Skip to main content

Marine-Based Calcium Phosphates from Hard Coral and Calcified Algae for Biomedical Applications

  • Chapter
  • First Online:
Marine-Derived Biomaterials for Tissue Engineering Applications

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 14))

Abstract

The materials that are developed from the different kind of marine organisms have a broad range of properties and characteristics that can explain their potential functions in the biomedical area. Accordingly, new opportunities are created by biomaterials produced from marine-based sources such as calcium phosphate-based bioceramics, composites, and polymers within the biomedical fields such as new drug delivery systems, the design of novel implantable devices, and various applications in tissue engineering. The major aim of this chapter is to explain the importance of marine structures applicable for biomedical applications as well as choosing the appropriate conversion technique in order to obtain designs and structures best suited for their intended use. Therefore, we will highlight various conversion techniques used in the synthesis of calcium phosphate bioceramics from various marine sources such as Tubipora musica , Foraminifera , Porites Hard Corals and Halimeda cylindracea calcified algae, and their biomedical applications in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Demers C, Hamdy CR, Corsi K et al (2002) Natural coral exoskeleton as a bone graft substitute: a review. Biomed Mater Eng 12:15–35

    Google Scholar 

  2. Ige OO, Umoru LE, Aribo S (2012) Natural products: a minefield of biomaterials. ISRN Mater Sci. https://doi.org/10.5402/2012/983062

    Article  Google Scholar 

  3. Vallet-Regi M (2010) Evolution of bioceramics within the field of biomaterials. Comptes Rendus Chim 13:174–185

    Article  CAS  Google Scholar 

  4. Ben-Nissan B, Pezzotti G (2002) Bioceramics: processing routes and mechanical evaluation. J Ceram Soc Jpn 110:601–608

    Article  CAS  Google Scholar 

  5. Merolli A, Joyce TJ (eds) (2009) Biomaterials in hand surgery. Springer, Milan

    Google Scholar 

  6. Wong JY, Bronzino JD (eds) (2007) Biomaterials. CRC Press, Boca Raton

    Google Scholar 

  7. Pruitt LA, Chakravartula AM (2011) Mechanics of biomaterials: fundamental principles for implant design. Cambridge University Press, Cambridge

    Book  Google Scholar 

  8. Davim JP (ed) (2013) Biomaterials and medical tribology: research and development. Woodhead Publishing, Cambridge

    Google Scholar 

  9. Le VQ, Pourroy G, Cochis A et al (2014) Alternative technique for calcium phosphate coating on titanium alloy implants. Biomatter 4:e28534. https://doi.org/10.4161/biom.28534

    Article  Google Scholar 

  10. Mahyudin F, Widhiyanto L, Hermawan H (2016) Biomaterials in orthopaedics. In: Mahyudin F, Hermawan H (eds) Biomaterials and medical devices. Advanced structured materials, vol 58. Springer, Cham, pp 161–181

    Google Scholar 

  11. Ben-Nissan B (2003) Natural bioceramics: from coral to bone and beyond. Curr Opin Solid State Mater Sci 7:283–288

    Article  CAS  Google Scholar 

  12. Sáenz A, Rivera-Muñoz E, Brostow W et al (1999) Ceramic biomaterials: an introductory overview. J Mater Educ 21:297–306

    Google Scholar 

  13. Mahyudin F, Hermawan H (eds) (2016) Biomaterials and medical devices. A perspective from an emerging country. Springer International Publishing, Switzerland

    Google Scholar 

  14. Chou J, Hao J, Ben-Nissan B et al (2013) Coral exoskeletons as a precursor material for the development of a calcium phosphate drug delivery system for bone tissue engineering. Biol Pharm Bull 36:1662–1665

    Article  CAS  Google Scholar 

  15. Oryan A, Alidadi S, Moshiri A et al (2014) Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 9:18. https://doi.org/10.1186/1749-799X-9-18

    Article  Google Scholar 

  16. Green DW, Ben-Nissan B, Yoon KS et al (2017) Natural and synthetic coral biomineralization for human bone revitalization. Trends Biotechnol 35:43–54

    Article  CAS  Google Scholar 

  17. Global Alliance for Musculoskeletal Health (2018) Global alliance for musculoskeletal health of the bone and joint decade. Osteoporosis and joint diseases. http://bjdonline.org/. Accessed 16 July 2018

  18. Macha IJ, Ben-Nissan B (2018) Marine skeletons: towards hard tissue repair and regeneration. Mar Drugs 16:E225. https://doi.org/10.3390/md16070225

    Article  CAS  Google Scholar 

  19. Pal S (2014) Design of artificial human joints and organs. Springer Science and Business Media, New York

    Book  Google Scholar 

  20. Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30:546–554

    Article  CAS  Google Scholar 

  21. Kim SK (ed) (2013) Marine biomaterials: characterization, isolation and applications. Taylor and Francis/CRC Press, Florida

