Skip to main content

Hormones and Muscle Atrophy

  • Chapter
  • First Online:
Muscle Atrophy

Abstract

The endocrine system is an essential regulator of muscle metabolism in both health and disease. Hormones such as growth hormone (GH), insulin-like growth factor-I (IGF-I) and androgens are the main regulators of muscle metabolism in both health and disease; have profound influences on muscle, acting as anabolic factors; and are important regulators of muscle mass. On the contrary, glucocorticoids have direct catabolic effects and induce muscle protein loss. Muscle wasting is a systemic response to fasting and several diseases like cancer, sepsis, renal and cardiac failure and trauma. Muscle atrophy also occurs in specific muscles with denervation, immobilization or inactivity. All of these conditions are characterized by significant changes in the endocrine environment. The aim of this review was to describe the role of endocrine system on the development of muscle atrophy. Understanding hormonal regulation of the skeletal muscle in these conditions might facilitate the development of hormone-mediated therapies for muscle atrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malavaki CJ, Sakkas GK, Mitrou GI, Kalyva A, Stefanidis I, Myburgh KH, Karatzaferi C (2015) Skeletal muscle atrophy: disease-induced mechanisms may mask disuse atrophy. J Muscle Res Cell Motil 36(6):405–421. https://doi.org/10.1007/s10974-015-9439-8

    Article  CAS  PubMed  Google Scholar 

  2. Campbell EL, Seynnes OR, Bottinelli R, McPhee JS, Atherton PJ, Jones DA, Butler-Browne G, Narici MV (2013) Skeletal muscle adaptations to physical inactivity and subsequent retraining in young men. Biogerontology 14(3):247–259. https://doi.org/10.1007/s10522-013-9427-6

    Article  CAS  PubMed  Google Scholar 

  3. Kim H, Barton E, Muja N, Yakar S, Pennisi P, Leroith D (2005) Intact insulin and insulin-like growth factor-I receptor signaling is required for growth hormone effects on skeletal muscle growth and function in vivo. Endocrinology 146(4):1772–1779. https://doi.org/10.1210/en.2004-0906

    Article  CAS  PubMed  Google Scholar 

  4. Velloso CP (2008) Regulation of muscle mass by growth hormone and IGF-I. Br J Pharmacol 154(3):557–568. https://doi.org/10.1038/bjp.2008.153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chikani V, Ho KK (2014) Action of GH on skeletal muscle function: molecular and metabolic mechanisms. J Mol Endocrinol 52(1):R107–R123. https://doi.org/10.1530/JME-13-0208

    Article  CAS  PubMed  Google Scholar 

  6. Widdowson WM, Gibney J (2008) The effect of growth hormone replacement on exercise capacity in patients with GH deficiency: a metaanalysis. J Clin Endocrinol Metab 93(11):4413–4417. https://doi.org/10.1210/jc.2008-1239

    Article  CAS  PubMed  Google Scholar 

  7. Bentham J, Rodriguez-Arnao J, Ross RJ (1993) Acquired growth hormone resistance in patients with hypercatabolism. Horm Res 40(1–3):87–91. https://doi.org/10.1159/000183772

    Article  CAS  PubMed  Google Scholar 

  8. Ross R, Miell J, Freeman E, Jones J, Matthews D, Preece M, Buchanan C (1991) Critically ill patients have high basal growth hormone levels with attenuated oscillatory activity associated with low levels of insulin-like growth factor-I. Clin Endocrinol 35(1):47–54

    Article  CAS  Google Scholar 

  9. Huang Q, Nai YJ, Jiang ZW, Li JS (2005) Change of the growth hormone-insulin-like growth factor-I axis in patients with gastrointestinal cancer: related to tumour type and nutritional status. Br J Nutr 93(6):853–858

    Article  CAS  Google Scholar 

  10. Defalque D, Brandt N, Ketelslegers JM, Thissen JP (1999) GH insensitivity induced by endotoxin injection is associated with decreased liver GH receptors. Am J Phys 276(3 Pt 1):E565–E572

    CAS  Google Scholar 

  11. Denson LA, Held MA, Menon RK, Frank SJ, Parlow AF, Arnold DL (2003) Interleukin-6 inhibits hepatic growth hormone signaling via upregulation of Cis and Socs-3. Am J Physiol Gastrointest Liver Physiol 284(4):G646–G654. https://doi.org/10.1152/ajpgi.00178.2002

    Article  CAS  PubMed  Google Scholar 

  12. Zhao Y, Xiao X, Frank SJ, Lin HY, Xia Y (2014) Distinct mechanisms of induction of hepatic growth hormone resistance by endogenous IL-6, TNF-alpha, and IL-1beta. Am J Physiol Endocrinol Metab 307(2):E186–E198. https://doi.org/10.1152/ajpendo.00652.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nair V, Robinson-Cohen C, Smith MR, Bellovich KA, Bhat ZY, Bobadilla M, Brosius F, de Boer IH, Essioux L, Formentini I, Gadegbeku CA, Gipson D, Hawkins J, Himmelfarb J, Kestenbaum B, Kretzler M, Magnone MC, Perumal K, Steigerwalt S, Ju W, Bansal N (2017) Growth differentiation factor-15 and risk of CKD progression. J Am Soc Nephrol 28(7):2233–2240. https://doi.org/10.1681/ASN.2016080919

