Skip to main content

Marine Polysaccharides: Biomedical and Tissue Engineering Applications

  • Chapter
  • First Online:
Marine-Derived Biomaterials for Tissue Engineering Applications

Abstract

Natural polysaccharides of marine origin are gaining interest in biomedical applications. Seaweeds are most abundant source of polysaccharides, as alginates, agar and agarose as well as Carrageenans. Even cellulose and amylose have been extracted from the macroalgae. Chitin and chitosan are derived from the exoskeleton of marine crustaceans . Interdisciplinary fields involving various science and technology aspects such as cell sciences, biomaterials , medical sciences and engineering are referred to as tissue engineering, which is an upcoming new field intended to replace biological functions in human body. Tissue engineered scaffolds and artificial organs developed by such technique has replace injured parts in human body. Technological advancements have made it possible to obtain active ingredient in marine organisms by controlling the growth and isolation conditions. Present review has focused on progress in discovering and producing new applications of marine polysaccharides in biomedical and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun J, Tan H (2013) Alginate-Based Biomaterials for Regenerative Medicine Applications. Materials 6:1285–1309

    Article  CAS  Google Scholar 

  2. Venkatesan J, Nithya R, Sudha PN et al (2014) Role of alginate in bone tissue engineering. Adv Food Nutr Res 73:45–57

    Article  CAS  Google Scholar 

  3. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  CAS  Google Scholar 

  4. Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59:207–233

    Article  CAS  Google Scholar 

  5. Venkatesan J, Anil S, Kim SE (eds) (2017) Seaweed Polysaccharides: Isolation. Biological and Biomedical Applications, Elsevier, Massachusetts

    Google Scholar 

  6. Gong T, Heng BC, Lo EC et al (2016) Current Advance and Future Prospects of Tissue Engineering Approach to Dentin/Pulp Regenerative Therapy. Stem Cells Int 2016:9204574

    Article  CAS  Google Scholar 

  7. Jazayeri HE, Fahmy MD, Razavi M et al (2016) Dental Applications of Natural-Origin Polymers in Hard and Soft Tissue Engineering. J Prosthodont 25:510–517

    Article  Google Scholar 

  8. Venkatesan J, Bhatnagar I, Kim SK (2014) Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Mar Drugs 12:300–316

    Article  CAS  Google Scholar 

  9. Marsich E, Bellomo F, Turco G et al (2013) Nano-composite scaffolds for bone tissue engineering containing silver nanoparticles: preparation, characterization and biological properties. J Mater Sci Mater Med 24:1799–1807

    Article  CAS  Google Scholar 

  10. Sajesh KM, Jayakumar R, Nair SV et al (2013) Biocompatible conducting chitosan/polypyrrole-alginate composite scaffold for bone tissue engineering. Int J Biol Macromol 62:465–471

    Article  CAS  Google Scholar 

  11. Qiao P, Wang J, Xie Q et al (2013) Injectable calcium phosphate-alginate-chitosan microencapsulated MC3T3-E1 cell paste for bone tissue engineering in vivo. Mater Sci Eng C Mater Biol Appl 33:4633–4639

    Article  CAS  Google Scholar 

  12. Lee GS, Park JH, Shin US et al (2011) Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering. Acta Biomater 7:3178–3186

    Article  CAS  Google Scholar 

  13. Tang M, Chen W, Weir MD et al (2012) Human embryonic stem cell encapsulation in alginate microbeads in macroporous calcium phosphate cement for bone tissue engineering. Acta Biomater 8:3436–3445

    Article  CAS  Google Scholar 

  14. Luo Y, Wu C, Lode A et al (2013) Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering. Biofabrication 5:015005

    Article  CAS  Google Scholar 

  15. Hamed S, Ayob FA, Alfatama M et al (2017) Enhancement of the immediate release of paracetamol from alginate beads. Int J Appl Pharm 9:47–51

    Article  CAS  Google Scholar 

  16. Hariyadi DM, Hendradi E, Purwanti T et al (2014) Effect of crosslinking agent and polymer on the characteristics of ovalbumin-loaded alginate microspheres. Int J Pharm Pharm Sci 26:469–474

