Skip to main content

Hydroxyapatite Scaffolds Produced from Cuttlefish Bone via Hydrothermal Transformation for Application in Tissue Engineering and Drug Delivery Systems

  • Chapter
  • First Online:
Marine-Derived Biomaterials for Tissue Engineering Applications

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 14))

Abstract

An increase in life expectancy due to improvements in healthcare, in parallel with high percentage of injures, because of traffic accidents and sport activities, has emerged as the primary reasons for the replacements of lost, infected, and damaged bones. Combined with tissue engineering, this is an area of great interest to regenerative medicine. Novel scaffolds development, providing a suitable environment that can favor osteoinduction for the newly formed bone is needed. Composite porous hydrogels, based on alginate and chitosan with the dispersed phase from powders of bioceramics, such as hydroxyapatite (HAp), are recently developed for this reason. This work presents a reverse and novel approach, where these two popular hydrogels are infiltrated in a 3D HAp-scaffold. More specifically, HAp is obtained from aragonite from cuttlefish bone via hydrothermal transformation. This reinforcement of HAp with alginate or chitosan hydrogels, through infiltration method gives to the final product proper mechanical potential for hard tissue regeneration. The structure of the produced scaffolds resembles the microstructure and the texture of the natural bone. These advanced scaffolds are easily handled by the surgeon while maintaining their porous structure during the implantation process to promote the regeneration of newly formed bone tissue. In particular, once such a scaffold is implanted in an area where the bone tissue is lost, biological liquids will be able to penetrate into the pores of the lyophilized composite scaffold. The polymeric matrix will then be dissolved and the remaining HAp, or its precursor compounds, which will eventually transform into HAp, will promote osteoinduction. The worldwide availability and the low cost of cuttlefish bone, along with their biological-natural origin are attractive features making them highly sorted material used in the preparation of advanced scaffolds containing HAp for applications in biomedicine. The optimization of the fabrication technique is required to unravel the endless potential of biomaterials, shedding light on this promising interdisciplinary field, which includes both tissue engineering and drug delivery system approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howard D, Buttery LD, Shakesheff KM et al (2008) Tissue engineering: strategies, stem cells and scaffolds. J Anat 213:66–72

    Article  CAS  Google Scholar 

  2. Ikada Y (2006) Challenges in tissue engineering. J R Soc Interface 3:589–601

    Article  CAS  Google Scholar 

  3. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  CAS  Google Scholar 

  4. Parveen S, Krishnakumar K, Sahoo S (2006) New era in health care: tissue engineering. J Stem Cells Regen Med 1:8–24

    CAS  Google Scholar 

  5. Katari R, Peloso A, Orlando G (2015) Tissue engineering and regenerative medicine: semantic considerations for an evolving paradigm. Front Bioeng Biotechnol 2:57. https://doi.org/10.3389/fbioe.2014.00057

    Article  Google Scholar 

  6. Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  CAS  Google Scholar 

  7. National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Health Sciences Policy; Forum on Regenerative Medicine (2017) Exploring the state of the science in the field of regenerative medicine: challenges of and opportunities for cellular therapies. In: Proceedings of a workshop. National Academies Press, Washington

    Google Scholar 

  8. Orlando G, Wood KJ, Stratta RJ et al (2011) Regenerative medicine and organ transplantation: past, present, and future. Transplantation 91:1310–1317

    Article  Google Scholar 

  9. Lanza R, Langer R, Vacanti JP (1997) Principles of tissue engineering. R.G. Landes Company and Academic Press Inc, Texas

    Google Scholar 

  10. Oh S, Oh N, Appleford M et al (2006) Bioceramics for tissue engineering applications—a review. Am J Biochem Biotechnol 2:49–56

    Article  CAS  Google Scholar 

  11. Ripamonti U (2004) Soluble, insoluble and geometric signals sculpt the architecture of mineralized tissues. J Cell Mol Med 8:169–180

    Article  CAS  Google Scholar 

  12. Gentile P, Chiono V, Carmagnola I et al (2014) An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15:3640–3659

    Article  CAS  Google Scholar 

  13. Santoro M, Shah SR, Walker JL et al (2016) Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Adv Drug Deliv Rev 107:206–212