    Article  PubMed  PubMed Central  Google Scholar 

  14. Patel MS, Lee J, Baz M, Wells CE, Bloch S, Lewis A, Donaldson AV, Garfield BE, Hopkinson NS, Natanek A, Man WD, Wells DJ, Baker EH, Polkey MI, Kemp PR (2016) Growth differentiation factor-15 is associated with muscle mass in chronic obstructive pulmonary disease and promotes muscle wasting in vivo. J Cachexia Sarcopenia Muscle 7(4):436–448. https://doi.org/10.1002/jcsm.12096

    Article  PubMed  Google Scholar 

  15. Wollert KC, Kempf T, Wallentin L (2017) Growth differentiation factor 15 as a biomarker in cardiovascular disease. Clin Chem 63(1):140–151. https://doi.org/10.1373/clinchem.2016.255174

    Article  CAS  PubMed  Google Scholar 

  16. Wang T, Liu J, McDonald C, Lupino K, Zhai X, Wilkins BJ, Hakonarson H, Pei L (2017) GDF15 is a heart-derived hormone that regulates body growth. EMBO Mol Med 9(8):1150–1164. https://doi.org/10.15252/emmm.201707604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lopez-Calderon A, Soto L, Martin AI (1999) Chronic inflammation inhibits GH secretion and alters the serum insulin-like growth factor system in rats. Life Sci 65(20):2049–2060

    Article  CAS  Google Scholar 

  18. Templ E, Koeller M, Riedl M, Wagner O, Graninger W, Luger A (1996) Anterior pituitary function in patients with newly diagnosed rheumatoid arthritis. Br J Rheumatol 35(4):350–356

    Article  CAS  Google Scholar 

  19. Bechtold S, Ripperger P, Dalla Pozza R, Roth J, Hafner R, Michels H, Schwarz HP (2010) Dynamics of body composition and bone in patients with juvenile idiopathic arthritis treated with growth hormone. J Clin Endocrinol Metab 95(1):178–185. https://doi.org/10.1210/jc.2009-0979

    Article  CAS  PubMed  Google Scholar 

  20. Lopez-Calderon A, Ibanez de Caceres I, Soto L, Priego T, Martin AI, Villanua MA (2001) The decrease in hepatic IGF-I gene expression in arthritic rats is not associated with modifications in hepatic GH receptor mRNA. Eur J Endocrinol 144(5):529–534

    Article  CAS  Google Scholar 

  21. Lopez-Menduina M, Martin AI, Castillero E, Villanua MA, Lopez-Calderon A (2012) Short-term growth hormone or IGF-I administration improves the IGF-IGFBP system in arthritic rats. Growth Hormon IGF Res 22(1):22–29. https://doi.org/10.1016/j.ghir.2011.12.003

    Article  CAS  Google Scholar 

  22. Junnila RK, List EO, Berryman DE, Murrey JW, Kopchick JJ (2013) The GH/IGF-1 axis in ageing and longevity. Nat Rev Endocrinol 9(6):366–376. https://doi.org/10.1038/nrendo.2013.67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blackman MR, Sorkin JD, Munzer T, Bellantoni MF, Busby-Whitehead J, Stevens TE, Jayme J, O'Connor KG, Christmas C, Tobin JD, Stewart KJ, Cottrell E, St Clair C, Pabst KM, Harman SM (2002) Growth hormone and sex steroid administration in healthy aged women and men: a randomized controlled trial. JAMA 288(18):2282–2292

    Article  CAS  Google Scholar 

  24. Piovezan RD, Abucham J, Dos Santos RV, Mello MT, Tufik S, Poyares D (2015) The impact of sleep on age-related sarcopenia: possible connections and clinical implications. Ageing Res Rev 23(Pt B):210–220. https://doi.org/10.1016/j.arr.2015.07.003

    Article  PubMed  Google Scholar 

  25. Chakravarthy MV, Davis BS, Booth FW (2000) IGF-I restores satellite cell proliferative potential in immobilized old skeletal muscle. J Appl Physiol (1985) 89(4):1365–1379. https://doi.org/10.1152/jappl.2000.89.4.1365

    Article  CAS  Google Scholar 

  26. Philippou A, Barton ER (2014) Optimizing IGF-I for skeletal muscle therapeutics. Growth Hormon IGF Res 24(5):157–163. https://doi.org/10.1016/j.ghir.2014.06.003

    Article  CAS  Google Scholar 

  27. Adams GR, SA MC (1998) Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats. J Appl Physiol (1985) 84(5):1716–1722. https://doi.org/10.1152/jappl.1998.84.5.1716

    Article  CAS  Google Scholar 

  28. Hameed M, Lange KH, Andersen JL, Schjerling P, Kjaer M, Harridge SD, Goldspink G (2004) The effect of recombinant human growth hormone and resistance training on IGF-I mRNA expression in the muscles of elderly men. J Physiol 555(Pt 1):231–240. https://doi.org/10.1113/jphysiol.2003.051722

    Article  CAS  PubMed  Google Scholar 

  29. Hill M, Goldspink G (2003) Expression and splicing of the insulin-like growth factor gene in rodent muscle is associated with muscle satellite (stem) cell activation following local tissue damage. J Physiol 549(Pt 2):409–418. https://doi.org/10.1113/jphysiol.2002.035832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bikle DD, Tahimic C, Chang W, Wang Y, Philippou A, Barton ER (2015) Role of IGF-I signaling in muscle bone interactions. Bone 80:79–88. https://doi.org/10.1016/j.bone.2015.04.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Coolican SA, Samuel DS, Ewton DZ, McWade FJ, Florini JR (1997) The mitogenic and myogenic actions of insulin-like growth factors utilize distinct signaling pathways. J Biol Chem 272(10):6653–6662