    Google Scholar 

  17. Pongjanyakul T, Puttipipatkhachorn S (2007) Modulating drug release and matrix erosion of alginate matrix capsules by microenvironmental interaction with calcium ion. Eur J Pharm Biopharm 67:187–195

    Article  CAS  Google Scholar 

  18. Abbah SA, Liu J, Lam RW et al (2012) In vivo bioactivity of rhBMP-2 delivered with novel polyelectrolyte complexation shells assembled on an alginate microbead core template. J Control Release 162:364–372

    Article  CAS  Google Scholar 

  19. Chakraverty R (2012) Preparation and evaluation of sustained release microsphere of norfloxacin using sodium alginate. Int J Pharm Sci Res 3:293–299

    CAS  Google Scholar 

  20. Chen YQ, Sun DX, Liu J et al (2003) Preparation, properties and mechanism of inhomogeneous calcium alginate ion cross-linking gel microspheres. Chem Res Chinese Uni 19:85–88

    CAS  Google Scholar 

  21. Boateng JS, Matthews KH, Stevens HN et al (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97:2892–2923

    Article  CAS  Google Scholar 

  22. Peng CW, Lin HY, Wang HW et al (2012) The influence of operating parameters on the drug release and anti-bacterial performances of alginate wound dressings prepared by three-dimensional plotting. Mater Sci Eng C Mater Biol Appl 32:2491–2500

    Article  CAS  Google Scholar 

  23. Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175

    Article  CAS  Google Scholar 

  24. Agren MS (1999) Matrix metalloproteinases (MMPs) are required for re-epithelialization of cutaneous wounds. Arch Dermatol Res 291:583–590

    Article  CAS  Google Scholar 

  25. Prang P, Müller R, Eljaouhari A et al (2006) The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials 27:3560–3569

    CAS  Google Scholar 

  26. Peter SJ, Lu L, Kim DJ et al (2000) Marrow stromal osteoblast function on a poly(propylene fumarate)/beta-tricalcium phosphate biodegradable orthopaedic composite. Biomaterials 21:1207–1213

    Article  CAS  Google Scholar 

  27. Mourão PA (2004) Use of sulfated fucans as anticoagulant and antithrombotic agents: future perspectives. Curr Pharm Des 10:967–981

    Article  Google Scholar 

  28. Melo FR, Pereira MS, Foguel D et al (2004) Antithrombin-mediated anticoagulant activity of sulfated polysaccharides: different mechanisms for heparin and sulfated galactans. J Biol Chem 279:20824–20835

    Article  CAS  Google Scholar 

  29. Raghavendran HR, Srinivasan P, Rekha S (2011) Immunomodulatory activity of fucoidan against aspirin-induced gastric mucosal damage in rats. Int Immunopharmacol 11:157–163

    Article  CAS  Google Scholar 

  30. Shibata H, Iimuro M, Uchiya N et al (2003) Preventive effects of Cladosiphon fucoidan against Helicobacter pylori infection in Mongolian gerbils. Helicobacter 8:59–65

    Article  CAS  Google Scholar 

  31. Elizondo-Gonzalez R, Cruz-Suarez LE, Ricque-Marie D et al (2012) In vitro characterization of the antiviral activity of fucoidan from Cladosiphon okamuranus against Newcastle Disease Virus. Virol J 9:307

    Article  CAS  Google Scholar 

  32. Ngoan BT, Hanh TT, le Vien T et al (2015) Asterosaponins and glycosylated polyhydroxysteroids from the starfish Culcita novaeguineae and their cytotoxic activities. J Asian Nat Prod Res 17:1010–1017

    Article  CAS  Google Scholar 

  33. Park HK, Kim IH, Kim J et al (2013) Induction of apoptosis and the regulation of ErbB signaling by laminarin in HT-29 human colon cancer cells. Int J Mol Med 32:291–295

    Article  CAS  Google Scholar 

  34. Zhang QB, Yu PZ, Zhou GFet al(2003) Studies on antioxidant activities of fucoidan from Laminaria japonica. Chin Trad Herbal Drugs 34:824–826

    Google Scholar 

  35. Rocha de Souza MC, Marques CT, Guerra Dore CM et al (2007) Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J Appl Phycol 19:153–160