    Article  CAS  Google Scholar 

  14. Savioli Lopes M, Jardini AL, Maciel Filho R (2012) Poly (lactic acid) production for tissue engineering applications. Procedia Engineer 42:1402–1413

    Article  CAS  Google Scholar 

  15. Hewitt Z, Priddle H, Thomson AJ et al (2007) Ablation of undifferentiated human embryonic stem cells: exploiting innate immunity against the Gal α1-3Galβ1-4GlcNAc-R (α-Gal) epitope. Stem Cells 25:10–18

    Article  CAS  Google Scholar 

  16. Tiwari G, Tiwari R, Sriwastawa B et al (2012) Drug delivery systems: an updated review. Int J Pharm Investig 2:2–11

    Article  CAS  Google Scholar 

  17. Costa PF (2015) Bone tissue engineering drug delivery. Curr Mol Bio Rep 1:87–93

    Article  Google Scholar 

  18. Monteiro N, Martins A, Reis RL et al (2015) Nanoparticle-based bioactive agent release systems for bone and cartilage tissue engineering. Regen Ther 1:109–118

    Article  Google Scholar 

  19. Škalko-Basnet N (2014) Biologics: the role of delivery systems in improved therapy. Biologics 8:107–114

    Google Scholar 

  20. Chen B, Dai W, He B et al (2017) Current multistage drug delivery systems based on the tumor microenvironment. Theranostics 7:538–558

    Article  CAS  Google Scholar 

  21. Kanczler JM, Barry J, Ginty P et al (2007) Supercritical carbon dioxide generated vascular endothelial growth factor encapsulated poly(DL-lactic acid) scaffolds induce angiogenesis in vitro. Biochem Biophys Res Commun 352:135–141

    Article  CAS  Google Scholar 

  22. Jie Q, Dai X, Cao Q (2002) Massive allograft for defects after bone malignant tumor resection. Chinese J Modern Med 12:60–62

    Google Scholar 

  23. Matejovsky Z Jr, Matejovsky Z, Kofranek I (2006) Massive allografts in tumour surgery. Int Orthop 30:478–483

    Article  Google Scholar 

  24. Imai S, Higashijima K, Ishida A et al (2003) Determination of the position and orientation of artificial knee implants using markers embedded in a bone: preliminary in vitro experiments. Med Eng Phys 25:419–424

    Article  CAS  Google Scholar 

  25. Tomlinson RE, Silva MJ (2013) Skeletal blood flow in bone repair and maintenance. Bone Res 1:311–322

    Article  CAS  Google Scholar 

  26. Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40:363–408

    Article  Google Scholar 

  27. Krishnan V, Lakshmi T (2013) Bioglass: a novel biocompatible innovation. J Adv Pharm Technol Res 4:78–83

    Article  CAS  Google Scholar 

  28. Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE (2014) Scaffold design for bone regeneration. J Nanosci Nanotechnol 14:15–56

    Article  CAS  Google Scholar 

  29. Mahmood SK, Zakaria MZAB, Razak ISBA et al (2017) Preparation and characterization of cockle shell aragonite nanocomposite porous 3D scaffolds for bone repair. Biochem Biophys Rep 10:237–251

    Google Scholar 

  30. Sharma C, Dinda AK, Potdar PD et al (2016) Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 64:416–427

    Article  CAS  Google Scholar 

  31. Chow LC (2009) Next generation calcium phosphate-based biomaterials. Dent Mater J 28:1–10

    Article  CAS  Google Scholar 

  32. Romagnoli C, D’Asta F, Brandi ML (2013) Drug delivery using composite scaffolds in the context of bone tissue engineering. Clin Cases Miner Bone Metab 10:155–161

    Google Scholar 

  33. Grigore ME (2018) Drug delivery systems in hard tissue engineering. SF J Biotechnol Biomed Eng 1:1001

    Google Scholar 

  34. Li X, Wang L, Fan Y et al (2013) Nanostructured scaffolds for bone tissue engineering. J Biomed Mater Res A 101:2424–2435

