Skip to main content

The Role of ALDH2 in Sepsis and the To-Be-Discovered Mechanisms

  • Chapter
  • First Online:
Aldehyde Dehydrogenases

Abstract

Sepsis, defined as life-threatening tissue damage and organ dysfunction caused by a dysregulated host response to infection, is a critical disease which imposes global health burden. Sepsis-induced organ dysfunction, including circulatory and cardiac dysfunction, hepatic dysfunction, renal dysfunction, etc., contributes to high mortality and long-term disability of sepsis patients. Altered inflammatory response, ROS and reactive aldehyde stress, mitochondrial dysfunction, and programmed cell death pathways (necrosis, apoptosis, and autophagy) have been demonstrated to play crucial roles in septic organ dysfunction. Unfortunately, except for infection control and supportive therapies, no specific therapy exists for sepsis. New specific therapeutic targets are highly warranted. Emerging studies suggested a role of potential therapeutic target of ALDH2, a tetrameric enzyme located in mitochondria to detoxify aldehydes, in septic organ dysfunction. In this article, we will review the presentations and pathophysiology of septic organ dysfunction, as well as summarize and discuss the recent insights regarding ALDH2 in sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC (2016) The third international consensus definitions for Sepsis and septic shock (Sepsis-3). JAMA 315(8):801–810. https://doi.org/10.1001/jama.2016.0287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Reinhart K, Daniels R, Kissoon N, Machado FR, Schachter RD, Finfer S (2017) Recognizing Sepsis as a Global Health priority – a WHO resolution. N Engl J Med 377(5):414–417. https://doi.org/10.1056/NEJMp1707170

    Article  PubMed  Google Scholar 

  3. Fleischmann C, Scherag A, Adhikari NK, Hartog CS, Tsaganos T, Schlattmann P, Angus DC, Reinhart K, International Forum of Acute Care T (2016) Assessment of global incidence and mortality of hospital-treated Sepsis. Current estimates and limitations. Am J Respir Crit Care Med 193(3):259–272. https://doi.org/10.1164/rccm.201504-0781OC

    Article  CAS  PubMed  Google Scholar 

  4. Hernandez G, Bruhn A, Castro R, Regueira T (2012) The holistic view on perfusion monitoring in septic shock. Curr Opin Crit Care 18(3):280–286. https://doi.org/10.1097/MCC.0b013e3283532c08

    Article  PubMed  Google Scholar 

  5. Simpson N, Lamontagne F, Shankar-Hari M (2017) Septic shock resuscitation in the first hour. Curr Opin Crit Care 23(6):561–566. https://doi.org/10.1097/MCC.0000000000000460

    Article  PubMed  Google Scholar 

  6. Terborg C, Schummer W, Albrecht M, Reinhart K, Weiller C, Rother J (2001) Dysfunction of vasomotor reactivity in severe sepsis and septic shock. Intensive Care Med 27(7):1231–1234

    Article  CAS  PubMed  Google Scholar 

  7. Horowitz JD, Liu S (2018) ADAM-15 and glycocalyx shedding: a new perspective on sepsis-related vasomotor dysfunction. Cardiovasc Res 114:1694. https://doi.org/10.1093/cvr/cvy199

    Article  CAS  PubMed  Google Scholar 

  8. Opal SM, van der Poll T (2015) Endothelial barrier dysfunction in septic shock. J Intern Med 277(3):277–293. https://doi.org/10.1111/joim.12331

    Article  CAS  PubMed  Google Scholar 

  9. Vassiliou AG, Mastora Z, Orfanos SE, Jahaj E, Maniatis NA, Koutsoukou A, Armaganidis A, Kotanidou A (2014) Elevated biomarkers of endothelial dysfunction/activation at ICU admission are associated with sepsis development. Cytokine 69(2):240–247. https://doi.org/10.1016/j.cyto.2014.06.010

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Ouyang Y, Liu B, Ma X, Ding R (2018) Platelet activation and antiplatelet therapy in sepsis: a narrative review. Thromb Res 166:28–36. https://doi.org/10.1016/j.thromres.2018.04.007

    Article  CAS  PubMed  Google Scholar 

  11. Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, Rubenfeld G, Kahn JM, Shankar-Hari M, Singer M, Deutschman CS, Escobar GJ, Angus DC (2016) Assessment of clinical criteria for Sepsis: for the third international consensus definitions for Sepsis and septic shock (Sepsis-3). JAMA 315(8):762–774. https://doi.org/10.1001/jama.2016.0288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Levy B, Collin S, Sennoun N, Ducrocq N, Kimmoun A, Asfar P, Perez P, Meziani F (2010) Vascular hyporesponsiveness to vasopressors in septic shock: from bench to bedside. Intensive Care Med 36(12):2019–2029. https://doi.org/10.1007/s00134-010-2045-8

    Article  CAS  PubMed  Google Scholar 

  13. Potter EK, Hodgson L, Creagh-Brown B, Forni LG (2018) Manipulating the microcirculation in Sepsis - the impact of vasoactive medications on microcirculatory blood flow. A systematic review. Shock:1. https://doi.org/10.1097/SHK.0000000000001239