    Article  CAS  Google Scholar 

  32. Matheny RW Jr, Nindl BC, Adamo ML (2010) Minireview: mechano-growth factor: a putative product of IGF-I gene expression involved in tissue repair and regeneration. Endocrinology 151(3):865–875. https://doi.org/10.1210/en.2009-1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jogie-Brahim S, Feldman D, Oh Y (2009) Unraveling insulin-like growth factor binding protein-3 actions in human disease. Endocr Rev 30(5):417–437. https://doi.org/10.1210/er.2008-0028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cheng GS, Zhang YS, Zhang TT, He L, Wang XY (2017) Bone marrow-derived mesenchymal stem cells modified with IGFBP-3 inhibit the proliferation of pulmonary artery smooth muscle cells. Int J Mol Med 39(1):223–230. https://doi.org/10.3892/ijmm.2016.2820

    Article  CAS  PubMed  Google Scholar 

  35. Cortes-Sempere M, de Miguel MP, Pernia O, Rodriguez C, de Castro Carpeno J, Nistal M, Conde E, Lopez-Rios F, Belda-Iniesta C, Perona R, Ibanez de Caceres I (2013) IGFBP-3 methylation-derived deficiency mediates the resistance to cisplatin through the activation of the IGFIR/Akt pathway in non-small cell lung cancer. Oncogene 32(10):1274–1283. https://doi.org/10.1038/onc.2012.146

    Article  CAS  PubMed  Google Scholar 

  36. Granado M, Martin AI, Priego T, Villanua MA, Lopez-Calderon A (2006) Inactivation of Kupffer cells by gadolinium administration prevents lipopolysaccharide-induced decrease in liver insulin-like growth factor-I and IGF-binding protein-3 gene expression. J Endocrinol 188(3):503–511. https://doi.org/10.1677/joe.1.06585

    Article  CAS  PubMed  Google Scholar 

  37. Papastathi C, Mavrommatis A, Mentzelopoulos S, Konstandelou E, Alevizaki M, Zakynthinos S (2013) Insulin-like growth factor I and its binding protein 3 in sepsis. Growth Hormon IGF Res 23(4):98–104. https://doi.org/10.1016/j.ghir.2013.03.005

    Article  CAS  Google Scholar 

  38. Priego T, Granado M, Ibanez de Caceres I, Martin AI, Villanua MA, Lopez-Calderon A (2003) Endotoxin at low doses stimulates pituitary GH whereas it decreases IGF-I and IGF-binding protein-3 in rats. J Endocrinol 179(1):107–117

    Article  CAS  Google Scholar 

  39. Gomez-SanMiguel AB, Villanua MA, Martin AI, Lopez-Calderon A (2016) D-TRP(8)-gammaMSH prevents the effects of endotoxin in rat skeletal muscle cells through TNFalpha/NF-KB signalling pathway. PLoS One 11(5):e0155645. https://doi.org/10.1371/journal.pone.0155645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lang CH, Frost RA, Jefferson LS, Kimball SR, Vary TC (2000) Endotoxin-induced decrease in muscle protein synthesis is associated with changes in eIF2B, eIF4E, and IGF-I. Am J Physiol Endocrinol Metab 278(6):E1133–E1143. https://doi.org/10.1152/ajpendo.2000.278.6.E1133

    Article  CAS  PubMed  Google Scholar 

  41. Pampusch MS, Kamanga-Sollo E, White ME, Hathaway MR, Dayton WR (2003) Effect of recombinant porcine IGF-binding protein-3 on proliferation of embryonic porcine myogenic cell cultures in the presence and absence of IGF-I. J Endocrinol 176(2):227–235

    Article  CAS  Google Scholar 

  42. Costelli P, Muscaritoli M, Bossola M, Penna F, Reffo P, Bonetto A, Busquets S, Bonelli G, Lopez-Soriano FJ, Doglietto GB, Argiles JM, Baccino FM, Rossi Fanelli F (2006) IGF-1 is downregulated in experimental cancer cachexia. Am J Phys Regul Integr Comp Phys 291(3):R674–R683. https://doi.org/10.1152/ajpregu.00104.2006

    Article  CAS  Google Scholar 

  43. White JP, Baynes JW, Welle SL, Kostek MC, Matesic LE, Sato S, Carson JA (2011) The regulation of skeletal muscle protein turnover during the progression of cancer cachexia in the Apc(Min/+) mouse. PLoS One 6(9):e24650. https://doi.org/10.1371/journal.pone.0024650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bonetto A, Penna F, Aversa Z, Mercantini P, Baccino FM, Costelli P, Ziparo V, Lucia S, Rossi Fanelli F, Muscaritoli M (2013) Early changes of muscle insulin-like growth factor-1 and myostatin gene expression in gastric cancer patients. Muscle Nerve 48(3):387–392. https://doi.org/10.1002/mus.23798

    Article  CAS  PubMed  Google Scholar 

  45. Martin AI, Lopez-Calderon A (2017) Arthritis-induced anorexia and muscle wasting. handbook of famine, starvation, and nutrient deprivation. Springer, Cham. https://doi.org/10.1007/978-3-319-40007-5_79-1