    Google Scholar 

  22. Chou J, Hao J, Ben-Nissan B et al (2014) Calcium phosphate derived from foraminifera structures as drug delivery systems and for bone tissue engineering. In: Ben-Nissan B (ed) Advances in calcium phosphate biomaterials. Springer, Heidelberg, pp 415–433

    Chapter  Google Scholar 

  23. Gunduz O, Sahin YM, Agathopoulos S (2014) A new method for fabrication of nanohydroxyapatite and TCP from the sea snail Cerithium vulgatum. J Nanomater. https://doi.org/10.1155/2014/382861

    Article  Google Scholar 

  24. Macha IJ, Charvillat C, Cazalbou S (2016) Comparative study of coral conversion, part 3: intermediate products in the first half an hour. J Aust Ceram Soc 52:177–182

    CAS  Google Scholar 

  25. Macha IJ, Cazalbou S, Ben-Nissan B et al (2015) Marine structure derived calcium phosphate-polymer biocomposites for local antibiotic delivery. Mar Drugs 13:666–680

    Article  Google Scholar 

  26. Dorozhkin SV (2013) Calcium orthophosphate-based bioceramics. Materials 6:3840–3942

    Article  CAS  Google Scholar 

  27. Cegla RNR, Macha IJ, Ben-Nissan B et al (2014) Comparative study of conversion of coral with ammonium dihydrogen phosphate and orthophosphoric acid to produce calcium phosphates. J Aust Ceram Soc 50:154–161

    CAS  Google Scholar 

  28. Macha IJ, Ozyegin LS, Oktar FN et al (2015) Conversion of ostrich eggshells (Struthio camelus) to calcium phosphates. J Aust Ceram Soc 51:125–133

    CAS  Google Scholar 

  29. Dey A, Mukhopadhyay AK (2015) Microplasma sprayed hydroxyapatite coatings. Apple Academic Press Inc., Florida

    Book  Google Scholar 

  30. Choi AH, Ben-Nissan B (2007) Sol-gel production of bioactive nanocoatings for medical applications. Part II: current research and development. Nanomedicine 2:51–61

    Article  CAS  Google Scholar 

  31. Xu Y, Wang DZ, Yang L et al (2001) Hydrothermal conversion of coral into hydroxyapatite. Mater Charact 47:83–87

    Article  CAS  Google Scholar 

  32. Bingöl OR, Durucan C (2012) Hydrothermal synthesis of hydroxyapatite from calcium sulfate hemihydrate. Am J Biomed Sci 4:50–59

    Article  Google Scholar 

  33. Choi G, Karacan I, Cazalbou S et al (2017) Conversion of calcified algae (Halimeda sp.) and hard coral (Porites sp.) to hydroxyapatite. Key Eng Mater 758:157–161

    Article  Google Scholar 

  34. Pietra F (1990) A secret world. Natural products of marine life. Birkhäuser Basel, Basel

    Google Scholar 

  35. Somerville M (1869) On molecular and microscopic science. John Murray, London

    Book  Google Scholar 

  36. Scholle PA, Ulmer-Scholle DS (2003) A color guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis. AAPG memoir. American Association of Petroleum Geologists, Oklahoma

    Google Scholar 

  37. Karacan I, Gunduz O, Ozyegin LS et al (2018) The natural nano-bioceramic powder production from organ pipe red coral (Tubipora musica) by a simple chemical conversion method. J Aust Ceram Soc 54:317–329

    Article  Google Scholar 

  38. Hillis LW (2001) The calcareous reef alga Halimeda (Chlorophyta, Byropsidales): a cretaceous genus that diversified in the cenozoic. Palaeogeogr Palaeoclimatol Palaeoecol 166:89–100

    Article  Google Scholar 

  39. Kooistra WH, Coppejans EG, Payri C (2002) Molecular systematics, historical ecology, and phylogeography of Halimeda (Bryopsidales). Mol Phylogenetics Evol 24:121–138

    Article  CAS  Google Scholar 

  40. Sinutok S, Hill R, Doblin MA et al (2012) Microenvironmental changes support evidence of photosynthesis and calcification inhibition in Halimeda under ocean acidification and warming. Coral Reefs 31:1201–1213

    Article  Google Scholar 

  41. Hillis-Colinvaux L (1980) Ecology and taxonomy of Halimeda: primary producer of coral reefs. In: Blaxter JHS, Russell FS, Yonge M (eds) Advances in marine biology, vol 17. Academic Press, Massachusetts, pp 1–327

    Google Scholar 

  42. Sinutok S, Hill R, Doblin MA et al (2011) Warmer more acidic conditions cause decreased productivity and calcification in subtropical coral reef sediment-dwelling calcifiers. Limnol Oceanogr 56:1200–1212

