Skip to main content

Drug Discovery: An In Silico Approach

  • Chapter
  • First Online:
Bioinformatics: Sequences, Structures, Phylogeny

Abstract

The field of drug research, guided by chemistry, pharmacology, and clinical sciences, has been a major contributor in progressing and development of medicine during the past century. The arrival of molecular biology and genomic sciences has had a profound effect in this field. The process of drug discovery and development are both very laborious and time-consuming. Consequently, application of computational resources to chemical and biological space for streamlining the process is under extensive research. In order to escalate the processes of hit identification, lead selection and optimization, analysis of ADMET (absorption, distribution, metabolism, excretion and toxicity) profile for lead compound, computer-aided, or in silico drug discovery is employed. Bioinformatics tools along with genomic sciences have provided insight into the genetic basis of multifactorial diseases, thereby revealing more suitable targets for designing future medicines and increasing therapeutic options. This chapter explains the computer-aided drug discovery protocols classified on the basis of availability of information for the target in question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akamatsu M (2002) Current state and perspectives of 3D-QSAR. Curr Top Med Chem 2:1381–1394

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • Becker OM et al (2006) An integrated in silico 3D model-driven discovery of a novel, potent, and selective amidosulfonamide 5-HT1A agonist (PRX-00023) for the treatment of anxiety and depression. J Med Chem 49:3116–3135

    Article  CAS  Google Scholar 

  • Blake JF, Laird ER (2003) Chapter 30: recent advances in virtual ligand screening. Annu Rep Med Chem 38:305–314

    CAS  Google Scholar 

  • Bower MJ, Cohen FE, Dunbrack RL (1997) Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: a new homology modeling tool. J Mol Biol 267:1268–1282

    Article  CAS  Google Scholar 

  • Bradbury SP (1995) Quantitative structure-activity relationships and ecological risk assessment: an overview of predictive aquatic toxicology research. Toxicol Lett 79:229–237

    Article  CAS  Google Scholar 

  • Buchan DW, Ward S, Lobley AE, Nugent T, Bryson K, Jones DT (2010) Protein annotation and modelling servers at University College London. Nucleic Acids Res 38:W563–W568

    Article  CAS  Google Scholar 

  • Budzik B et al (2010) Novel N-substituted benzimidazolones as potent, selective, CNS-penetrant, and orally active M1 mAChR agonists. ACS Med Chem Lett 1:244–248

    Article  CAS  Google Scholar 

  • Changeux J-P, Edelstein S (2011) Conformational selection or induced fit? 50 years of debate resolved. F1000 biology reports 3

    Google Scholar 

  • Chen H, Zhou J, Xie G (1998) PARM: a genetic evolved algorithm to predict bioactivity. J Chem Inf Comput Sci 38:243–250

    Article  CAS  Google Scholar 

  • Cheng F et al (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 52:3099–3105

    Article  CAS  Google Scholar 

  • Chivian D, Baker D (2006) Homology modeling using parametric alignment ensemble generation with consensus and energy-based model selection. Nucleic Acids Res 34:e112–e112

    Article  Google Scholar 

  • Consonni V, Ballabio D, Todeschini R (2009) Comments on the definition of the Q 2 parameter for QSAR validation. J Chem Inf Model 49:1669–1678

    Article  CAS  Google Scholar 

  • Cozzetto D, Kryshtafovych A, Fidelis K, Moult J, Rost B, Tramontano A (2009) Evaluation of template-based models in CASP8 with standard measures. Proteins: Struct Funct Bioinf 77:18–28

    Article  CAS  Google Scholar 

  • Cramer RD, Bunce JD, Patterson DE, Frank IE (1988a) Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quant Struct Act Relat 7:18–25

    Article  Google Scholar 

  • Cramer RD, Patterson DE, Bunce JD (1988b) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  Google Scholar 