    Book  Google Scholar 

  46. Baker JF, Von Feldt JM, Mostoufi-Moab S, Kim W, Taratuta E, Leonard MB (2015) Insulin-like growth factor 1 and Adiponectin and associations with muscle deficits, disease characteristics, and treatments in Rheumatoid Arthritis. J Rheumatol 42(11):2038–2045. https://doi.org/10.3899/jrheum.150280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Castillero E, Martin AI, Lopez-Menduina M, Granado M, Villanua MA, Lopez-Calderon A (2009) IGF-I system, atrogenes and myogenic regulatory factors in arthritis induced muscle wasting. Mol Cell Endocrinol 309(1–2):8–16. https://doi.org/10.1016/j.mce.2009.05.017

    Article  CAS  PubMed  Google Scholar 

  48. Lopez-Menduina M, Martin AI, Castillero E, Villanua MA, Lopez-Calderon A (2010) Systemic IGF-I administration attenuates the inhibitory effect of chronic arthritis on gastrocnemius mass and decreases atrogin-1 and IGFBP-3. Am J Phys Regul Integr Comp Phys 299(2):R541–R551. https://doi.org/10.1152/ajpregu.00211.2010

    Article  CAS  Google Scholar 

  49. Saitoh M, Ishida J, Doehner W, von Haehling S, Anker MS, Coats AJS, Anker SD, Springer J (2017) Sarcopenia, cachexia, and muscle performance in heart failure: review update 2016. Int J Cardiol 238:5–11. https://doi.org/10.1016/j.ijcard.2017.03.155

    Article  PubMed  Google Scholar 

  50. Schulze PC, Gielen S, Schuler G, Hambrecht R (2002) Chronic heart failure and skeletal muscle catabolism: effects of exercise training. Int J Cardiol 85(1):141–149

    Article  Google Scholar 

  51. Hambrecht R, Schulze PC, Gielen S, Linke A, Mobius-Winkler S, Erbs S, Kratzsch J, Schubert A, Adams V, Schuler G (2005) Effects of exercise training on insulin-like growth factor-I expression in the skeletal muscle of non-cachectic patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil 12(4):401–406

    Article  Google Scholar 

  52. Lee S, Leone TC, Rogosa L, Rumsey J, Ayala J, Coen PM, Fitts RH, Vega RB, Kelly DP (2017) Skeletal muscle PGC-1beta signaling is sufficient to drive an endurance exercise phenotype and to counteract components of detraining in mice. Am J Physiol Endocrinol Metab 312(5):E394–E406. https://doi.org/10.1152/ajpendo.00380.2016

    Article  PubMed  PubMed Central  Google Scholar 

  53. Volterrani M, Rosano G, Iellamo F (2012) Testosterone and heart failure. Endocrine 42(2):272–277. https://doi.org/10.1007/s12020-012-9725-9

    Article  CAS  PubMed  Google Scholar 

  54. Ye F, Mathur S, Liu M, Borst SE, Walter GA, Sweeney HL, Vandenborne K (2013) Overexpression of insulin-like growth factor-1 attenuates skeletal muscle damage and accelerates muscle regeneration and functional recovery after disuse. Exp Physiol 98(5):1038–1052. https://doi.org/10.1113/expphysiol.2012.070722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14(3):395–403

    Article  CAS  Google Scholar 

  56. Tay L, Ding YY, Leung BP, Ismail NH, Yeo A, Yew S, Tay KS, Tan CH, Chong MS (2015) Sex-specific differences in risk factors for sarcopenia amongst community-dwelling older adults. Age (Dordr) 37(6):121. https://doi.org/10.1007/s11357-015-9860-3

    Article  CAS  Google Scholar 

  57. Gielen E, O'Neill TW, Pye SR, Adams JE, Wu FC, Laurent MR, Claessens F, Ward KA, Boonen S, Bouillon R, Vanderschueren D, Verschueren S (2015) Endocrine determinants of incident sarcopenia in middle-aged and elderly European men. J Cachexia Sarcopenia Muscle 6(3):242–252. https://doi.org/10.1002/jcsm.12030

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mesotten D, Wouters PJ, Peeters RP, Hardman KV, Holly JM, Baxter RC, Van den Berghe G (2004) Regulation of the somatotropic axis by intensive insulin therapy during protracted critical illness. J Clin Endocrinol Metab 89(7):3105–3113. https://doi.org/10.1210/jc.2003-032102

    Article  CAS  PubMed  Google Scholar 

  59. Gagner JP, Drouin J (1985) Opposite regulation of pro-opiomelanocortin gene transcription by glucocorticoids and CRH. Mol Cell Endocrinol 40(1):25–32

    Article  CAS  Google Scholar 

  60. Malkoski SP, Dorin RI (1999) Composite glucocorticoid regulation at a functionally defined negative glucocorticoid response element of the human corticotropin-releasing hormone gene. Mol Endocrinol 13(10):1629–1644. https://doi.org/10.1210/mend.13.10.0351

    Article  CAS  PubMed  Google Scholar 

  61. Stocco DM, Clark BJ (1996) Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev 17(3):221–244. https://doi.org/10.1210/edrv-17-3-221

    Article  CAS  PubMed  Google Scholar 

  62. Vegiopoulos A, Herzig S (2007) Glucocorticoids, metabolism and metabolic diseases. Mol Cell Endocrinol 275(1–2):43–61. https://doi.org/10.1016/j.mce.2007.05.015

