tracey KJ (2012) Novel role of PKR in inflammasome activation and HMGB1 release. Nature 488:670–674. Published online EpubAug 30. https://doi.org/10.1038/nature11290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Duncan JA, Bergstralh DT, Wang Y, Willingham SB, Ye Z, Zimmermann AG, Ting JP (2007) Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc Natl Acad Sci USA 104:8041–8046. Published online EpubMay 8. https://doi.org/10.1073/pnas.0611496104

    Article  CAS  Google Scholar 

  91. Zurek B, Proell M, Wagner RN, Schwarzenbacher R, Kufer TA (2012) Mutational analysis of human NOD1 and NOD2 NACHT domains reveals different modes of activation. Innate Immun 18:100–111. Published online EpubFeb. https://doi.org/10.1177/1753425910394002

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The project was funded by the Chinese Ministry of Science and Technology (2014CB910101 to J.C.), Alexander von Humboldt-Foundation (Humboldt Professorship to J.C.) and Max-Planck-Gesellschaft (Max-Planck Fellow) to J.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jijie Chai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, X., Lin, G., Han, Z., Chai, J. (2019). Structural Biology of NOD-Like Receptors. In: Jin, T., Yin, Q. (eds) Structural Immunology. Advances in Experimental Medicine and Biology, vol 1172. Springer, Singapore. https://doi.org/10.1007/978-981-13-9367-9_6

Download citation

Publish with us

Policies and ethics