  • de Melo EB (2010) Multivariate SAR/QSAR of 3-aryl-4-hydroxyquinolin-2 (1H)-one derivatives as type I fatty acid synthase (FAS) inhibitors. Eur J Med Chem 45:5817–5826

    Article  Google Scholar 

  • Desmet J, De Maeyer M, Hazes B, Lasters I (1992) The dead-end elimination theorem and its use in protein side-chain positioning. Nature 356:539–542

    Article  CAS  Google Scholar 

  • Dhanjal JK, Goyal S, Sharma S, Hamid R, Grover A (2014a) Mechanistic insights into mode of action of potent natural antagonists of BACE-1 for checking Alzheimer’s plaque pathology. Biochem Biophys Res Commun 443:1054–1059

    Article  CAS  Google Scholar 

  • Dhanjal JK, Grover S, Paruthi P, Sharma S, Grover A (2014b) Mechanistic insights into mode of action of a potent natural antagonist of orexin Receptor-1 by means of high throughput screening and molecular dynamics simulations. Comb Chem High Throughput Screen 17:124–131

    Article  CAS  Google Scholar 

  • Dias R, de Azevedo J, Walter F (2008) Molecular docking algorithms. Curr Drug Targets 9:1040–1047

    Article  CAS  Google Scholar 

  • Doman TN et al (2002) Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. J Med Chem 45:2213–2221

    Article  CAS  Google Scholar 

  • Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964

    Article  CAS  Google Scholar 

  • Du Q-S, Huang R-B, Chou K-C (2008) Recent advances in QSAR and their applications in predicting the activities of chemical molecules, peptides and proteins for drug design. Curr Protein Pept Sci 9:248–259

    Article  CAS  Google Scholar 

  • Dunbrack RL, Karplus M (1993) Backbone-dependent rotamer library for proteins application to side-chain prediction. J Mol Biol 230:543–574

    Article  CAS  Google Scholar 

  • Dunbrack RL, Karplus M (1994) Conformational analysis of the backbone-dependent rotamer preferences of protein sidechains. Nat Struct Mol Biol 1:334–340

    Article  CAS  Google Scholar 

  • Ehrlich P (1909) Ãœber den jetzigen Stand der Chemotherapie. Ber Dtsch Chem Ges 42:17–47

    Article  CAS  Google Scholar 

  • Esposito EX, Hopfinger AJ, Madura JD (2004) Methods for applying the quantitative structure-activity relationship paradigm. Methods Mol Biol 275:131–213

    Article  CAS  Google Scholar 

  • Friesner RA et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749. https://doi.org/10.1021/jm0306430

    Article  CAS  PubMed  Google Scholar 

  • Gillet VJ, Willett P, Bradshaw J, Green DV (1999) Selecting combinatorial libraries to optimize diversity and physical properties. J Chem Inf Comput Sci 39:169–177

    Article  CAS  Google Scholar 

  • Goyal S et al (2014) Mechanistic insights into mode of actions of novel oligopeptidase B inhibitors for combating leishmaniasis. J Mol Model 20:1–9

    Article  CAS  Google Scholar 

  • Goyal S, Jamal S, Shanker A, Grover A (2015) Structural investigations of T854A mutation in EGFR and identification of novel inhibitors using structure activity relationships. BMC Genomics 16:S8

    Article  Google Scholar 

  • Grover S, Dhanjal JK, Goyal S, Grover A, Sundar D (2014) Computational identification of novel natural inhibitors of glucagon receptor for checking type II diabetes mellitus. BMC Bioinformatics 15:S13

    Article  Google Scholar 

  • Halgren TA et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759

    Article  CAS  Google Scholar 

  • Halperin I, Ma B, Wolfson H, Nussinov R (2002) Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins: Struct Funct Bioinf 47:409–443

    Article  CAS  Google Scholar 

  • Henrich S, Salo-Ahen OM, Huang B, Rippmann FF, Cruciani G, Wade RC (2010) Computational approaches to identifying and characterizing protein binding sites for ligand design. J Mol Recognit 23:209–219