    Article  CAS  PubMed  Google Scholar 

  63. Braun TP, Zhu X, Szumowski M, Scott GD, Grossberg AJ, Levasseur PR, Graham K, Khan S, Damaraju S, Colmers WF, Baracos VE, Marks DL (2011) Central nervous system inflammation induces muscle atrophy via activation of the hypothalamic-pituitary-adrenal axis. J Exp Med 208(12):2449–2463. https://doi.org/10.1084/jem.20111020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cohen S, Nathan JA, Goldberg AL (2015) Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov 14(1):58–74. https://doi.org/10.1038/nrd4467

    Article  CAS  PubMed  Google Scholar 

  65. Hasselgren PO (1999) Glucocorticoids and muscle catabolism. Curr Opin Clin Nutr Metab Care 2(3):201–205

    Article  CAS  Google Scholar 

  66. Knapp ML, al-Sheibani S, Riches PG, Hanham IW, Phillips RH (1991) Hormonal factors associated with weight loss in patients with advanced breast cancer. Ann Clin Biochem 28(Pt 5):480–486. https://doi.org/10.1177/000456329102800510

    Article  PubMed  Google Scholar 

  67. Schakman O, Kalista S, Barbe C, Loumaye A, Thissen JP (2013) Glucocorticoid-induced skeletal muscle atrophy. Int J Biochem Cell Biol 45(10):2163–2172. https://doi.org/10.1016/j.biocel.2013.05.036

    Article  CAS  PubMed  Google Scholar 

  68. Sandri M, Lin J, Handschin C, Yang W, Arany ZP, Lecker SH, Goldberg AL, Spiegelman BM (2006) PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci U S A 103(44):16260–16265. https://doi.org/10.1073/pnas.0607795103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shikatani EA, Trifonova A, Mandel ER, Liu ST, Roudier E, Krylova A, Szigiato A, Beaudry J, Riddell MC, Haas TL (2012) Inhibition of proliferation, migration and proteolysis contribute to corticosterone-mediated inhibition of angiogenesis. PLoS One 7(10):e46625. https://doi.org/10.1371/journal.pone.0046625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shimizu N, Yoshikawa N, Ito N, Maruyama T, Suzuki Y, Takeda S, Nakae J, Tagata Y, Nishitani S, Takehana K, Sano M, Fukuda K, Suematsu M, Morimoto C, Tanaka H (2011) Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metab 13(2):170–182. https://doi.org/10.1016/j.cmet.2011.01.001

    Article  CAS  PubMed  Google Scholar 

  71. Liu Z, Li G, Kimball SR, Jahn LA, Barrett EJ (2004) Glucocorticoids modulate amino acid-induced translation initiation in human skeletal muscle. Am J Physiol Endocrinol Metab 287(2):E275–E281. https://doi.org/10.1152/ajpendo.00457.2003

    Article  CAS  PubMed  Google Scholar 

  72. Braun TP, Marks DL (2015) The regulation of muscle mass by endogenous glucocorticoids. Front Physiol 6:12. https://doi.org/10.3389/fphys.2015.00012

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hu Z, Wang H, Lee IH, Du J, Mitch WE (2009) Endogenous glucocorticoids and impaired insulin signaling are both required to stimulate muscle wasting under pathophysiological conditions in mice. J Clin Invest 119(10):3059–3069. https://doi.org/10.1172/JCI38770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nakao R, Hirasaka K, Goto J, Ishidoh K, Yamada C, Ohno A, Okumura Y, Nonaka I, Yasutomo K, Baldwin KM, Kominami E, Higashibata A, Nagano K, Tanaka K, Yasui N, Mills EM, Takeda S, Nikawa T (2009) Ubiquitin ligase Cbl-b is a negative regulator for insulin-like growth factor 1 signaling during muscle atrophy caused by unloading. Mol Cell Biol 29(17):4798–4811. https://doi.org/10.1128/MCB.01347-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gilson H, Schakman O, Combaret L, Lause P, Grobet L, Attaix D, Ketelslegers JM, Thissen JP (2007) Myostatin gene deletion prevents glucocorticoid-induced muscle atrophy. Endocrinology 148(1):452–460. https://doi.org/10.1210/en.2006-0539

    Article  CAS  PubMed  Google Scholar 

  76. Ma K, Mallidis C, Bhasin S, Mahabadi V, Artaza J, Gonzalez-Cadavid N, Arias J, Salehian B (2003) Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression. Am J Physiol Endocrinol Metab 285(2):E363–E371. https://doi.org/10.1152/ajpendo.00487.2002

    Article  CAS  PubMed  Google Scholar 

  77. Qin J, Du R, Yang YQ, Zhang HQ, Li Q, Liu L, Guan H, Hou J, An XR (2013) Dexamethasone-induced skeletal muscle atrophy was associated with upregulation of myostatin promoter activity. Res Vet Sci 94(1):84–89. https://doi.org/10.1016/j.rvsc.2012.07.018

    Article  CAS  PubMed  Google Scholar 

  78. Kawada S, Tachi C, Ishii N (2001) Content and localization of myostatin in mouse skeletal muscles during aging, mechanical unloading and reloading. J Muscle Res Cell Motil 22(8):627–633

    Article  CAS  Google Scholar 

  79. Argiles JM, Orpi M, Busquets S, Lopez-Soriano FJ (2012) Myostatin: more than just a regulator of muscle mass. Drug Discov Today 17(13–14):702–709. https://doi.org/10.1016/j.drudis.2012.02.001

    Article  CAS  PubMed  Google Scholar 

  80. Allen DL, Loh AS (2011) Posttranscriptional mechanisms involving microRNA-27a and b contribute to fast-specific and glucocorticoid-mediated myostatin expression in skeletal muscle. Am J Phys Cell Phys 300(1):C124–C137. https://doi.org/10.1152/ajpcell.00142.2010