    Article  CAS  Google Scholar 

  35. Mouriño V, Boccaccini AR (2010) Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface 7:209–227

    Article  CAS  Google Scholar 

  36. Kannan S, Rocha JH, Agathopoulos S et al (2007) Fluorine-substituted hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones. Acta Biomater 3:243–249

    Article  CAS  Google Scholar 

  37. Dorozhkin SV, Epple M (2002) Biological and medical significance of calcium phosphates. Angew Chem Int Ed Engl 41:3130–3146

    Article  CAS  Google Scholar 

  38. Goller G, Oktar FN, Agathopoulos S et al (2005) The influence of sintering temperature on mechanical and microstructural properties of bovine hydroxyapatite. In: Li P, Zhang K, Colwell CW (eds) 17th international symposium on ceramics in medicine, New Orleans, December 2004. Key Eng Mater, vol 284–286. Trans Tech Publications, Switzerland, pp 325–328

    Article  Google Scholar 

  39. Ben-Nissan B (2003) Natural bioceramics: from coral to bone and beyond. Curr Opin Solid State Mater Sci 7:283–288

    Article  CAS  Google Scholar 

  40. Rocha JH, Lemos AF, Agathopoulos S et al (2005) Scaffolds for bone restoration from cuttlefish. Bone 37:850–857

    Article  CAS  Google Scholar 

  41. Rocha JHG, Lemos AF, Kannan S et al (2005) Hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones. J Mater Chem 15:5007–5011

    Article  CAS  Google Scholar 

  42. Čadež V, Škapin SD, Leonardi A et al (2017) Formation and morphogenesis of a cuttlebone’s aragonite biomineral structures for the common cuttlefish (Sepia officinalis) on the nanoscale: revisited. J Colloid Interface Sci 508:95–104

    Article  CAS  Google Scholar 

  43. Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, Oxford

    Google Scholar 

  44. Wolf SE, Böhm CF, Harris J et al (2016) Nonclassical crystallization in vivo et in vitro (I): process-structure-property relationships of nanogranular biominerals. J Struct Biol 196:244–259

    Article  CAS  Google Scholar 

  45. Rodríguez-Navarro C, Ruiz-Agudo E, Harris J et al (2016) Nonclassical crystallization in vivo et in vitro (II): nanogranular features in biomimetic minerals disclose a general colloid-mediated crystal growth mechanism. J Struct Biol 196:260–287

    Article  CAS  Google Scholar 

  46. Marin F, Le Roy N, Marie B (2012) The formation and mineralization of mollusk shell. Front Biosci (Schol Ed) 4:1099–1125

    Article  Google Scholar 

  47. Vekilov PG (2015) Nucleation and growth mechanisms of protein crystals. In: Nishinaga T (ed) Handbook of crystal growth, 2nd edn. Elsevier, Amsterdam, pp 795–871

    Chapter  Google Scholar 

  48. Kobayashi I, Samata T (2006) Bivalve shell structure and organic matrix. Mater Sci Eng C 26:692–698

    Article  CAS  Google Scholar 

  49. Frémy ME (1855) Recherches chimiques sur les os. Annales Chim Phys 43:47–107

    Google Scholar 

  50. Goffinet G, Jeuniaux C (1979) Distribution and quantitative importance of chitin in Mollusca shells. Cah Biol Mar 20:341–349

    Google Scholar 

  51. Weiss IM, Schönitzer V, Eichner N et al (2006) The chitin synthase involved in marine bivalve mollusk shell formation contains a myosin domain. FEBS Lett 580:1846–1852

    Article  CAS  Google Scholar 

  52. Schönitzer V, Weiss IM (2007) The structure of mollusc larval shells formed in the presence of the chitin synthase inhibitor Nikkomycin Z. BMC Struct Biol 7:71. https://doi.org/10.1186/1472-6807-7-71

    Article  CAS  Google Scholar 

  53. Marie B, Luquet G, Bédouet L et al (2008) Nacre calcification in the freshwater mussel Unio pictorum: carbonic anhydrase activity and purification of a 95 kDa calcium-binding glycoprotein. ChemBioChem 9:2515–2523