    CAS  PubMed  Google Scholar 

  • Hillisch A, Pineda LF, Hilgenfeld R (2004) Utility of homology models in the drug discovery process. Drug Discov Today 9:659–669

    Article  CAS  Google Scholar 

  • Hughes J, Rees S, Kalindjian S, Philpott K (2011) Principles of early drug discovery. Br J Pharmacol 162:1239–1249

    Article  CAS  Google Scholar 

  • Ioakimidis L, Thoukydidis L, Mirza A, Naeem S, Reynisson J (2008) Benchmarking the reliability of QikProp. Correlation between experimental and predicted values. QSAR Comb Sci 27:445–456

    Article  CAS  Google Scholar 

  • Irwin JJ, Shoichet BK (2005) ZINC – a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182. https://doi.org/10.1021/ci049714+

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itskowitz P, Tropsha A (2005) K nearest neighbors QSAR modeling as a variational problem: theory and applications. J Chem Inf Model 45:777–785

    Article  CAS  Google Scholar 

  • Jorgensen WL (2004) The many roles of computation in drug discovery. Science 303:1813–1818

    Article  CAS  Google Scholar 

  • Kalyaanamoorthy S, Chen Y-PP (2011) Structure-based drug design to augment hit discovery. Drug Discov Today 16:831–839

    Article  CAS  Google Scholar 

  • Kapetanovic I (2008) Computer-aided drug discovery and development (CADDD): in silico-chemico-biological approach. Chem Biol Interact 171:165–176

    Article  CAS  Google Scholar 

  • Karelson M (2000) Molecular descriptors in QSAR/QSPR. Wiley-Interscience, New York

    Google Scholar 

  • Karolidis DA, Agatonovic-Kustrin S, Morton DW (2010) Artificial neural network (ANN) based modelling for D1 like and D2 like dopamine receptor affinity and selectivity. Med Chem 6:259–270

    Article  CAS  Google Scholar 

  • Kelley LA, Sternberg MJ (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  CAS  Google Scholar 

  • Kennedy T (1997) Managing the drug discovery/development interface. Drug Discov Today 2:436–444

    Article  Google Scholar 

  • Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146

    Article  CAS  Google Scholar 

  • Kotz J (2013) In silico drug design. SciBX: Science-Business eXchange 6

    Article  Google Scholar 

  • Krivov GG, Shapovalov MV, Dunbrack RL (2009) Improved prediction of protein side-chain conformations with SCWRL4. Proteins Struct Funct Bioinf 77:778–795

    Article  CAS  Google Scholar 

  • Kubinyi H (2006) Success stories of computer-aided design. In: Ekins S, Wang B (eds) Computer applications in pharmaceutical research and development. Wiley-Interscience, pp 377–424

    Google Scholar 

  • Kurogi Y, Guner OF (2001) Pharmacophore modeling and three-dimensional database searching for drug design using catalyst. Curr Med Chem 8:1035–1055

    Article  CAS  Google Scholar 

  • Lahana R (1999) How many leads from HTS? Drug Discov Today 4:447–448

    Article  CAS  Google Scholar 

  • Laurie R, Alasdair T, Jackson RM (2006) Methods for the prediction of protein-ligand binding sites for structure-based drug design and virtual ligand screening. Curr Protein Pept Sci 7:395–406

    Article  CAS  Google Scholar 

  • Ligprep V. 2.3 (2009) Schrodinger. LLC, New York

    Google Scholar 

  • Lite V (1998) Version 5.0. Accelrys Inc., 9685

    Google Scholar 

  • Lu I-L et al (2006) Structure-based drug design of a novel family of PPARγ partial agonists: virtual screening, X-ray crystallography, and in vitro/in vivo biological activities. J Med Chem 49:2703–2712