    Article  CAS  Google Scholar 

  81. Yamamoto D, Maki T, Herningtyas EH, Ikeshita N, Shibahara H, Sugiyama Y, Nakanishi S, Iida K, Iguchi G, Takahashi Y, Kaji H, Chihara K, Okimura Y (2010) Branched-chain amino acids protect against dexamethasone-induced soleus muscle atrophy in rats. Muscle Nerve 41(6):819–827. https://doi.org/10.1002/mus.21621

    Article  CAS  PubMed  Google Scholar 

  82. Hayashi K, Tada O, Higuchi K, Ohtsuka A (2000) Effects of corticosterone on connectin content and protein breakdown in rat skeletal muscle. Biosci Biotechnol Biochem 64(12):2686–2688

    Article  CAS  Google Scholar 

  83. Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, Sandri M (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6(6):458–471. https://doi.org/10.1016/j.cmet.2007.11.001

    Article  CAS  PubMed  Google Scholar 

  84. Sandri M (2010) Autophagy in skeletal muscle. FEBS Lett 584(7):1411–1416. https://doi.org/10.1016/j.febslet.2010.01.056

    Article  CAS  PubMed  Google Scholar 

  85. Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6(6):472–483. https://doi.org/10.1016/j.cmet.2007.11.004

    Article  CAS  PubMed  Google Scholar 

  86. Wei W, Fareed MU, Evenson A, Menconi MJ, Yang H, Petkova V, Hasselgren PO (2005) Sepsis stimulates calpain activity in skeletal muscle by decreasing calpastatin activity but does not activate caspase-3. Am J Phys Regul Integr Comp Phys 288(3):R580–R590. https://doi.org/10.1152/ajpregu.00341.2004

    Article  CAS  Google Scholar 

  87. Tanaka H, Shimizu N, Yoshikawa N (2017) Role of skeletal muscle glucocorticoid receptor in systemic energy homeostasis. Exp Cell Res 360(1):24–26. https://doi.org/10.1016/j.yexcr.2017.03.049

    Article  CAS  PubMed  Google Scholar 

  88. Li W, Moylan JS, Chambers MA, Smith J, Reid MB (2009) Interleukin-1 stimulates catabolism in C2C12 myotubes. Am J Phys Cell Phys 297(3):C706–C714. https://doi.org/10.1152/ajpcell.00626.2008

    Article  CAS  Google Scholar 

  89. Braun TP, Grossberg AJ, Krasnow SM, Levasseur PR, Szumowski M, Zhu XX, Maxson JE, Knoll JG, Barnes AP, Marks DL (2013) Cancer- and endotoxin-induced cachexia require intact glucocorticoid signaling in skeletal muscle. FASEB J 27(9):3572–3582. https://doi.org/10.1096/fj.13-230375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Furuyama T, Kitayama K, Yamashita H, Mori N (2003) Forkhead transcription factor FOXO1 (FKHR)-dependent induction of PDK4 gene expression in skeletal muscle during energy deprivation. Biochem J 375(Pt 2):365–371. https://doi.org/10.1042/BJ20030022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhao W, Qin W, Pan J, Wu Y, Bauman WA, Cardozo C (2009) Dependence of dexamethasone-induced Akt/FOXO1 signaling, upregulation of MAFbx, and protein catabolism upon the glucocorticoid receptor. Biochem Biophys Res Commun 378(3):668–672. https://doi.org/10.1016/j.bbrc.2008.11.123

    Article  CAS  PubMed  Google Scholar 

  92. Wray CJ, Mammen JM, Hershko DD, Hasselgren PO (2003) Sepsis upregulates the gene expression of multiple ubiquitin ligases in skeletal muscle. Int J Biochem Cell Biol 35(5):698–705

    Article  CAS  Google Scholar 

  93. Frost RA, Nystrom GJ, Jefferson LS, Lang CH (2007) Hormone, cytokine, and nutritional regulation of sepsis-induced increases in atrogin-1 and MuRF1 in skeletal muscle. Am J Physiol Endocrinol Metab 292(2):E501–E512. https://doi.org/10.1152/ajpendo.00359.2006

    Article  CAS  PubMed  Google Scholar 

  94. Llovera M, Garcia-Martinez C, Costelli P, Agell N, Carbo N, Lopez-Soriano FJ, Argiles JM (1996) Muscle hypercatabolism during cancer cachexia is not reversed by the glucocorticoid receptor antagonist RU38486. Cancer Lett 99(1):7–14

    Article  CAS  Google Scholar 

  95. Rivadeneira DE, Naama HA, McCarter MD, Fujita J, Evoy D, Mackrell P, Daly JM (1999) Glucocorticoid blockade does not abrogate tumor-induced cachexia. Nutr Cancer 35(2):202–206. https://doi.org/10.1207/S15327914NC352_16

    Article  CAS  PubMed  Google Scholar 

  96. Mitch WE, Bailey JL, Wang X, Jurkovitz C, Newby D, Price SR (1999) Evaluation of signals activating ubiquitin-proteasome proteolysis in a model of muscle wasting. Am J Phys 276(5 Pt 1):C1132–C1138

    Article  CAS  Google Scholar 

  97. Waters DL, Qualls CR, Dorin RI, Veldhuis JD, Baumgartner RN (2008) Altered growth hormone, cortisol, and leptin secretion in healthy elderly persons with sarcopenia and mixed body composition phenotypes. J Gerontol A Biol Sci Med Sci 63(5):536–541