    Article  CAS  Google Scholar 

  36. Zhao X, Xue CH, Cai YP et al (2005) The study of antioxidant activities of fucoidan from Laminaria japonica. High Tech Lett 11:91–94

    Google Scholar 

  37. Li LH, Xue CH, Xue Yet al(2006) The effects of fucoidans from Laminaria japonica on AAPH mediated oxidation of human low-density lipoprotein. Acta Oceanol Sin 25:124–130

    Google Scholar 

  38. Wang J, Zhang Q, Zhang Z et al (2008) Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. Int J Biol Macromol 42:127–132

    Article  CAS  Google Scholar 

  39. Changotade SI, Korb G, Bassil J et al (2008) Potential effects of a low-molecular-weight fucoidan extracted from brown algae on bone biomaterial osteoconductive properties. J Biomed Mater Res A 87:666–675

    Article  CAS  Google Scholar 

  40. Park SJ, Lee KW, Lim DS et al (2012) The sulfated polysaccharide fucoidan stimulates osteogenic differentiation of human adipose-derived stem cells. Stem Cells Dev 21:2204–2211

    Article  CAS  Google Scholar 

  41. Jin G, Kim GH (2011) Rapid-prototyped PCL/fucoidan composite scaffolds for bone tissue regeneration: design, fabrication, and physical/biological properties. J Mater Chem 21:17710–17718

    Article  CAS  Google Scholar 

  42. Lee JS, Jin GH, Yeo MG et al (2012) Fabrication of electrospun biocomposites comprising polycaprolactone/fucoidan for tissue regeneration. Carbohydr Polym 90:181–188

    Article  CAS  Google Scholar 

  43. Fukuta K, Nakamura T (2008) Induction of hepatocyte growth factor by fucoidan and fucoidan-derived oligosaccharides. J Pharm Pharmacol 60:499–503

    Article  CAS  Google Scholar 

  44. Vale PR, Losordo DW, Symes JF et al (2001) Growth factors for therapeutic angiogenesis in Cardio-vascular diseases. Rev Esp Cariol 54:1210–1214

    Article  CAS  Google Scholar 

  45. Luyt CE, Meddahi-Pellé A, Ho-Tin-Noe B et al (2003) Low-molecular-weight fucoidan promotes therapeutic revascularization in a rat model of critical hindlimb ischemia. J Pharmacol Exp Ther 305:24–30

    Article  CAS  Google Scholar 

  46. Nakamura S, Nambu M, Ishizuka T et al (2008) Effect of controlled release of fibroblast growth factor-2 from chitosan/fucoidan micro complex-hydrogel on in vitro and in vivo vascularization. J Biomed Mater Res A 85:619–627

    Article  CAS  Google Scholar 

  47. Murakami K, Aoki H, Nakamura S et al (2010) Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 31:83–90

    Article  CAS  Google Scholar 

  48. Fedorov SN, Ermakova SP, Zvyagintseva TN et al (2013) Anticancer and cancer preventive properties of marine polysaccharides: some results and prospects. Mar Drugs 11:4876–4901

    Article  CAS  Google Scholar 

  49. Prajapati VD, Maheriya PM, Jani GK et al (2014) Carrageenan: a natural seaweed polysaccharide and its applications. Carbohydr Polym 105:97–112

    Article  CAS  Google Scholar 

  50. Mihaila SM, Gaharwar AK, Reis RL et al (2013) Photocrosslinkable kappa-carrageenan hydrogels for tissue engineering applications. Adv Healthc Mater 2:895–907

    Article  CAS  Google Scholar 

  51. Li L, Ni R, Shao Y et al (2014) Carrageenan and its applications in drug delivery. Carbohydr Polym 103:1–11

    Article  CAS  Google Scholar 

  52. Lokhande G, Carrow JK, Thakur T et al (2018) Nanoengineered injectable hydrogels for wound healing application. Acta Biomater 70:35–47

    Article  CAS  Google Scholar 

  53. Esmaeili C, Heng LY, Ling TL (2015) Nile Blue chromoionophore-doped kappa-carrageenan for a novel reflectometric urea biosensor. Sensor Actuat B-Chem 221:969–977