    Article  CAS  Google Scholar 

  54. Dauphin Y, Marin F (1995) The compositional analysis of recent cephalopod shell carbohydrates by fourier-transform infrared spectrometry and high-performance anion-exchange-pulsed amperometric detection. Experientia 51:278–283

    Article  CAS  Google Scholar 

  55. Rousseau M, Bédouet L, Lati E et al (2006) Restoration of stratum corneum with nacre lipids. Comp Biochem Physiol B Biochem Mol Biol 145:1–9

    Article  CAS  Google Scholar 

  56. Hedegaard C, Bardeau JF, Chateigner D (2006) Molluscan shell pigments: an in situ resonance Raman study. J Molluscan Stud 72:157–162

    Article  Google Scholar 

  57. Barnard W, de Waal D (2006) Raman investigation of pigmentary molecules in the molluscan biogenic matrix. J Raman Spectrosc 37:342–352

    Article  CAS  Google Scholar 

  58. Checa AG, Cartwright JH, Sánchez-Almazo I et al (2015) The cuttlefish Sepia officinalis (Sepiidae, Cephalopoda) constructs cuttlebone from a liquid-crystal precursor. Sci Rep 5:11513. https://doi.org/10.1038/srep11513

    Article  CAS  Google Scholar 

  59. Sherrard KM (2000) Cuttlebone morphology limits habitat depth in eleven species of Sepia (Cephalopoda: Sepiidae). Biol Bull 198:404–414

    Article  CAS  Google Scholar 

  60. Ward P, Boletzky S (1984) Shell implosion depth and implosion morphologies in three species of Sepia (Cephalopoda) from the Mediterranean Sea. J Mar Biol Assoc UK 64:955–966

    Article  Google Scholar 

  61. Boletzky SV (1983) Sepia officinalis. In: Boyle PR (ed) Cephalopod life cycles, vol I, species accounts. Academic Press, London, pp 31–52

    Google Scholar 

  62. Hewitt RA, Stait B (1988) Seasonal variation in septal spacing of Sepia officinalis and some Ordovician actinocerid nautiloids. Lethaia 21:383–394

    Article  Google Scholar 

  63. Gerhardt LC, Boccaccini AR (2010) Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3:3867–3910

    Article  CAS  Google Scholar 

  64. Shackelford JF (2005) Bioceramics, vol 1. Gordon and Breach Science Publishers, Amsterdam

    Google Scholar 

  65. Martin RB (1996) Biomaterials. In: Berger SA, Goldsmith W, Lewis ER (eds) Introduction to bioengineering. Oxford University Press, Oxford, pp 339–360

    Google Scholar 

  66. Dey A, Mukhopadhyay AK (2015) Microplasma sprayed hydroxyapatite coatings. Taylor and Francis Group/CRC Press, Florida

    Book  Google Scholar 

  67. Mansouri K, Fattahian H, Mansouri N et al (2018) The role of cuttlebone and cuttlebone derived hydroxyapatite with platelet rich plasma on tibial bone defect healing in rabbit: an experimental study. Kafkas Univ Vet Fak Derg 24:107–115

    Google Scholar 

  68. Zhang BG, Myers DE, Wallace GG et al (2014) Bioactive coatings for orthopaedic implants-recent trends in development of implant coatings. Int J Mol Sci 15:11878–11921

    Article  CAS  Google Scholar 

  69. Katz JL (1980) The structure and biomechanics of bone. In: Vincent JFV, Currey JD (eds) The mechanical properties of biological materials. Cambridge University Press, Cambridge, pp 137–168

    Google Scholar 

  70. Orlovskii VP, Komlev VS, Barinov SM (2002) Hydroxyapatite and hydroxyapatite-based ceramics. Inorg Mater 38:973–984

    Article  CAS  Google Scholar 

  71. Liu H, Webster TJ (2007) Bioinspired nanocomposites for orthopedic applications. In: Webster TJ (ed) Nanotechnology for the regeneration of hard and soft tissues. World Scientific Publishing, Singapore, pp 1–51

    Google Scholar 

  72. Oryan A, Alidadi S, Moshiri A et al (2014) Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 9:18. https://doi.org/10.1186/1749-799X-9-18