    Article  Google Scholar 

  98. Hassan-Smith ZK, Morgan SA, Sherlock M, Hughes B, Taylor AE, Lavery GG, Tomlinson JW, Stewart PM (2015) Gender-specific differences in skeletal muscle 11beta-HSD1 expression across healthy aging. J Clin Endocrinol Metab 100(7):2673–2681. https://doi.org/10.1210/jc.2015-1516

    Article  CAS  PubMed  Google Scholar 

  99. Rieu I, Sornet C, Grizard J, Dardevet D (2004) Glucocorticoid excess induces a prolonged leucine resistance on muscle protein synthesis in old rats. Exp Gerontol 39(9):1315–1321. https://doi.org/10.1016/j.exger.2004.06.005

    Article  CAS  PubMed  Google Scholar 

  100. Krause MP, Riddell MC, Hawke TJ (2011) Effects of type 1 diabetes mellitus on skeletal muscle: clinical observations and physiological mechanisms. Pediatr Diabetes 12(4 Pt 1):345–364. https://doi.org/10.1111/j.1399-5448.2010.00699.x

    Article  CAS  PubMed  Google Scholar 

  101. Tischler ME (1994) Effect of the antiglucocorticoid RU38486 on protein metabolism in unweighted soleus muscle. Metabolism 43(11):1451–1455

    Article  CAS  Google Scholar 

  102. Watson ML, Baehr LM, Reichardt HM, Tuckermann JP, Bodine SC, Furlow JD (2012) A cell-autonomous role for the glucocorticoid receptor in skeletal muscle atrophy induced by systemic glucocorticoid exposure. Am J Physiol Endocrinol Metab 302(10):E1210–E1220. https://doi.org/10.1152/ajpendo.00512.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Fitts RH, Riley DR, Widrick JJ (2000) Physiology of a microgravity environment invited review: microgravity and skeletal muscle. J Appl Physiol (1985) 89(2):823–839. https://doi.org/10.1152/jappl.2000.89.2.823

    Article  CAS  Google Scholar 

  104. Fitts RH, Romatowski JG, Peters JR, Paddon-Jones D, Wolfe RR, Ferrando AA (2007) The deleterious effects of bed rest on human skeletal muscle fibers are exacerbated by hypercortisolemia and ameliorated by dietary supplementation. Am J Phys Cell Phys 293(1):C313–C320. https://doi.org/10.1152/ajpcell.00573.2006

    Article  CAS  Google Scholar 

  105. Matthews E, Brassington R, Kuntzer T, Jichi F, Manzur AY (2016) Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane Database Syst Rev 5:CD003725. https://doi.org/10.1002/14651858.CD003725.pub4

    Article  Google Scholar 

  106. Quattrocelli M, Barefield DY, Warner JL, Vo AH, Hadhazy M, Earley JU, Demonbreun AR, McNally EM (2017) Intermittent glucocorticoid steroid dosing enhances muscle repair without eliciting muscle atrophy. J Clin Invest 127(6):2418–2432. https://doi.org/10.1172/JCI91445

    Article  PubMed  PubMed Central  Google Scholar 

  107. Crossland H, Constantin-Teodosiu D, Greenhaff PL, Gardiner SM (2010) Low-dose dexamethasone prevents endotoxaemia-induced muscle protein loss and impairment of carbohydrate oxidation in rat skeletal muscle. J Physiol 588(Pt 8):1333–1347. https://doi.org/10.1113/jphysiol.2009.183699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Carson JA, Manolagas SC (2015) Effects of sex steroids on bones and muscles: similarities, parallels, and putative interactions in health and disease. Bone 80:67–78. https://doi.org/10.1016/j.bone.2015.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chambon C, Duteil D, Vignaud A, Ferry A, Messaddeq N, Malivindi R, Kato S, Chambon P, Metzger D (2010) Myocytic androgen receptor controls the strength but not the mass of limb muscles. Proc Natl Acad Sci U S A 107(32):14327–14332. https://doi.org/10.1073/pnas.1009536107

    Article  PubMed  PubMed Central  Google Scholar 

  110. Hughes DC, Stewart CE, Sculthorpe N, Dugdale HF, Yousefian F, Lewis MP, Sharples AP (2016) Testosterone enables growth and hypertrophy in fusion impaired myoblasts that display myotube atrophy: deciphering the role of androgen and IGF-I receptors. Biogerontology 17(3):619–639. https://doi.org/10.1007/s10522-015-9621-9

    Article  CAS  PubMed  Google Scholar 

  111. Rossetti ML, Steiner JL, Gordon BS (2017) Androgen-mediated regulation of skeletal muscle protein balance. Mol Cell Endocrinol 447:35–44. https://doi.org/10.1016/j.mce.2017.02.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. White JP, Gao S, Puppa MJ, Sato S, Welle SL, Carson JA (2013) Testosterone regulation of Akt/mTORC1/FoxO3a signaling in skeletal muscle. Mol Cell Endocrinol 365(2):174–186. https://doi.org/10.1016/j.mce.2012.10.019

    Article  CAS  PubMed  Google Scholar 

  113. Estrada M, Espinosa A, Muller M, Jaimovich E (2003) Testosterone stimulates intracellular calcium release and mitogen-activated protein kinases via a G protein-coupled receptor in skeletal muscle cells. Endocrinology 144(8):3586–3597. https://doi.org/10.1210/en.2002-0164