    Article  CAS  Google Scholar 

  • Martinez-Mayorga K, Medina-Franco JL (2009) Chemoinformatics—applications in food chemistry. Adv Food Nutr Res 58:33–56

    Article  CAS  Google Scholar 

  • Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Å ali A (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325

    Article  Google Scholar 

  • McNaught AD, Wilkinson A (1997) Compendium of chemical terminology, IUPAC Recommendations, The Gold Book, 2nd edn. Blackwell Science, Oxford

    Google Scholar 

  • Misura K, Baker D (2005) Progress and challenges in high-resolution refinement of protein structure models. Proteins: Struct Funct Bioinf 59:15–29

    Article  CAS  Google Scholar 

  • Misura KM, Chivian D, Rohl CA, Kim DE, Baker D (2006) Physically realistic homology models built with ROSETTA can be more accurate than their templates. Proc Natl Acad Sci 103:5361–5366

    Article  CAS  Google Scholar 

  • Owen D (2002) Channelling drug discovery. Drug Discov World 3:48–61

    Google Scholar 

  • Put R, Perrin C, Questier F, Coomans D, Massart D, Vander Heyden Y (2003) Classification and regression tree analysis for molecular descriptor selection and retention prediction in chromatographic quantitative structure–retention relationship studies. J Chromatogr A 988:261–276

    Article  CAS  Google Scholar 

  • Put R, Xu Q, Massart D, Vander Heyden Y (2004) Multivariate adaptive regression splines (MARS) in chromatographic quantitative structure–retention relationship studies. J Chromatogr A 1055:11–19

    Article  CAS  Google Scholar 

  • Raval A, Piana S, Eastwood MP, Dror RO, Shaw DE (2012) Refinement of protein structure homology models via long, all-atom molecular dynamics simulations. Proteins: Struct Funct Bioinf 80:2071–2079

    CAS  Google Scholar 

  • Rogers D, Hopfinger AJ (1994) Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. J Chem Inf Comput Sci 34:854–866

    Article  CAS  Google Scholar 

  • Rohl CA, Strauss CE, Misura KM, Baker D (2004) Protein structure prediction using Rosetta. Methods Enzymol 383:66–93

    Article  CAS  Google Scholar 

  • Rose PW et al (2011) The RCSB protein data Bank: redesigned web site and web services. Nucleic Acids Res 39:D392–D401

    Article  CAS  Google Scholar 

  • Ruiz FM, Gil-Redondo R, Morreale A, Ortiz AR, Fábrega C, Bravo J (2008) Structure-based discovery of novel non-nucleosidic DNA alkyltransferase inhibitors: virtual screening and in vitro and in vivo activities. J Chem Inf Model 48:844–854

    Article  CAS  Google Scholar 

  • Schrödinger L (2008a) Glide, version 5.0. Schrödinger. LLC, New York

    Google Scholar 

  • Schrödinger L (2008b) SCHRODINGER SUITE 2009. Maestro Version 8

    Google Scholar 

  • Schrödinger M (2009) Version 9.2. LLC, New York

    Google Scholar 

  • Silverman B, Platt DE (1996) Comparative molecular moment analysis (CoMMA): 3D-QSAR without molecular superposition. J Med Chem 39:2129–2140

    Article  CAS  Google Scholar 

  • Söding J, Remmert M (2011) Protein sequence comparison and fold recognition: progress and good-practice benchmarking. Curr Opin Struct Biol 21:404–411

    Article  Google Scholar 

  • Spessard GO (1998) ACD Labs/LogP dB 3.5 and ChemSketch 3.5. J Chem Inf Comput Sci 38:1250–1253

    Article  CAS  Google Scholar 

  • Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP (2003) Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci 43:1947–1958

    Article  CAS  Google Scholar 

  • Taylor RD, Jewsbury PJ, Essex JW (2002) A review of protein-small molecule docking methods. J Comput Aided Mol Des 16:151–166