  14. Macdonald SP, Brown SG (2015) Near-infrared spectroscopy in the assessment of suspected sepsis in the emergency department. Emerg Med J 32(5):404–408. https://doi.org/10.1136/emermed-2013-202956

    Article  PubMed  Google Scholar 

  15. Masip J, Mesquida J, Luengo C, Gili G, Goma G, Ferrer R, Teboul JL, Payen D, Artigas A (2013) Near-infrared spectroscopy StO2 monitoring to assess the therapeutic effect of drotrecogin alfa (activated) on microcirculation in patients with severe sepsis or septic shock. Ann Intensive Care 3(1):30. https://doi.org/10.1186/2110-5820-3-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vieillard-Baron A, Caille V, Charron C, Belliard G, Page B, Jardin F (2008) Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med 36(6):1701–1706. https://doi.org/10.1097/CCM.0b013e318174db05

    Article  PubMed  Google Scholar 

  17. Flynn A, Chokkalingam Mani B, Mather PJ (2010) Sepsis-induced cardiomyopathy: a review of pathophysiologic mechanisms. Heart Fail Rev 15(6):605–611. https://doi.org/10.1007/s10741-010-9176-4

    Article  PubMed  Google Scholar 

  18. Liu YC, Yu MM, Shou ST, Chai YF (2017) Sepsis-induced cardiomyopathy: mechanisms and treatments. Front Immunol 8:1021. https://doi.org/10.3389/fimmu.2017.01021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ehrman RR, Sullivan AN, Favot MJ, Sherwin RL, Reynolds CA, Abidov A, Levy PD (2018) Pathophysiology, echocardiographic evaluation, biomarker findings, and prognostic implications of septic cardiomyopathy: a review of the literature. Crit Care 22(1):112. https://doi.org/10.1186/s13054-018-2043-8

    Article  PubMed  PubMed Central  Google Scholar 

  20. Merx MW, Weber C (2007) Sepsis and the heart. Circulation 116(7):793–802. https://doi.org/10.1161/CIRCULATIONAHA.106.678359

    Article  CAS  PubMed  Google Scholar 

  21. Sato R, Nasu M (2015) A review of sepsis-induced cardiomyopathy. J Intensive Care 3:48. https://doi.org/10.1186/s40560-015-0112-5

    Article  PubMed  PubMed Central  Google Scholar 

  22. Alhamdi Y, Zi M, Abrams ST, Liu T, Su D, Welters I, Dutt T, Cartwright EJ, Wang G, Toh CH (2016) Circulating histone concentrations differentially affect the predominance of left or right ventricular dysfunction in critical illness. Crit Care Med 44(5):e278–e288. https://doi.org/10.1097/CCM.0000000000001413

    Article  PubMed  Google Scholar 

  23. Kalbitz M, Grailer JJ, Fattahi F, Jajou L, Herron TJ, Campbell KF, Zetoune FS, Bosmann M, Sarma JV, Huber-Lang M, Gebhard F, Loaiza R, Valdivia HH, Jalife J, Russell MW, Ward PA (2015) Role of extracellular histones in the cardiomyopathy of sepsis. FASEB J 29(5):2185–2193. https://doi.org/10.1096/fj.14-268730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ha T, Xia Y, Liu X, Lu C, Liu L, Kelley J, Kalbfleisch J, Kao RL, Williams DL, Li C (2011) Glucan phosphate attenuates myocardial HMGB1 translocation in severe sepsis through inhibiting NF-kappaB activation. Am J Physiol Heart Circ Physiol 301(3):H848–H855. https://doi.org/10.1152/ajpheart.01007.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hawiger J (2018) Heartfelt sepsis: microvascular injury due to genomic storm. Kardiol Pol 76(8):1203–1216. https://doi.org/10.5603/KP.a2018.0146

    Article  PubMed  Google Scholar 

  26. Piquereau J, Godin R, Deschenes S, Bessi VL, Mofarrahi M, Hussain SN, Burelle Y (2013) Protective role of PARK2/Parkin in sepsis-induced cardiac contractile and mitochondrial dysfunction. Autophagy 9(11):1837–1851. https://doi.org/10.4161/auto.26502

    Article  CAS  PubMed  Google Scholar 

  27. Tsolaki V, Makris D, Mantzarlis K, Zakynthinos E (2017) Sepsis-induced cardiomyopathy: oxidative implications in the initiation and resolution of the damage. Oxidative Med Cell Longev 2017:7393525. https://doi.org/10.1155/2017/7393525

    Article  CAS  Google Scholar 

  28. Durand A, Duburcq T, Dekeyser T, Neviere R, Howsam M, Favory R, Preau S (2017) Involvement of mitochondrial disorders in septic cardiomyopathy. Oxidative Med Cell Longev 2017:4076348. https://doi.org/10.1155/2017/4076348

    Article  CAS  Google Scholar 

  29. Wagner S, Schurmann S, Hein S, Schuttler J, Friedrich O (2015) Septic cardiomyopathy in rat LPS-induced endotoxemia: relative contribution of cellular diastolic Ca(2+) removal pathways, myofibrillar biomechanics properties and action of the cardiotonic drug levosimendan. Basic Res Cardiol 110(5):507. https://doi.org/10.1007/s00395-015-0507-4