    Article  Google Scholar 

  73. Kim BS, Kang HJ, Lee J (2013) Improvement of the compressive strength of a cuttlefish bone-derived porous hydroxyapatite scaffold via polycaprolactone coating. J Biomed Mater Res B Appl Biomater 101:1302–1309

    Article  CAS  Google Scholar 

  74. Kim BS, Yang SS, Lee J (2014) A polycaprolactone/cuttlefish bone-derived hydroxyapatite composite porous scaffold for bone tissue engineering. J Biomed Mater Res B Appl Biomater 102:943–951

    Article  CAS  Google Scholar 

  75. Tkalčec E, Popović J, Orlić S et al (2014) Hydrothermal synthesis and thermal evolution of carbonate-fluorhydroxyapatite scaffold from cuttlefish bones. Mater Sci Eng C Mater Biol Appl 42:578–586

    Article  CAS  Google Scholar 

  76. Hongmin L, Wei Z, Xingrong Y et al (2015) Osteoinductive nanohydroxyapatite bone substitute prepared via in situ hydrothermal transformation of cuttlefish bone. J Biomed Mater Res B Appl Biomater 103:816–824

    Article  CAS  Google Scholar 

  77. Rocha JH, Lemos AF, Agathopoulos S et al (2006) Hydrothermal growth of hydroxyapatite scaffolds from aragonitic cuttlefish bones. J Biomed Mater Res A 77:160–168

    Article  CAS  Google Scholar 

  78. Ivankovic H, Gallego Ferrer G, Tkalcec E et al (2009) Preparation of highly porous hydroxyapatite from cuttlefish bone. J Mater Sci Mater Med 20:1039–1046

    Article  CAS  Google Scholar 

  79. Mäthger LM, Chiao CC, Barbosa A et al (2007) Disruptive coloration elicited on controlled natural substrates in cuttlefish, Sepia officinalis. J Exp Biol 210:2657–2666

    Article  Google Scholar 

  80. Chang SJ, Huang YT, Yang SC et al (2012) In vitro properties of gellan gum sponge as the dental filling to maintain alveolar space. Carbohydr Polym 88:684–689

    Article  CAS  Google Scholar 

  81. Ivankovic H, Tkalcec E, Orlic S et al (2010) Hydroxyapatite formation from cuttlefish bones: kinetics. J Mater Sci Mater Med 21:2711–2722

    Article  CAS  Google Scholar 

  82. Overgaard S, Lind M, Glerup H et al (1997) Hydroxyapatite and fluorapatite coatings for fixation of weight loaded implants. Clin Orthop Relat Res 336:286–296

    Article  Google Scholar 

  83. Gineste L, Gineste M, Ranz X et al (1999) Degradation of hydroxylapatite, fluorapatite, and fluorhydroxyapatite coatings of dental implants in dogs. J Biomed Mater Res 48:224–234

    Article  CAS  Google Scholar 

  84. Leamy P, Brown PW, TenHuisen K et al (1998) Fluoride uptake by hydroxyapatite formed by the hydrolysis of α-tricalcium phosphate. J Biomed Mater Res 42:458–464

    Article  CAS  Google Scholar 

  85. Monroe EA (1987) Biomaterials—teeth. Course notes of the State University of New York, College of Ceramics at Alfred University

    Google Scholar 

  86. Kim HW, Noh YJ, Koh YH et al (2003) Enhanced performance of fluorine substituted hydroxyapatite composites for hard tissue engineering. J Mater Sci Mater Med 14:899–904

    Article  CAS  Google Scholar 

  87. Barradas AM, Yuan H, van Blitterswijk CA et al (2011) Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. Eur Cell Mater 21:407–429

    Article  CAS  Google Scholar 

  88. Chai YC, Carlier A, Bolander J et al (2012) Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies. Acta Biomater 8:3876–3887

    Article  CAS  Google Scholar 

  89. Sammons R (2015) Biological responses to hydroxyapatite. In: Mucalo M (ed) Hydroxyapatite (Hap) for biomedical applications. Woodhead Publishing Series in Biomaterials, Woodhead Publishing, Cambridge, pp 53–83

