α1-Antitrypsin Deficiency

  • Nobuaki MiyaharaEmail author
  • Kuniaki Seyama
  • Erwin W. Gelfand


The patient was a 37-year-old Japanese male with α1-antitrypsin (AAT) deficiency. He had a 3-year history of progressive dyspnea on exertion. He smoked 10 cigarettes daily from ages 15 to 20 and then 40 cigarettes daily until the age of 34 years when he quit because of dyspnea. He worked as an automobile parts salesman and denied any history of exposure to noxious gases. Family history was not contributory concerning emphysema, asthma, or other respiratory disorders. Physical examination on admission disclosed no cyanosis, tachypnea, or tachycardia. No clubbing of the fingers was present. Breath sounds were diffusely diminished in both lungs. Laboratory data such as blood cell count and results of routine biochemical screening tests were within the normal range except for mild erythrocytosis with an elevated hemoglobin value (17.8 g/dl) and red blood cell count (637 × 104/μl). Liver function tests results were normal. Serum protein electrophoresis failed to detect a peak corresponding to α1-globulin; subsequent determination of serum levels of AAT disclosed severely decreased concentrations (20 mg/dl; normal range, 170–274; measured by nephelometry, SRL, Tokyo, Japan). Arterial blood gas levels sampled with the patient breathing room air showed moderate hypoxemia (PaO2, 60 Torr; PaCO2, 37.5 Torr). A chest roentgenogram disclosed hyperinflated lungs and bilaterally flattened hemidiaphragms (Fig. 16.1). Computed tomography of the chest demonstrated panlobular emphysema with lower lobe preponderance (Fig. 16.2). Pulmonary function tests indicated severe obstructive ventilatory impairment with forced expiratory volume in 1 sec (FEV1) (1.13 L, 30.3% of the predicted value) and FEV1/forced vital capacity (33.6%). Residual volume was increased (3.27 L; 228% of the predicted value), and the diffusing capacity of carbon monoxide was impaired (6.45 ml/min/mm Hg; 26.5% of the predicted value). The patient was diagnosed with severe pulmonary emphysema resulting from AAT deficiency, and home oxygen therapy was initiated to ameliorate hypoxemia.


Emphysema COPD Elastase Liver disease Augmentation therapy 


  1. American Thoracic Society, European Respiratory Society. American Thoracic Society/European Respiratory Society statement: standards for the diagnosis and management of individuals with alpha-1 antitrypsin deficiency (2003) Am J Respir Crit Care Med 168:818–900Google Scholar
  2. Carey EJ, Iyer VN, Nelson DR et al (2013) Outcomes for recipients of liver transplantation for alpha-1-antitrypsin deficiency–related cirrhosis. Liver Transpl 19(12):1370–1376CrossRefGoogle Scholar
  3. Carrell RW, Lomas DA (2002) Alpha1-antitrypsin deficiency--a model for conformational diseases. N Engl J Med 346(1):45–53CrossRefGoogle Scholar
  4. Costa X, Jardi R, Rodriguez F et al (2000) Simple method for alpha1-antitrypsin deficiency screening by use of dried blood spot specimens. Eur Respir J 15:1111–1116CrossRefGoogle Scholar
  5. Dahl M, Tybjaerg-Hansen A, Lange P et al (2002) Change in lung function and morbidity from chronic obstructive pulmonary disease in alpha1-antitrypsin MZ heterozygotes: a longitudinal study of the general population. Ann Intern Med 136:270–279CrossRefGoogle Scholar
  6. Dirksen A, Piitulainen E, Parr DG et al (2009) Exploring the role of CT densitometry: a randomised study of augmentation therapy in alpha1-antitrypsin deficiency. Eur Respir J 33:1345–1353CrossRefGoogle Scholar
  7. Gildea TR, Shermock KM, Singer ME et al (2003) Cost-effectiveness analysis of augmentation therapy for severe alpha1-antitrypsin deficiency. Am J Respir Crit Care Med 167:1387–1392CrossRefGoogle Scholar
  8. Laurell CB, Eriksson S (1963) The electrophoretic alpha-1-globulin pattern of serum alpha-1-antitrypsin deficiency. Scan J Clin Lab Invest 15:132CrossRefGoogle Scholar
  9. Lomas DA, Mahadeva R (2002) Alpha-1-antitrypsin polymerization and the serpinopathies: pathobiology and prospects for therapy. J Clin Invest 110:1585–1590CrossRefGoogle Scholar
  10. Mahadeva R, Atkinson C, Li Z et al (2005) Polymers of Z alpha1-antitrypsin co-localize with neutrophils in emphysematous alveoli and are chemotactic in vivo. Am J Pathol 166:377–386CrossRefGoogle Scholar
  11. McElvaney NG (2015) Diagnosing α1-antitrypsin deficiency: how to improve the current algorithm. Eur Respir Rev 24:52–57CrossRefGoogle Scholar
  12. Miyahara N, Seyama K, Sato T et al (2001) Compound heterozygosity for ala-1-antitrypsin (S(iiyama) and QO(clayton)) in an Oriental patient. Intern Med 40:336–340CrossRefGoogle Scholar
  13. Molloy K, Hersh CP, Morris VB et al (2014) Clarification of the risk of chronic obstructive pulmonary disease in alpha1-antitrypsin deficiency PiMZ heterozygotes. Am J Respir Crit Care Med 189:419–427CrossRefGoogle Scholar
  14. Pferdmenges DC, Baumann U, Müller-Heine A et al (2013) Prognostic marker for liver disease due to alpha1-antitrypsin deficiency. Klin Padiatr 225(5):257–262CrossRefGoogle Scholar
  15. Sandhaus RA, Turino G, Brantly ML et al (2016) The diagnosis and management of alpha-1 antitrypsin deficiency in the adult. COPD: J COPD Found 3:668–682CrossRefGoogle Scholar
  16. Seersholm N, Kok-Jensen A (1998) Intermediate alpha 1-antitrypsin deficiency PiSZ: a risk factor for pulmonary emphysema? Respir Med 92(2):241–245CrossRefGoogle Scholar
  17. Stoller JK, Aboussouan LS (2012) A review of alpha1-antitrypsin deficiency. Am J Respir Crit Care Med 185:246–259CrossRefGoogle Scholar
  18. Seyama K, Nukiwa T, Takabe K et al (1991) (serine 53 (TCC) to phenylalanine 53 (TTC)). A new alpha 1-antitrypsin-deficient variant with mutation on a predicted conserved residue of the serpin backbone. J Biol Chem 266:12627–12632PubMedGoogle Scholar
  19. Tanash HA, Nilsson PM, Nilsson JA et al (2008) Clinical course and prognosis of never-smokers with severe alpha-1-antitrypsin deficiency (PiZZ). Thorax 63:1091–1095CrossRefGoogle Scholar
  20. Wozniak J, Wandtke T, Kopinski P et al (2015) Challenges and prospects for alpha-1 antitrypsin deficiency gene therapy. Hum Gene Ther 26(11):709–718CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Nobuaki Miyahara
    • 1
    • 2
    Email author
  • Kuniaki Seyama
    • 3
  • Erwin W. Gelfand
    • 4
  1. 1.Department of Allergy and Respiratory MedicineOkayama University HospitalOkayamaJapan
  2. 2.Department of Medical TechnologyOkayama University Graduate School of Health SciencesOkayamaJapan
  3. 3.Division of Respiratory MedicineJuntendo University Faculty of Medicine and Graduate School of MedicineTokyoJapan
  4. 4.Division of Cell Biology, Department of PediatricsNational Jewish HealthDenverUSA

Personalised recommendations