    Article  CAS  Google Scholar 

  54. Liang W, Mao X, Peng X et al (2014) Effects of sulfate group in red seaweed polysaccharides on anticoagulant activity and cytotoxicity. Carbohydr Polym 101:776–785

    Article  CAS  Google Scholar 

  55. Morelli A, Puppi D, Chiellini F (2017) Perspectives on Biomedical Applications of Ulvan. In: Venkatesan J, Anil S, Kim SE (eds) Seaweed Polysaccharides. Elsevier, Massachusetts, pp 305–330

    Chapter  Google Scholar 

  56. Sudha PN (ed) (2017) Industrial applications of marine biopolymers. CRC Press, New York

    Google Scholar 

  57. Dutta PK (ed) (2016) Chitin and Chitosan for Regenerative Medicine. Springer Publishing, India, Springer Series on Polymer and Composite Materials

    Google Scholar 

  58. Dongre RS (2017) Marine polysaccharides in medicine. In: Shalaby EA (ed) Biological activities and application of marine polysaccharides. IntechOpen, London, pp 181–206

    Google Scholar 

  59. d’Ayala GG, Malinconico M, Laurienzo P (2008) Marine derived polysaccharides for biomedical application: chemical modification approach. Molecules 13:2069–2106

    Article  CAS  Google Scholar 

  60. Bellich B, D’Agostino I, Semeraro S et al (2016) “The good, the bad and the ugly” of chitosans. Mar Drugs 14:E99. https://doi.org/10.3390/md14050099

    Article  CAS  Google Scholar 

  61. Aljawish A, Chevalot I, Jasniewski J et al (2015) Enzymatic synthesis of chitosan derivatives and their potential applications. J Mol Catal B Enzym 112:25–39

    Article  CAS  Google Scholar 

  62. Vunain E, Mishra AK, Mamba BB (2017) Fundamentals of chitosan for biomedical applications. In: Amber Jennings J, Bumgardner JD (eds) Chitosan Based Biomaterials, vol 1. Woodhead Publishing, Cambridge, pp 3–30

    Chapter  Google Scholar 

  63. Gierszewska M, Ostrowska-Czubenko J (2016) Chitosan-based membranes with different ionic crosslinking density for pharmaceutical and industrial applications. Carbohydr Polym 153:501–511

    Article  CAS  Google Scholar 

  64. Cao Z, Shen Z, Luo X et al (2017) Citrate-modified maghemite enhanced binding of chitosan coating on cellulose porous membranes for potential application as wound dressing. Carbohydr Polym 166:320–328

    Article  CAS  Google Scholar 

  65. Agarwal T, Narayan R, Maji S et al (2016) Gelatin/Carboxymethyl chitosan based scaffolds for dermal tissue engineering applications. Int J Biol Macromol 93B:1499–1506

    Article  CAS  Google Scholar 

  66. Dutta PK, Dutta J, Tripathi VS (2004) Chitin, chitosan: chemistry, properties and applications. J Sci Ind Res India 63:20–31

    CAS  Google Scholar 

  67. Ahsan SM, Thomas M, Reddy KK et al (2018) Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 110:97–109

    Article  CAS  Google Scholar 

  68. Bakshi PS, Selvakumar D, Kadirvelu K et al (2018) Comparative study on antimicrobial activity and biocompatibility of N-selective chitosan derivatives. React Funct Polym 124:149–155

    Article  CAS  Google Scholar 

  69. Ignatova M, Manolova N, Rashkov I (2007) Novel antibacterial fibers of quaternized chitosan and poly(vinyl pyrrolidine) prepared by electrospinning. Eur Polym J 43:1112–1122

    Article  CAS  Google Scholar 

  70. Tsao CT, Chang CH, Lin YY et al (2011) Evaluation of chitosan/γ-poly(glutamic acid) polyelectrolyte complex for wound dressing materials. Carbohydr Polym 84:812–819

    Article  CAS  Google Scholar 

  71. Dong Y, Liu HZ, Xu L et al (2010) A novel CHS/ALG bilayer composite membrane with sustained antimicrobial efficacy used as wound dressing. Chinese Chem Lett 21:1011–1014