    Article  CAS  PubMed  Google Scholar 

  30. Hobai IA, Edgecomb J, LaBarge K, Colucci WS (2015) Dysregulation of intracellular calcium transporters in animal models of sepsis-induced cardiomyopathy. Shock 43(1):3–15. https://doi.org/10.1097/SHK.0000000000000261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. de Montmollin E, Aboab J, Mansart A, Annane D (2009) Bench-to-bedside review: beta-adrenergic modulation in sepsis. Crit Care 13(5):230. https://doi.org/10.1186/cc8026

    Article  PubMed  PubMed Central  Google Scholar 

  32. Suzuki T, Suzuki Y, Okuda J, Kurazumi T, Suhara T, Ueda T, Nagata H, Morisaki H (2017) Sepsis-induced cardiac dysfunction and beta-adrenergic blockade therapy for sepsis. J Intensive Care 5:22. https://doi.org/10.1186/s40560-017-0215-2

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sanfilippo F, Santonocito C, Morelli A, Foex P (2015) Beta-blocker use in severe sepsis and septic shock: a systematic review. Curr Med Res Opin 31(10):1817–1825. https://doi.org/10.1185/03007995.2015.1062357

    Article  CAS  PubMed  Google Scholar 

  34. Agac D, Estrada LD, Maples R, Hooper LV, Farrar JD (2018) The beta2-adrenergic receptor controls inflammation by driving rapid IL-10 secretion. Brain Behav Immun 74:176. https://doi.org/10.1016/j.bbi.2018.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yan J, Li S, Li S (2014) The role of the liver in sepsis. Int Rev Immunol 33(6):498–510. https://doi.org/10.3109/08830185.2014.889129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Strnad P, Tacke F, Koch A, Trautwein C (2017) Liver - guardian, modifier and target of sepsis. Nat Rev Gastroenterol Hepatol 14(1):55–66. https://doi.org/10.1038/nrgastro.2016.168

    Article  CAS  PubMed  Google Scholar 

  37. Marques PE, Oliveira AG, Chang L, Paula-Neto HA, Menezes GB (2015) Understanding liver immunology using intravital microscopy. J Hepatol 63(3):733–742. https://doi.org/10.1016/j.jhep.2015.05.027

    Article  PubMed  Google Scholar 

  38. Crispe IN (2016) Hepatocytes as immunological agents. J Immunol 196(1):17–21. https://doi.org/10.4049/jimmunol.1501668

    Article  CAS  PubMed  Google Scholar 

  39. Yang R, Zou X, Tenhunen J, Tonnessen TI (2017) HMGB1 and extracellular histones significantly contribute to systemic inflammation and multiple organ failure in acute liver failure. Mediat Inflamm 2017:5928078. https://doi.org/10.1155/2017/5928078

    Article  CAS  Google Scholar 

  40. Lelubre C, Vincent JL (2018) Mechanisms and treatment of organ failure in sepsis. Nat Rev Nephrol 14(7):417–427. https://doi.org/10.1038/s41581-018-0005-7

    Article  PubMed  Google Scholar 

  41. Kosaka J, Lankadeva YR, May CN, Bellomo R (2016) Histopathology of septic acute kidney injury: a systematic review of experimental data. Crit Care Med 44(9):e897–e903. https://doi.org/10.1097/CCM.0000000000001735

    Article  PubMed  Google Scholar 

  42. Ma S, Evans RG, Iguchi N, Tare M, Parkington HC, Bellomo R, May CN, Lankadeva YR (2018) Sepsis-induced acute kidney injury: a disease of the microcirculation. Microcirculation:e12483. https://doi.org/10.1111/micc.12483

    Article  PubMed  Google Scholar 

  43. Gomez H, Ince C, De Backer D, Pickkers P, Payen D, Hotchkiss J, Kellum JA (2014) A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock 41(1):3–11. https://doi.org/10.1097/SHK.0000000000000052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Raymond SL, Holden DC, Mira JC, Stortz JA, Loftus TJ, Mohr AM, Moldawer LL, Moore FA, Larson SD, Efron PA (2017) Microbial recognition and danger signals in sepsis and trauma. Biochim Biophys Acta Mol basis Dis 1863(10 Pt B):2564–2573. https://doi.org/10.1016/j.bbadis.2017.01.013

    Article  CAS  PubMed  Google Scholar 

  45. Di Caro V, Walko TD 3rd, Bola RA, Hong JD, Pang D, Hsue V, Au AK, Halstead ES, Carcillo JA, Clark RS, Aneja RK (2016) Plasma mitochondrial DNA--a novel DAMP in pediatric Sepsis. Shock 45(5):506–511. https://doi.org/10.1097/SHK.0000000000000539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chan JK, Roth J, Oppenheim JJ, Tracey KJ, Vogl T, Feldmann M, Horwood N, Nanchahal J (2012) Alarmins: awaiting a clinical response. J Clin Invest 122(8):2711–2719. https://doi.org/10.1172/JCI62423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang L, Xie M, Yang M, Yu Y, Zhu S, Hou W, Kang R, Lotze MT, Billiar TR, Wang H, Cao L, Tang D (2014) PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis. Nat Commun 5:4436. https://doi.org/10.1038/ncomms5436