    Google Scholar 

  90. Shindyapina AV, Mkrtchyan GV, Gneteeva T et al (2014) Mineralization of the connective tissue: a complex molecular process leading to age-related loss of function. Rejuvenation Res 17:116–133

    Article  CAS  Google Scholar 

  91. Chang YL, Lew D, Park JB et al (1999) Biomechanical and morphometric analysis of hydroxyapatite-coated implants with varying crystallinity. J Oral Maxillofac Surg 57:1096–1108

    Article  CAS  Google Scholar 

  92. Malard O, Bouler JM, Guicheux J et al (1999) Influence of biphasic calcium phosphate granulometry on bone ingrowth, ceramic resorption, and inflammatory reactions: preliminary in vitro and in vivo study. J Biomed Mater Res 46:103–111

    Article  CAS  Google Scholar 

  93. Jarcho M (1981) Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res 157:259–278

    CAS  Google Scholar 

  94. Daculsi G (1998) Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials 19:1473–1478

    Article  CAS  Google Scholar 

  95. Klein CP, de Blieck-Hogervorst JM, Wolke JG et al (1990) Studies of the solubility of different calcium phosphate ceramic particles in vitro. Biomaterials 11:509–512

    Article  CAS  Google Scholar 

  96. Bauer TW, Geesink RC, Zimmerman R et al (1991) Hydroxyapatite-coated femoral stems. Histological analysis of components retrieved at autopsy. J Bone Joint Surg Am 73:1439–1452

    Article  CAS  Google Scholar 

  97. Epinette J-A, Manley MT (eds) (2004) Fifteen years of clinical experience with hydroxyapatite coatings in joint arthroplasty. Springer, Paris

    Google Scholar 

  98. Lagopati N, Kitsiou PV, Kontos AI et al (2010) Photo-induced treatment of breast epithelial cancer cells using nanostructured titanium dioxide solution. J Photochem Photobiol A Chem 214:215–223

    Article  CAS  Google Scholar 

  99. Lagopati N, Tsilibary EP, Falaras P et al (2014) Effect of nanostructured TiO2 crystal phase on photoinduced apoptosis of breast cancer epithelial cells. Int J Nanomedicine 9:3219–3230

    CAS  Google Scholar 

  100. Silver IA, Deas J, Erecińska M (2001) Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 Bioglass, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability. Biomaterials 22:175–185

    Article  CAS  Google Scholar 

  101. Amaral M, Costa MA, Lopes MA et al (2002) Si(3)N(4)-bioglass composites stimulate the proliferation of MG63 osteoblast-like cells and support the osteogenic differentiation of human bone marrow cells. Biomaterials 23:4897–4906

    Article  CAS  Google Scholar 

  102. Meleti Z, Shapiro IM, Adams CS (2000) Inorganic phosphate induces apoptosis of osteoblast-like cells in culture. Bone 27:359–366

    Article  CAS  Google Scholar 

  103. Klein BY, Ben-Bassat H, Breuer E et al (1998) Structurally different bisphosphonates exert opposing effects on alkaline phosphatase and mineralization in marrow osteoprogenitors. J Cell Biochem 68:186–194

    Article  CAS  Google Scholar 

  104. Cozza N, Monte F, Bonani W et al (2018) Bioactivity and mineralization of natural hydroxyapatite from cuttlefish bone and Bioglass® co-sintered bioceramics. Tissue Eng Regen Med 12:e1131–e1142

    Article  CAS  Google Scholar 

  105. Pabbruwe MB, Stewart K, Chaudhuri JB (2005) A comparison of colorimetric and DNA quantification assays for the assessment of meniscal fibrochondrocyte proliferation in microcarrier culture. Biotechnol Lett 27:1451–1455