    Article  CAS  Google Scholar 

  72. Gao Y, Cranston R (2008) Recent advances in antimicrobial treatment of textiles. Textile Res J 78:60–72

    Article  CAS  Google Scholar 

  73. Vongchan P, Sajomsanf W, Kasinrerk W et al (2003) Anticoagulant activities of chitosan polysulfate synthesized from marine crab shells by semi-heterogeneous conditions. Sci Asia 29:115–120

    Article  CAS  Google Scholar 

  74. Azuma K, Osaki T, Minami S et al (2015) Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J Funct Biomater 6:33–49

    Article  CAS  Google Scholar 

  75. Karimi AR, Tarighatjoo M, Nikravesh G (2017) 1,3,5-Triazine-2,4,6-tribenzaldehyde derivative as a new crosslinking agent for synthesis of pH-thermo dual responsive chitosan hydrogels and their nanocomposites: Swelling properties and drug release behavior. Int J Biol Macromol 105:1088–1095

    Article  CAS  Google Scholar 

  76. Thanyacharoen T, Chuysinuan P, Techasakul S et al (2018) Development of a gallic acid-loaded chitosan and polyvinyl alcohol hydrogel composite: Release characteristics and antioxidant activity. Int J Biol Macromol 107A:363–370

    Article  CAS  Google Scholar 

  77. Burkatovskaya M, Castano AP, Demidova-Rice TN et al (2008) Effect of chitosan acetate bandage on wound healing in infected and non infected wounds in mice. Wound Repair Regen 16:425–431

    Article  Google Scholar 

  78. Mori T, Okumura M, Matsuura M et al (1997) Effects of chitin and its derivatives on the proliferation and cytokine production of fibroblasts in vitro. Biomaterials 18:947–951

    Article  CAS  Google Scholar 

  79. Khan TA, Peh KK (2003) A preliminary investigation of chitosan film as dressing for punch biopsy wounds in rats. J Pharm Pharm Sci 6:20–26

    CAS  Google Scholar 

  80. Nie H, Wang CH (2007) Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. J Control Release 120:111–121

    Article  CAS  Google Scholar 

  81. Thein-Han WW, Misra RD (2009) Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater 5:1182–1197

    Article  CAS  Google Scholar 

  82. Li JJ, Dou Y, Yang J et al (2009) Surface characterization and biocompatibility of micro- and nano-hydroxyapatite/chitosan-gelatin network films. Mat Sci Eng C—Bio S 29:1207–1215

    Article  CAS  Google Scholar 

  83. Pinho ED, Martins A, Araújo JV et al (2009) Degradable particulate composite reinforced with nanofibres for biomedical applications. Acta Biomater 5:1104–1114

    Article  CAS  Google Scholar 

  84. Niu X, Feng Q, Wang M et al (2009) In vitro degradation and release behavior of porous poly(lactic acid) scaffolds containing chitosan microspheres as a carrier for BMP-2-derived synthetic peptide. Polym Degrad Stabil 94:176–182

    Article  CAS  Google Scholar 

  85. Sendemir-Urkmez A, Jamison RD (2007) The addition of biphasic calcium phosphate to porous chitosan scaffolds enhances bone tissue development in vitro. J Biomed Mater Res A 81:624–633

    Article  CAS  Google Scholar 

  86. Duarte ARC, Mano JF, Reis RL (2009) Preparation of chitosan scaffolds loaded with dexamethasone for tissue engineering applications using supercritical fluid technology. Eur Polym J 45:141–148

    Article  CAS  Google Scholar 

  87. Jiang T, Abdel-Fattah WI, Laurencin CT (2006) In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Biomaterials 27:4894–4903

    Article  CAS  Google Scholar 

  88. Sano H, Shibasaki K, Matsukubo T et al (2003) Effect of chitosan rinsing on reduction of dental plaque formation. Bull Tokyo Dent Coll 44:9–16

    Article  CAS  Google Scholar 

  89. Marsh PD (2005) Dental plaque: biological significance of a biofilm and community life-style. J Clin Periodontol 32(Suppl 6):7–15

    Article  CAS  Google Scholar 

  90. Mohire NC, Yadav AV (2010) Chitosan-based polyherbal toothpaste: as novel oral hygiene product. Indian J Dent Res 21:380–384