    Article  CAS  PubMed  Google Scholar 

  48. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol 11(5):373–384. https://doi.org/10.1038/ni.1863

    Article  CAS  PubMed  Google Scholar 

  49. Wiersinga WJ, Leopold SJ, Cranendonk DR, van der Poll T (2014) Host innate immune responses to sepsis. Virulence 5(1):36–44. https://doi.org/10.4161/viru.25436

    Article  PubMed  Google Scholar 

  50. Matsuda N, Hattori Y (2006) Systemic inflammatory response syndrome (SIRS): molecular pathophysiology and gene therapy. J Pharmacol Sci 101(3):189–198

    Article  CAS  PubMed  Google Scholar 

  51. Zelic M, Roderick JE, O’Donnell JA, Lehman J, Lim SE, Janardhan HP, Trivedi CM, Pasparakis M, Kelliher MA (2018) RIP kinase 1-dependent endothelial necroptosis underlies systemic inflammatory response syndrome. J Clin Invest 128(5):2064–2075. https://doi.org/10.1172/JCI96147

    Article  PubMed  PubMed Central  Google Scholar 

  52. Leentjens J, Kox M, van der Hoeven JG, Netea MG, Pickkers P (2013) Immunotherapy for the adjunctive treatment of sepsis: from immunosuppression to immunostimulation. Time for a paradigm change? Am J Respir Crit Care Med 187(12):1287–1293. https://doi.org/10.1164/rccm.201301-0036CP

    Article  CAS  PubMed  Google Scholar 

  53. Ho J, Yu J, Wong SH, Zhang L, Liu X, Wong WT, Leung CC, Choi G, Wang MH, Gin T, Chan MT, Wu WK (2016) Autophagy in sepsis: degradation into exhaustion? Autophagy 12(7):1073–1082. https://doi.org/10.1080/15548627.2016.1179410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bar-Or D, Carrick MM, Mains CW, Rael LT, Slone D, Brody EN (2015) Sepsis, oxidative stress, and hypoxia: are there clues to better treatment? Redox Rep 20(5):193–197. https://doi.org/10.1179/1351000215Y.0000000005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Prauchner CA (2017) Oxidative stress in sepsis: pathophysiological implications justifying antioxidant co-therapy. Burns 43(3):471–485. https://doi.org/10.1016/j.burns.2016.09.023

    Article  PubMed  Google Scholar 

  56. Sultana R, Perluigi M, Butterfield DA (2013) Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain. Free Radic Biol Med 62:157–169. https://doi.org/10.1016/j.freeradbiomed.2012.09.027

    Article  CAS  PubMed  Google Scholar 

  57. Gostner JM, Becker K, Fuchs D, Sucher R (2013) Redox regulation of the immune response. Redox Rep 18(3):88–94. https://doi.org/10.1179/1351000213Y.0000000044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wink DA, Hines HB, Cheng RY, Switzer CH, Flores-Santana W, Vitek MP, Ridnour LA, Colton CA (2011) Nitric oxide and redox mechanisms in the immune response. J Leukoc Biol 89(6):873–891. https://doi.org/10.1189/jlb.1010550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stoiber W, Obermayer A, Steinbacher P, Krautgartner WD (2015) The role of reactive oxygen species (ROS) in the formation of extracellular traps (ETs) in humans. Biomol Ther 5(2):702–723. https://doi.org/10.3390/biom5020702

    Article  CAS  Google Scholar 

  60. Forman HJ (2010) Reactive oxygen species and alpha,beta-unsaturated aldehydes as second messengers in signal transduction. Ann N Y Acad Sci 1203:35–44. https://doi.org/10.1111/j.1749-6632.2010.05551.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Antoniak DT, Duryee MJ, Mikuls TR, Thiele GM, Anderson DR (2015) Aldehyde-modified proteins as mediators of early inflammation in atherosclerotic disease. Free Radic Biol Med 89:409–418. https://doi.org/10.1016/j.freeradbiomed.2015.09.003

    Article  CAS  PubMed  Google Scholar 

  62. Timucin AC, Basaga H (2017) Pro-apoptotic effects of lipid oxidation products: HNE at the crossroads of NF-kappaB pathway and anti-apoptotic Bcl-2. Free Radic Biol Med 111:209–218. https://doi.org/10.1016/j.freeradbiomed.2016.11.010

    Article  CAS  PubMed  Google Scholar 

  63. Frohnert BI, Long EK, Hahn WS, Bernlohr DA (2014) Glutathionylated lipid aldehydes are products of adipocyte oxidative stress and activators of macrophage inflammation. Diabetes 63(1):89–100. https://doi.org/10.2337/db13-0777