    Article  CAS  Google Scholar 

  • Terstappen GC, Reggiani A (2001) In silico research in drug discovery. Trends Pharmacol Sci 22:23–26

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Tropsha A (2003) Recent trends in quantitative structure activity relationships. In: Abraham D (ed) Burger’s medicinal chemistry and drug discovery, vol 1. Wiley, New York, pp 49–75

    Google Scholar 

  • Tyagi C, Grover S, Dhanjal JK, Goyal S, Goyal M, Grover A (2013) Mechanistic insights into mode of action of novel natural cathepsin L inhibitors. BMC Genomics 14:S10

    Article  Google Scholar 

  • Tyagi C et al (2015) Targeting the intersubunit cavity of Plasmodium falciparum glutathione reductase by a novel natural inhibitor: computational and experimental evidence. Int J Biochem Cell Biol 61:72–80

    Article  CAS  Google Scholar 

  • van de Waterbeemd H (2002) High-throughput and in silico techniques in drug metabolism and pharmacokinetics. Curr Opin Drug Discov Devel 5:33–43

    PubMed  Google Scholar 

  • Van De Waterbeemd H, Gifford E (2003) ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov 2:192–204

    PubMed  Google Scholar 

  • van Drie JH (2003) Pharmacophore discovery-lessons learned. Curr Pharm Des 9:1649–1664

    Article  Google Scholar 

  • Van Drie JH (2007) Computer-aided drug design: the next 20 years. J Comput Aided Mol Des 21:591–601

    Article  CAS  Google Scholar 

  • Verma J, Khedkar VM, Coutinho EC (2010) 3D-QSAR in drug design-a review. Curr Top Med Chem 10:95–115

    Article  CAS  Google Scholar 

  • Vlife M (2008) Software package, version 3.0, supplied by Vlifescience Technologies Pvt. Ltd., Pune

    Google Scholar 

  • Warner SL et al (2006) Identification of a lead small-molecule inhibitor of the aurora kinases using a structure-assisted, fragment-based approach. Mol Cancer Ther 5:1764–1773

    Article  CAS  Google Scholar 

  • Wikel JH, Dow ER (1993) The use of neural networks for variable selection in QSAR. Bioorg Med Chem Lett 3:645–651

    Article  CAS  Google Scholar 

  • Wolber G, Seidel T, Bendix F, Langer T (2008) Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discov Today 13:23–29

    Article  CAS  Google Scholar 

  • Xiang Z (2006) Advances in homology protein structure modeling. Curr Protein Pept Sci 7:217

    Article  CAS  Google Scholar 

  • Xue L, Godden JW, Bajorath J (2000) Evaluation of descriptors and mini-fingerprints for the identification of molecules with similar activity. J Chem Inf Comput Sci 40:1227–1234

    Article  CAS  Google Scholar 

  • Yang S-Y (2010) Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today 15:444–450

    Article  CAS  Google Scholar 

  • Zhao L et al (2006) FK506-binding protein ligands: structure-based design, synthesis, and neurotrophic/neuroprotective properties of substituted 5, 5-dimethyl-2-(4-thiazolidine) carboxylates. J Med Chem 49:4059–4071

    Article  CAS  Google Scholar 

  • Zhou T et al (2010) Anti-AIDS agents 79. Design, synthesis, molecular modeling and structure–activity relationships of novel dicamphanoyl-2′, 2′-dimethyldihydropyranochromone (DCP) analogs as potent anti-HIV agents. Bioorg Med Chem 18:6678–6689

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goyal, S., Jamal, S., Grover, A., Shanker, A. (2018). Drug Discovery: An In Silico Approach. In: Shanker, A. (eds) Bioinformatics: Sequences, Structures, Phylogeny . Springer, Singapore. https://doi.org/10.1007/978-981-13-1562-6_14

Download citation

Publish with us

Policies and ethics