    Article  Google Scholar 

  91. Mathew SP, Pai VS, Usha G et al (2017) Comparative evaluation of smear layer removal by chitosan and ethylenediaminetetraacetic acid when used as irrigant and its effect on root dentine: An in vitro atomic force microscopic and energy-dispersive X-ray analysis. J Conserv Dent 20:245–250

    Article  Google Scholar 

  92. Ganss C, von Hinckeldey J, Tolle A et al (2012) Efficacy of the stannous ion and a biopolymer in toothpastes on enamel erosion/abrasion. J Dent 40:1036–1043

    Article  CAS  Google Scholar 

  93. Samprasit W, Kaomongkolgit R, Sukma M et al (2015) Mucoadhesive electrospun chitosan-based nanofibre mats for dental caries prevention. Carbohydr Polym 117:933–940

    Article  CAS  Google Scholar 

  94. Matsunaga T, Yanagiguchi K, Yamada S et al (2006) Chitosan monomer promotes tissue regeneration on dental pulp wounds. J Biomed Mater Res A 76:711–720

    Article  CAS  Google Scholar 

  95. Kim JS, Shin DH (2013) Inhibitory effect on Streptococcus mutans and mechanical properties of the chitosan containing composite resin. Restor Dent Endod 38:36–42

    Article  Google Scholar 

  96. EVEREST BIOTECH (2018) Biopolymer coated gingival retraction cord and the process thereof. Indian Patent pending

    Google Scholar 

  97. Li F, Liu X, Zhao S et al (2014) Porous chitosan bilayer membrane containing TGF-β1 loaded microspheres for pulp capping and reparative dentin formation in a dog model. Dent Mater 30:172–181

    Article  CAS  Google Scholar 

  98. Chen Z, Cao S, Wang H et al (2015) Biomimetic remineralization of demineralized dentine using scaffold of CMC/ACP nanocomplexes in an in vitro tooth model of deep caries. PLoS ONE 10:e0116553

    Article  Google Scholar 

  99. Shrestha A, Shi Z, Neoh KG et al (2010) Nanoparticulates for antibiofilm treatment and effect of aging on its antibacterial activity. J Endod 36:1030–1035

    Article  Google Scholar 

  100. Shrestha A, Hamblin MR, Kishen A (2012) Characterization of a conjugate between Rose Bengal and chitosan for targeted antibiofilm and tissue stabilization effects as a potential treatment of infected dentin. Antimicrob Agents Chemother 56:4876–4884

    Article  CAS  Google Scholar 

  101. Silva PV, Guedes DF, Nakadi FV et al (2013) Chitosan: a new solution for removal of smear layer after root canal instrumentation. Int Endod J 46:332–338

    Article  CAS  Google Scholar 

  102. Shrestha A, Hamblin MR, Kishen A (2014) Photoactivated rose bengal functionalized chitosan nanoparticles produce antibacterial/biofilm activity and stabilize dentin-collagen. Nanomedicine 10:491–501

    Article  CAS  Google Scholar 

  103. Shrestha A, Kishen A (2014) Antibacterial efficacy of photosensitizer functionalized biopolymeric nanoparticles in the presence of tissue inhibitors in root canal. J Endod 40:566–570

    Article  Google Scholar 

  104. Shrestha A, Cordova M, Kishen A (2015) Photoactivated polycationic bioactive chitosan nanoparticles inactivate bacterial endotoxins. J Endod 41:686–691

    Article  Google Scholar 

  105. Shin SY, Park HN, Kim KH et al (2005) Biological evaluation of chitosan nanofiber membrane for guided bone regeneration. J Periodontol 76:1778–1784

    Article  CAS  Google Scholar 

  106. Arpornmaeklong P, Suwatwirote N, Pripatnanont P et al (2007) Growth and differentiation of mouse osteoblasts on chitosan-collagen sponges. Int J Oral Maxillofac Surg 36:328–337

    Article  CAS  Google Scholar 

  107. Malmquist JP, Clemens SC, Oien HJ et al (2008) Hemostasis of oral surgery wounds with the HemCon Dental Dressing. J Oral Maxillofac Surg 66:1177–1183