    Article  CAS  PubMed  Google Scholar 

  64. Lee I, Huttemann M (2014) Energy crisis: the role of oxidative phosphorylation in acute inflammation and sepsis. Biochim Biophys Acta 1842(9):1579–1586. https://doi.org/10.1016/j.bbadis.2014.05.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Harrington JS, Choi AMK, Nakahira K (2017) Mitochondrial DNA in Sepsis. Curr Opin Crit Care 23(4):284–290. https://doi.org/10.1097/MCC.0000000000000427

    Article  PubMed  PubMed Central  Google Scholar 

  66. Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim HP, Fitzgerald KA, Ryter SW, Choi AM (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12(3):222–230. https://doi.org/10.1038/ni.1980

    Article  CAS  PubMed  Google Scholar 

  67. Kim MJ, Yoon JH, Ryu JH (2016) Mitophagy: a balance regulator of NLRP3 inflammasome activation. BMB Rep 49(10):529–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517(7534):311–320. https://doi.org/10.1038/nature14191

    Article  CAS  PubMed  Google Scholar 

  69. Huebener P, Pradere JP, Hernandez C, Gwak GY, Caviglia JM, Mu X, Loike JD, Jenkins RE, Antoine DJ, Schwabe RF (2015) The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. J Clin Invest 125(2):539–550. https://doi.org/10.1172/JCI76887

    Article  PubMed  Google Scholar 

  70. Proskuryakov SY, Konoplyannikov AG, Gabai VL (2003) Necrosis: a specific form of programmed cell death? Exp Cell Res 283(1):1–16

    Article  CAS  PubMed  Google Scholar 

  71. Rock KL, Kono H (2008) The inflammatory response to cell death. Annu Rev Pathol 3:99–126. https://doi.org/10.1146/annurev.pathmechdis.3.121806.151456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407(6805):770–776. https://doi.org/10.1038/35037710

    Article  CAS  PubMed  Google Scholar 

  73. Hsieh YC, Athar M, Chaudry IH (2009) When apoptosis meets autophagy: deciding cell fate after trauma and sepsis. Trends Mol Med 15(3):129–138. https://doi.org/10.1016/j.molmed.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dannappel M, Vlantis K, Kumari S, Polykratis A, Kim C, Wachsmuth L, Eftychi C, Lin J, Corona T, Hermance N, Zelic M, Kirsch P, Basic M, Bleich A, Kelliher M, Pasparakis M (2014) RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513(7516):90–94. https://doi.org/10.1038/nature13608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9(3):231–241. https://doi.org/10.1038/nrm2312

    Article  CAS  PubMed  Google Scholar 

  76. Luan YY, Yao YM, Xiao XZ, Sheng ZY (2015) Insights into the apoptotic death of immune cells in sepsis. J Interf Cytokine Res 35(1):17–22. https://doi.org/10.1089/jir.2014.0069

    Article  CAS  Google Scholar 

  77. Jorgensen I, Rayamajhi M, Miao EA (2017) Programmed cell death as a defence against infection. Nat Rev Immunol 17(3):151–164. https://doi.org/10.1038/nri.2016.147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Han CZ, Ravichandran KS (2011) Metabolic connections during apoptotic cell engulfment. Cell 147(7):1442–1445. https://doi.org/10.1016/j.cell.2011.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lin Z, Guo J, Xue P, Huang L, Deng L, Yang X, Xia Q (2014) Chaiqinchengqi decoction regulates necrosis-apoptosis via regulating the release of mitochondrial cytochrome c and caspase-3 in rats with acute necrotizing pancreatitis. J Tradit Chin Med 34(2):178–183

    Article  PubMed  Google Scholar 

  80. Kim KH, Lee MS (2014) Autophagy--a key player in cellular and body metabolism. Nat Rev Endocrinol 10(6):322–337. https://doi.org/10.1038/nrendo.2014.35

    Article  CAS  PubMed  Google Scholar 

  81. Barton LA, Ren J (2018) Pancreatic neoplasms and autophagy. Curr Drug Targets 19(9):1018–1023. https://doi.org/10.2174/1389450117666160622220915

    Article  CAS  PubMed  Google Scholar 

  82. Wang S, Ren J (2018) Role of autophagy and regulatory mechanisms in alcoholic cardiomyopathy. Biochim Biophys Acta 1864(6. Pt A):2003–2009. https://doi.org/10.1016/j.bbadis.2018.03.016

    Article  CAS  Google Scholar 

  83. Zhang Y, Sowers JR, Ren J (2018) Targeting autophagy in obesity: from pathophysiology to management. Nat Rev Endocrinol 14(6):356–376. https://doi.org/10.1038/s41574-018-0009-1

    Article  CAS  PubMed  Google Scholar 

  84. Zhang Y, Whaley-Connell AT, Sowers JR, Ren J (2018) Autophagy as an emerging target in cardiorenal metabolic disease: from pathophysiology to management. Pharmacol Ther 191:1. https://doi.org/10.1016/j.pharmthera.2018.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ren J, Sowers JR, Zhang Y (2018) Metabolic stress, autophagy, and cardiovascular aging: from pathophysiology to therapeutics. Trends Endocrinol Metab 29:699. https://doi.org/10.1016/j.tem.2018.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cadwell K (2016) Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis. Nat Rev Immunol 16(11):661–675. https://doi.org/10.1038/nri.2016.100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Verlhac P, Gregoire IP, Azocar O, Petkova DS, Baguet J, Viret C, Faure M (2015) Autophagy receptor NDP52 regulates pathogen-containing autophagosome maturation. Cell Host Microbe 17(4):515–525. https://doi.org/10.1016/j.chom.2015.02.008