    Article  CAS  Google Scholar 

  43. Sinutok S, Pongparadon S, Prathep A (2008) Seasonal variation in density, growth rate and calcium carbonate accumulation of Halimeda macroloba Decaisne at Tangkhen Bay, Phuket Province, Thailand. Malays J Sci 27:1–8

    Google Scholar 

  44. Hallock P (1981) Algal symbiosis—a mathematical analysis. Mar Biol 62:249–255

    Article  Google Scholar 

  45. Nobes K, Uthicke S (2008) Benthic foraminifera of the great barrier reef: a guide to species potentially useful as water quality indicators. Report to the Marine and Tropical Sciences Research Facility. Reef and Rainforest Research Centre Limited, Cairns

    Google Scholar 

  46. Loeblich AR, Tappan H (1984) Suprageneric classification of the Foraminiferida (protozoa). Micropaleontol 30:1–70

    Article  Google Scholar 

  47. Goldstein ST (2003) Foraminifera: a biological overview. In: Gupta BKS (ed) Modern Foraminifera. Springer Science and Business Media, Dordrecht, pp 37–55

    Google Scholar 

  48. Patterson RT, Richardson RH (1987) A taxonomic revision of the unilocular foraminifera. J Foraminifer Res 17:212–226

    Article  Google Scholar 

  49. Hansen HJ (2003) Shell construction in modern calcareous Foraminifera. In: Gupta BKS (ed) Modern Foraminifera. Springer Science and Business Media, Dordrecht, pp 57–70

    Google Scholar 

  50. Ross CA (1972) Biology and ecology of Marginopora-vertebralis (foraminiferida), Great Barrier Reef. J Protozool 19:181–187

    Article  Google Scholar 

  51. Sinutok S, Hill R, Kuhl M et al (2014) Ocean acidification and warming alter photosynthesis and calcification of the symbiont-bearing foraminifera Marginopora vertebralis. Mar Biol 161:2143–2154

    Article  CAS  Google Scholar 

  52. Chou J, Valenzuela S, Green DW et al (2014) Antibiotic delivery potential of nano- and micro-porous marine structure-derived β-tricalcium phosphate spheres for medical applications. Nanomedicine 9:1131–1139

    Article  CAS  Google Scholar 

  53. Chou J, Ben-Nissan B, Green DW et al (2011) Targeting and dissolution characteristics of bone forming and antibacterial drugs by harnessing the structure of microspherical shells from coral beach sand. Adv Eng Mater 13:93–99

    Article  CAS  Google Scholar 

  54. Chou J, Ito T, Bishop D et al (2013) Controlled release of simvastatin from biomimetic β-TCP drug delivery system. PLoS ONE 8:e54676. https://doi.org/10.1371/journal.pone.0054676

    Article  CAS  Google Scholar 

  55. Chou J, Hao J, Kuroda S et al (2014) Bone regeneration of calvarial defect using marine calcareous-derived beta-tricalcium phosphate macrospheres. J Tissue Eng 5:2041731414523441

    Article  Google Scholar 

  56. Townsend DW (2003) Review of: Levinton JS 2001. Marine biology: function, biodiversity, ecology, 2nd edn. Oxford University Press, Oxford. Q Rev Biol 78:107

    Google Scholar 

  57. Damien E, Revell PA (2004) Coralline hydroxyapatite bone graft substitute: a review of experimental studies and biomedical applications. J Appl Biomater Biomech 2:65–73

    CAS  Google Scholar 

  58. Ripamonti U, Crooks J, Khoali L et al (2009) The induction of bone formation by coral-derived calcium carbonate/hydroxyapatite constructs. Biomaterials 30:1428–1439

    Article  CAS  Google Scholar 

  59. Macha IJ, Cazalbou S, Shimmon R et al (2017) Development and dissolution studies of bisphosphonate (clodronate)-containing hydroxyapatite-polylactic acid biocomposites for slow drug delivery. J Tissue Eng Regen Med 11:1723–1731

    Article  CAS  Google Scholar 

  60. Karacan I, Macha IJ, Choi G et al (2017) Antibiotic containing poly lactic acid/hydroxyapatite biocomposite coatings for dental implant applications. Key Eng Mater 758:120–125

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Besim Ben-Nissan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karacan, I., Ben-Nissan, B., Sinutok, S. (2019). Marine-Based Calcium Phosphates from Hard Coral and Calcified Algae for Biomedical Applications. In: Choi, A., Ben-Nissan, B. (eds) Marine-Derived Biomaterials for Tissue Engineering Applications. Springer Series in Biomaterials Science and Engineering, vol 14. Springer, Singapore. https://doi.org/10.1007/978-981-13-8855-2_7

Download citation

Publish with us

Policies and ethics