    Article  Google Scholar 

  108. Azargoon H, Williams BJ, Solomon ES et al (2011) Assessment of hemostatic efficacy and osseous wound healing using HemCon dental dressing. J Endod 37:807–811

    Article  Google Scholar 

  109. Kale TP, Singh AK, Kotrashetti SM et al (2012) Effectiveness of Hemcon Dental Dressing versus Conventional Method of Haemostasis in 40 Patients on Oral Antiplatelet Drugs. Sultan Qaboos Univ Med J 12:330–335

    Article  Google Scholar 

  110. Li X, Wang X, Zhao T et al (2014) Guided bone regeneration using chitosan-collagen membranes in dog dehiscence-type defect model. J Oral Maxillofac Surg 72:304.e1–304.e14

    Article  Google Scholar 

  111. Lee YM, Park YJ, Lee SJ et al (2000) The bone regenerative effect of platelet-derived growth factor-BB delivered with a chitosan/tricalcium phosphate sponge carrier. J Periodontol 71:418–424

    Article  CAS  Google Scholar 

  112. Lee YM, Park YJ, Lee SJ et al (2000) Tissue engineered bone formation using chitosan/tricalcium phosphate sponges. J Periodontol 71:410–417

    Article  CAS  Google Scholar 

  113. Ozmeriç N, Ozcan G, Haytaç CM et al (2000) Chitosan film enriched with an antioxidant agent, taurine, in fenestration defects. J Biomed Mater Res 51:500–503

    Article  Google Scholar 

  114. Bae K, Jun EJ, Lee SM et al (2006) Effect of water-soluble reduced chitosan on Streptococcus mutans, plaque regrowth and biofilm vitality. Clin Oral Investig 10:102–107

    Article  CAS  Google Scholar 

  115. Akman AC, Seda Tiğli R, Gümüşderelioğlu M et al (2010) Bone morphogenetic protein-6-loaded chitosan scaffolds enhance the osteoblastic characteristics of MC3T3-E1 cells. Artif Organs 34:65–74

    Article  CAS  Google Scholar 

  116. Peng L, Cheng X, Zhuo R, Lan J, Wang Y, Shi B, Li S (2009) Novel gene-activated matrix with embedded chitosan/plasmid DNA nanoparticles encoding PDGF for periodontal tissue engineering. J Biomed Mater Res A 90:564–576

    Article  CAS  Google Scholar 

  117. Zhang Y, Wang Y, Shi B, Cheng X (2007) A platelet derived growth factor releasing chitosan/ coral composite scaffold for periodontal tissue engineering. Biomaterials 28:1515–1522

    Article  CAS  Google Scholar 

  118. Akman AC, Tiğli RS, Gümüşderelioğlu M et al (2010) bFGF-loaded HA-chitosan: a promising scaffold for periodontal tissue engineering. J Biomed Mater Res A 92:953–962

    Google Scholar 

  119. Liao F, Chen Y, Li Z et al (2010) A novel bioactive three-dimensional beta-tricalcium phosphate/chitosan scaffold for periodontal tissue engineering. J Mater Sci Mater Med 21:489–496

    Article  CAS  Google Scholar 

  120. Boynueğri D, Ozcan G, Senel S et al (2009) Clinical and radiographic evaluations of chitosan gel in periodontal intraosseous defects: a pilot study. J Biomed Mater Res B Appl Biomater 90:461–466

    Article  CAS  Google Scholar 

  121. Zhang Y, Cheng X, Wang J et al (2006) Novel chitosan/collagen scaffold containing transforming growth factor-beta1 DNA for periodontal tissue engineering. Biochem Biophys Res Commun 344:362–369

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashiaknt Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, S., Eshwar, S., Jain, V. (2019). Marine Polysaccharides: Biomedical and Tissue Engineering Applications. In: Choi, A., Ben-Nissan, B. (eds) Marine-Derived Biomaterials for Tissue Engineering Applications. Springer Series in Biomaterials Science and Engineering, vol 14. Springer, Singapore. https://doi.org/10.1007/978-981-13-8855-2_19

Download citation

Publish with us

Policies and ethics