    Article  CAS  PubMed  Google Scholar 

  88. Choy A, Roy CR (2013) Autophagy and bacterial infection: an evolving arms race. Trends Microbiol 21(9):451–456. https://doi.org/10.1016/j.tim.2013.06.009

    Article  CAS  PubMed  Google Scholar 

  89. Loi M, Gannage M, Munz C (2016) ATGs help MHC class II, but inhibit MHC class I antigen presentation. Autophagy 12(9):1681–1682. https://doi.org/10.1080/15548627.2016.1203488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Valecka J, Almeida CR, Su B, Pierre P, Gatti E (2018) Autophagy and MHC-restricted antigen presentation. Mol Immunol 99:163–170. https://doi.org/10.1016/j.molimm.2018.05.009

    Article  CAS  PubMed  Google Scholar 

  91. Zhang Y, Morgan MJ, Chen K, Choksi S, Liu ZG (2012) Induction of autophagy is essential for monocyte-macrophage differentiation. Blood 119(12):2895–2905. https://doi.org/10.1182/blood-2011-08-372383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jacquel A, Obba S, Solary E, Auberger P (2012) Proper macrophagic differentiation requires both autophagy and caspase activation. Autophagy 8(7):1141–1143. https://doi.org/10.4161/auto.20367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ren C, Zhang H, Wu TT, Yao YM (2017) Autophagy: a potential therapeutic target for reversing Sepsis-induced immunosuppression. Front Immunol 8:1832. https://doi.org/10.3389/fimmu.2017.01832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469(7329):221–225. https://doi.org/10.1038/nature09663

    Article  CAS  PubMed  Google Scholar 

  95. Ibanez-Cabellos JS, Aguado C, Perez-Cremades D, Garcia-Gimenez JL, Bueno-Beti C, Garcia-Lopez EM, Roma-Mateo C, Novella S, Hermenegildo C, Pallardo FV (2018) Extracellular histones activate autophagy and apoptosis via mTOR signaling in human endothelial cells. Biochim Biophys Acta 1864:3234. https://doi.org/10.1016/j.bbadis.2018.07.010

    Article  CAS  Google Scholar 

  96. Carchman EH, Rao J, Loughran PA, Rosengart MR, Zuckerbraun BS (2011) Heme oxygenase-1-mediated autophagy protects against hepatocyte cell death and hepatic injury from infection/sepsis in mice. Hepatology 53(6):2053–2062. https://doi.org/10.1002/hep.24324

    Article  CAS  PubMed  Google Scholar 

  97. Kuang M, Cen Y, Qin R, Shang S, Zhai Z, Liu C, Pan X, Zhou H (2018) Artesunate attenuates pro-inflammatory cytokine release from macrophages by inhibiting TLR4-mediated Autophagic activation via the TRAF6-Beclin1-PI3KC3 pathway. Cell Physiol Biochem 47(2):475–488. https://doi.org/10.1159/000489982

    Article  CAS  PubMed  Google Scholar 

  98. Oami T, Watanabe E, Hatano M, Sunahara S, Fujimura L, Sakamoto A, Ito C, Toshimori K, Oda S (2017) Suppression of T cell autophagy results in decreased viability and function of T cells through accelerated apoptosis in a murine Sepsis model. Crit Care Med 45(1):e77–e85. https://doi.org/10.1097/CCM.0000000000002016

    Article  CAS  PubMed  Google Scholar 

  99. Marchitti SA, Brocker C, Stagos D, Vasiliou V (2008) Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol 4(6):697–720. https://doi.org/10.1517/17425255.4.6.697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Crabb DW, Matsumoto M, Chang D, You M (2004) Overview of the role of alcohol dehydrogenase and aldehyde dehydrogenase and their variants in the genesis of alcohol-related pathology. Proc Nutr Soc 63(1):49–63

    Article  CAS  PubMed  Google Scholar 

  101. Zhang Y, Wang C, Zhou J, Sun A, Hueckstaedt LK, Ge J, Ren J (2017) Complex inhibition of autophagy by mitochondrial aldehyde dehydrogenase shortens lifespan and exacerbates cardiac aging. Biochim Biophys Acta 1863(8):1919–1932. https://doi.org/10.1016/j.bbadis.2017.03.016

    Article  CAS  Google Scholar 

  102. Chen CH, Budas GR, Churchill EN, Disatnik MH, Hurley TD, Mochly-Rosen D (2008) Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science 321(5895):1493–1495. https://doi.org/10.1126/science.1158554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pang J, Wang J, Zhang Y, Xu F, Chen Y (2017) Targeting acetaldehyde dehydrogenase 2 (ALDH2) in heart failure-recent insights and perspectives. Biochim Biophys Acta 1863(8):1933–1941. https://doi.org/10.1016/j.bbadis.2016.10.004