    Article  CAS  Google Scholar 

  106. Jones J, Clare A (eds) (2012) Bio-glasses: an introduction. Wiley, New Jersey

    Google Scholar 

  107. Nooeaid P, Salih V, Beier JP et al (2012) Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med 16:2247–2270

    Article  CAS  Google Scholar 

  108. Li B (2014) Dating of black gel pen ink using the dissolution-diffusion method. Forensic Sci Int 234:126–131

    Article  CAS  Google Scholar 

  109. Hench LL, Ethridge EC (1982) Biomaterials: an interfacial approach. Academic Press, New York

    Google Scholar 

  110. Zhu L, Jones C, Guo Q et al (2016) An evaluation of total starch and starch gelatinization methodologies in pelleted animal feed. J Anim Sci 94:1501–1507

    Article  CAS  Google Scholar 

  111. Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6:623–633

    Article  CAS  Google Scholar 

  112. Bouhadir KH, Mooney DJ (2002) Synthesis of hydrogels: alginate hydrogels. In: Atala A, Lanza RP (eds) Methods of tissue engineering. Academic Press, New York, pp 653–662

    Google Scholar 

  113. Lin HR, Yeh YJ (2004) Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. J Biomed Mater Res B Appl Biomater 71:52–65

    Article  CAS  Google Scholar 

  114. Drougkas GE (2017) Synthesis and characterization of composite biomaterials with polymeric matrix reinforced with hydroxyapatite for orthopedic applications. M.Sc. Dissertation, Department of Materials Science and Engineering, Laboratory of Ceramics and Composite Materials, School of Engineering, University of Ioannina, Greece

    Google Scholar 

  115. Tori G (2016) Synthesis, characterization and in vitro and in vivo performance of novel porous bioresorbable composite scaffolds based on HA for bone tissue engineering applications. M.Sc. Dissertation, Department of Materials Science and Engineering, Laboratory of Ceramics and Composite Materials, School of Engineering, University of Ioannina, Greece

    Google Scholar 

  116. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  117. Teixeira S, Rodriguez MA, Pena P et al (2009) Physical characterization of hydroxyapatite porous scaffolds for tissue engineering. Mater Sci Eng C Biomim Supramol Syst 29:1510–1514

    Article  CAS  Google Scholar 

  118. Brun V, Guillaume C, Mechiche Alami S et al (2014) Chitosan/hydroxyapatite hybrid scaffold for bone tissue engineering. Biomed Mater Eng 24:63–73

    CAS  Google Scholar 

  119. Escobar-Sierra DM, Martins-Martins J, Ossa-Orozco CP (2015) Chitosan/hydroxyapatite scaffolds for tissue engineering manufacturing method effect comparison. Rev Fac Ing Univ Antioquia 75:24–35

    Google Scholar 

  120. Tzoka M (2016) Synthesis and characterization of porous composite 1206 biomaterials made of polymer matrix and reinforcement of bioceramic nano-1207 powders. M.Sc. Dissertation, Department of Materials Science and Engineering, Laboratory of Ceramics and Composite Materials, School of Engineering, University of Ioannina, Greece

    Google Scholar 

  121. Ruvinov E, Cohen S (2016) Alginate biomaterial for the treatment of myocardial infarction: progress, translational strategies, and clinical outlook: from ocean algae to patient bedside. Adv Drug Deliv Rev 96:54–76

    Article  CAS  Google Scholar 

  122. Hannan CM, Attinger CE (2009) Special considerations in the management of osteomyelitis defects (diabetes, the ischemic or dysvascular bed, and irradiation). Semin Plast Surg 23:132–140

    Article  Google Scholar 

  123. Jain AK, Panchagnula R (2000) Skeletal drug delivery systems. Int J Pharm 206:1–12

    Article  CAS  Google Scholar 

  124. Harbarth S, Pestotnik SL, Lloyd JF et al (2001) The epidemiology of nephrotoxicity associated with conventional amphotericin B therapy. Am J Med Sci 111:528–534

    CAS  Google Scholar 

  125. Buranapanitkit B, Ingviya N, Lim A et al (2000) In vitro elution of gentamicin from locally implantable beads. J Musculoskelet Res 4:169–176

    Article  Google Scholar 

  126. Krisanapiboon A, Buranapanitkit B, Oungbho K (2006) Biocompatability of hydroxyapatite composite as a local drug delivery system. J Orthop Surg 14:315–318