    Article  CAS  Google Scholar 

  104. Liu B, Wang J, Li M, Yuan Q, Xue M, Xu F, Chen Y (2017) Inhibition of ALDH2 by O-GlcNAcylation contributes to the hyperglycemic exacerbation of myocardial ischemia/reperfusion injury. Oncotarget 8(12):19413–19426. https://doi.org/10.18632/oncotarget.14297

    Article  PubMed  Google Scholar 

  105. Pan C, Xing JH, Zhang C, Zhang YM, Zhang LT, Wei SJ, Zhang MX, Wang XP, Yuan QH, Xue L, Wang JL, Cui ZQ, Zhang Y, Xu F, Chen YG (2016) Aldehyde dehydrogenase 2 inhibits inflammatory response and regulates atherosclerotic plaque. Oncotarget 7(24):35562–35576. https://doi.org/10.18632/oncotarget.9384

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ma H, Guo R, Yu L, Zhang Y, Ren J (2011) Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: role of autophagy paradox and toxic aldehyde. Eur Heart J 32(8):1025–1038. https://doi.org/10.1093/eurheartj/ehq253

    Article  CAS  PubMed  Google Scholar 

  107. Ma H, Li J, Gao F, Ren J (2009) Aldehyde dehydrogenase 2 ameliorates acute cardiac toxicity of ethanol: role of protein phosphatase and forkhead transcription factor. J Am Coll Cardiol 54(23):2187–2196. https://doi.org/10.1016/j.jacc.2009.04.100

    Article  CAS  PubMed  Google Scholar 

  108. Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ, Sim X, Tay WT, Chen CH, Zhang Y, Yamamoto K, Katsuya T, Yokota M, Kim YJ, Ong RT, Nabika T, Gu D, Chang LC, Kokubo Y, Huang W, Ohnaka K, Yamori Y, Nakashima E, Jaquish CE, Lee JY, Seielstad M, Isono M, Hixson JE, Chen YT, Miki T, Zhou X, Sugiyama T, Jeon JP, Liu JJ, Takayanagi R, Kim SS, Aung T, Sung YJ, Zhang X, Wong TY, Han BG, Kobayashi S, Ogihara T, Zhu D, Iwai N, Wu JY, Teo YY, Tai ES, Cho YS, He J (2011) Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat Genet 43(6):531–538. https://doi.org/10.1038/ng.834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang Y, Ren J (2011) ALDH2 in alcoholic heart diseases: molecular mechanism and clinical implications. Pharmacol Ther 132(1):86–95. https://doi.org/10.1016/j.pharmthera.2011.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hu JF, Wang HX, Li HH, Hu J, Yu Y, Gao Q (2017) Inhibition of ALDH2 expression aggravates renal injury in a rat sepsis syndrome model. Exp Ther Med 14(3):2249–2254. https://doi.org/10.3892/etm.2017.4785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Guo R, Xu X, Babcock SA, Zhang Y, Ren J (2015) Aldehyde dedydrogenase-2 plays a beneficial role in ameliorating chronic alcohol-induced hepatic steatosis and inflammation through regulation of autophagy. J Hepatol 62(3):647–656. https://doi.org/10.1016/j.jhep.2014.10.009

    Article  CAS  PubMed  Google Scholar 

  112. Wang HJ, Kang PF, Wu WJ, Tang Y, Pan QQ, Ye HW, Tang B, Li ZH, Gao Q (2013) Changes in cardiac mitochondrial aldehyde dehydrogenase 2 activity in relation to oxidative stress and inflammatory injury in diabetic rats. Mol Med Rep 8(2):686–690. https://doi.org/10.3892/mmr.2013.1524

    Article  PubMed  Google Scholar 

  113. Nakagawa I, Amano A, Mizushima N, Yamamoto A, Yamaguchi H, Kamimoto T, Nara A, Funao J, Nakata M, Tsuda K, Hamada S, Yoshimori T (2004) Autophagy defends cells against invading group A Streptococcus. Science 306(5698):1037–1040. https://doi.org/10.1126/science.1103966

    Article  CAS  PubMed  Google Scholar 

  114. Zhang B, Zhang Y, La Cour KH, Richmond KL, Wang XM, Ren J (2013) Mitochondrial aldehyde dehydrogenase obliterates endoplasmic reticulum stress-induced cardiac contractile dysfunction via correction of autophagy. Biochim Biophys Acta 1832(4):574–584. https://doi.org/10.1016/j.bbadis.2013.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ge W, Ren J (2012) mTOR-STAT3-notch signalling contributes to ALDH2-induced protection against cardiac contractile dysfunction and autophagy under alcoholism. J Cell Mol Med 16(3):616–626. https://doi.org/10.1111/j.1582-4934.2011.01347.x

    Article  CAS  PubMed  Google Scholar 

  116. Sun A, Cheng Y, Zhang Y, Zhang Q, Wang S, Tian S, Zou Y, Hu K, Ren J, Ge J (2014) Aldehyde dehydrogenase 2 ameliorates doxorubicin-induced myocardial dysfunction through detoxification of 4-HNE and suppression of autophagy. J Mol Cell Cardiol 71:92–104. https://doi.org/10.1016/j.yjmcc.2014.01.002

    Article  CAS  PubMed  Google Scholar 

  117. Ji W, Wei S, Hao P, Xing J, Yuan Q, Wang J, Xu F, Chen Y (2016) Aldehyde dehydrogenase 2 has Cardioprotective effects on myocardial Ischaemia/reperfusion injury via suppressing mitophagy. Front Pharmacol 7:101. https://doi.org/10.3389/fphar.2016.00101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Setoh K, Terao C, Muro S, Kawaguchi T, Tabara Y, Takahashi M, Nakayama T, Kosugi S, Sekine A, Yamada R, Mishima M, Matsuda F (2015) Three missense variants of metabolic syndrome-related genes are associated with alpha-1 antitrypsin levels. Nat Commun 6:7754. https://doi.org/10.1038/ncomms8754

    Article  CAS  PubMed  Google Scholar 

  119. Blaurock N, Schmerler D, Hunniger K, Kurzai O, Ludewig K, Baier M, Brunkhorst FM, Imhof D, Kiehntopf M (2016) C-terminal Alpha-1 antitrypsin peptide: a new Sepsis biomarker with immunomodulatory function. Mediat Inflamm 2016:6129437. https://doi.org/10.1155/2016/6129437

    Article  CAS  Google Scholar 

  120. Hurley K, Lacey N, O’Dwyer CA, Bergin DA, McElvaney OJ, O’Brien ME, OF ME, Reeves EP, McElvaney NG (2014) Alpha-1 antitrypsin augmentation therapy corrects accelerated neutrophil apoptosis in deficient individuals. J Immunol 193(8):3978–3991. https://doi.org/10.4049/jimmunol.1400132

    Article  CAS  PubMed  Google Scholar 

  121. Shapira MG, Khalfin B, Lewis EC, Parola AH, Nathan I (2014) Regulation of autophagy by alpha1-antitrypsin: “a foe of a foe is a friend”. Mol Med 20:417–426. https://doi.org/10.2119/molmed.2014.00054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Saferali A, Lee J, Sin DD, Rouhani FN, Brantly ML, Sandford AJ (2014) Longer telomere length in COPD patients with alpha1-antitrypsin deficiency independent of lung function. PLoS One 9(4):e95600. https://doi.org/10.1371/journal.pone.0095600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Frenzel E, Wrenger S, Brugger B, Salipalli S, Immenschuh S, Aggarwal N, Lichtinghagen R, Mahadeva R, Marcondes AM, Dinarello CA, Welte T, Janciauskiene S (2015) alpha1-antitrypsin combines with plasma fatty acids and induces angiopoietin-like protein 4 expression. J Immunol 195(8):3605–3616. https://doi.org/10.4049/jimmunol.1500740

    Article  CAS  PubMed  Google Scholar 

  124. Chen HW, Kuo HT, Hwang LC, Kuo MF, Yang RC (2007) Proteomic alteration of mitochondrial aldehyde dehydrogenase 2 in sepsis regulated by heat shock response. Shock 28(6):710–716. https://doi.org/10.1097/shk.0b013e318050c8c2

    Article  CAS  PubMed  Google Scholar 

  125. Hu Y, Yan JB, Zheng MZ, Song XH, Wang LL, Shen YL, Chen YY (2015) Mitochondrial aldehyde dehydrogenase activity protects against lipopolysaccharide-induced cardiac dysfunction in rats. Mol Med Rep 11(2):1509–1515. https://doi.org/10.3892/mmr.2014.2803

    Article  CAS  PubMed  Google Scholar 

  126. Pang J, Peng H, Wang S, Xu X, Xu F, Wang Q, Chen Y, Barton LA, Chen Y, Zhang Y, Ren J (2019) Mitochondrial ALDH2 protects against lipopolysaccharide-induced myocardial contractile dysfunction by suppression of ER stress and autophagy. Biochim Biophys Acta (BBA) - Mol Basis Dis 1865(6):1627–1641

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the National Natural Science Foundation of China (81570401, 81772036, 81571934, 81671952, 81873950, 81873953, 81701952), National Key R&D Program of China (2017YFC0908700, 2017YFC0908703), Taishan Scholar Program of Shandong Province (ts20130911), Taishan Young Scholar Program of Shandong Province (tsqn20161065), Key R&D Program of Shandong Province (2016GSF201235, 2016ZDJS07A14, 2018GSF118003), and the Fundamental Research Funds of Shandong University (2014QLKY04, 2018JC011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Ren or Yuguo Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pang, J. et al. (2019). The Role of ALDH2 in Sepsis and the To-Be-Discovered Mechanisms. In: Ren, J., Zhang, Y., Ge, J. (eds) Aldehyde Dehydrogenases. Advances in Experimental Medicine and Biology, vol 1193. Springer, Singapore. https://doi.org/10.1007/978-981-13-6260-6_10

Download citation

Publish with us

Policies and ethics