    Article  CAS  Google Scholar 

  127. Loca D, Locs J, Dubnika A et al (2015) Porous hydroxyapatite for drug delivery. In: Mucalo M (ed) Hydroxyapatite (Hap) for biomedical applications. Woodhead Publishing Series in Biomaterials, Woodhead Publishing, Cambridge, pp 189–209

    Chapter  Google Scholar 

  128. Loca D, Locs J, Gulbis J et al (2011) Lidocaine loaded Ca/P scaffolds for bone regeneration and local drug delivery. In: Medvids A (ed) 9th international conference on global research and education, Inter-Academia 2010, Riga, August 2010. Advanced Materials Research, vol 222. Trans Tech Publications, Zurich, pp 289–292

    Google Scholar 

  129. Zalite V, Locs J, Vempere D et al (2012) The effect of pore forming agent particle size on the porosity, microstructure and in vitro studies of hydroxyapatite ceramics. Key Eng Mater 493–494:277–280

    Google Scholar 

  130. Palazzo B, Sidoti MC, Roveri N et al (2005) Controlled drug delivery from porous hydroxyapatite grafts: an experimental and theoretical approach. Mater Sci Eng C Biomim Supramol Syst 25:207–213

    Article  CAS  Google Scholar 

  131. Maniya NH, Patel SR, Murthy ZVP (2013) Electrochemical preparation of microstructured porous silicon layers for drug delivery applications. Superlattices Microstruct 55:144–150

    Article  CAS  Google Scholar 

  132. Polyak B, Geresh S, Marks RS (2004) Synthesis and characterization of a biotin-alginate conjugate and its application in a biosensor construction. Biomacromolecules 5:389–396

    Article  CAS  Google Scholar 

  133. Barka E (2016) Development of novel tissue-engineering scaffolds for preventing post-myocardial infarction ventricular remodeling. Ph.D. Dissertation, Department of Materials Science and Engineering, Laboratory of Ceramics and Composite Materials, School of Engineering, University of Ioannina, Greece

    Google Scholar 

  134. Barka E, Papayannis DK, Kolettis TM et al (2018) Optimization of Ca2+ content in alginate hydrogel injected in myocardium. J Biomed Mater Res B Appl Biomater 107:223

    Article  CAS  Google Scholar 

  135. Baino F, Novajra G, Vitale-Brovarone C (2015) Bioceramics and scaffolds: a winning combination for tissue engineering. Front Bioeng Biotechnol 3:202. https://doi.org/10.3389/fbioe.2015.00202

    Article  Google Scholar 

  136. Queiroz AC, Santos JD, Monteiro FJ et al (2003) Dissolution studies of hydroxyapatite and glass-reinforced hydroxyapatite ceramics. Mater Charact 50:197–202

    Article  CAS  Google Scholar 

  137. Lin KL, Zhang ML, Zhai WY et al (2011) Fabrication and characterization of hydroxyapatite/wollastonite composite bioceramics with controllable properties for hard tissue repair. J Am Ceram Soc 94:206–212

    Google Scholar 

  138. Wang DG, Chen CZ, Ma QS et al (2013) A study on in vitro and in vivo bioactivity of HA/45S5 composite films by pulsed laser deposition. Appl Surf Sci 270:667–674

    Article  CAS  Google Scholar 

  139. Lin K, Chang J (2015) Structure and properties of hydroxyapatite for biomedical applications. In: Mucalo M (ed) Hydroxyapatite (Hap) for biomedical applications. Woodhead Publishing Series in Biomaterials, Woodhead Publishing, Cambridge, pp 3–19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simeon Agathopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lagopati, N., Agathopoulos, S. (2019). Hydroxyapatite Scaffolds Produced from Cuttlefish Bone via Hydrothermal Transformation for Application in Tissue Engineering and Drug Delivery Systems. In: Choi, A., Ben-Nissan, B. (eds) Marine-Derived Biomaterials for Tissue Engineering Applications. Springer Series in Biomaterials Science and Engineering, vol 14. Springer, Singapore. https://doi.org/10.1007/978-981-13-8855-2_9

Download citation

Publish with us

Policies and ethics