    Article  CAS  PubMed  Google Scholar 

  114. Mendler L, Baka Z, Kovacs-Simon A, Dux L (2007) Androgens negatively regulate myostatin expression in an androgen-dependent skeletal muscle. Biochem Biophys Res Commun 361(1):237–242. https://doi.org/10.1016/j.bbrc.2007.07.023

    Article  CAS  PubMed  Google Scholar 

  115. Pronsato L, Milanesi L, Vasconsuelo A, La Colla A (2017) Testosterone modulates FoxO3a and p53-related genes to protect C2C12 skeletal muscle cells against apoptosis. Steroids 124:35–45. https://doi.org/10.1016/j.steroids.2017.05.012

    Article  CAS  PubMed  Google Scholar 

  116. Sitnick M, Foley AM, Brown M, Spangenburg EE (2006) Ovariectomy prevents the recovery of atrophied gastrocnemius skeletal muscle mass. J Appl Physiol (1985) 100(1):286–293. https://doi.org/10.1152/japplphysiol.00869.2005

    Article  CAS  Google Scholar 

  117. Vasconsuelo A, Milanesi L, Boland R (2008) 17Beta-estradiol abrogates apoptosis in murine skeletal muscle cells through estrogen receptors: role of the phosphatidylinositol 3-kinase/Akt pathway. J Endocrinol 196(2):385–397. https://doi.org/10.1677/JOE-07-0250

    Article  CAS  PubMed  Google Scholar 

  118. Galluzzo P, Rastelli C, Bulzomi P, Acconcia F, Pallottini V, Marino M (2009) 17beta-Estradiol regulates the first steps of skeletal muscle cell differentiation via ER-alpha-mediated signals. Am J Phys Cell Phys 297(5):C1249–C1262. https://doi.org/10.1152/ajpcell.00188.2009

    Article  CAS  Google Scholar 

  119. Ronda AC, Buitrago C, Colicheo A, de Boland AR, Roldan E, Boland R (2007) Activation of MAPKs by 1alpha,25(OH)2-Vitamin D3 and 17beta-estradiol in skeletal muscle cells leads to phosphorylation of Elk-1 and CREB transcription factors. J Steroid Biochem Mol Biol 103(3–5):462–466. https://doi.org/10.1016/j.jsbmb.2006.11.005

    Article  CAS  PubMed  Google Scholar 

  120. Smith GI, Yoshino J, Reeds DN, Bradley D, Burrows RE, Heisey HD, Moseley AC, Mittendorfer B (2014) Testosterone and progesterone, but not estradiol, stimulate muscle protein synthesis in postmenopausal women. J Clin Endocrinol Metab 99(1):256–265. https://doi.org/10.1210/jc.2013-2835

    Article  CAS  PubMed  Google Scholar 

  121. Grinspoon S, Corcoran C, Lee K, Burrows B, Hubbard J, Katznelson L, Walsh M, Guccione A, Cannan J, Heller H, Basgoz N, Klibanski A (1996) Loss of lean body and muscle mass correlates with androgen levels in hypogonadal men with acquired immunodeficiency syndrome and wasting. J Clin Endocrinol Metab 81(11):4051–4058. https://doi.org/10.1210/jcem.81.11.8923860

    Article  CAS  PubMed  Google Scholar 

  122. Gonzalez BD, Jim HSL, Small BJ, Sutton SK, Fishman MN, Zachariah B, Heysek RV, Jacobsen PB (2016) Changes in physical functioning and muscle strength in men receiving androgen deprivation therapy for prostate cancer: a controlled comparison. Support Care Cancer 24(5):2201–2207. https://doi.org/10.1007/s00520-015-3016-y

    Article  PubMed  Google Scholar 

  123. Spratt DI, Kramer RS, Morton JR, Lucas FL, Becker K, Longcope C (2008) Characterization of a prospective human model for study of the reproductive hormone responses to major illness. Am J Physiol Endocrinol Metab 295(1):E63–E69. https://doi.org/10.1152/ajpendo.00472.2007

    Article  CAS  PubMed  Google Scholar 

  124. Burney BO, Hayes TG, Smiechowska J, Cardwell G, Papusha V, Bhargava P, Konda B, Auchus RJ, Garcia JM (2012) Low testosterone levels and increased inflammatory markers in patients with cancer and relationship with cachexia. J Clin Endocrinol Metab 97(5):E700–E709. https://doi.org/10.1210/jc.2011-2387

    Article  CAS  PubMed  Google Scholar 

  125. Wiechno PJ, Poniatowska GM, Michalski W, Kucharz J, Sadowska M, Jonska-Gmyrek J, Nietupski K, Rzymowska J, Demkow T (2017) Clinical significance of androgen secretion disorders in men with a malignancy. Med Oncol 34(7):123. https://doi.org/10.1007/s12032-017-0982-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Atlantis E, Fahey P, Cochrane B, Wittert G, Smith S (2013) Endogenous testosterone level and testosterone supplementation therapy in chronic obstructive pulmonary disease (COPD): a systematic review and meta-analysis. BMJ Open 3(8):e003127. https://doi.org/10.1136/bmjopen-2013-003127

    Article  PubMed  PubMed Central  Google Scholar 

  127. Ponnusamy S, Sullivan RD, You D, Zafar N, He Yang C, Thiyagarajan T, Johnson DL, Barrett ML, Koehler NJ, Star M, Stephenson EJ, Bridges D, Cormier SA, Pfeffer LM, Narayanan R (2017) Androgen receptor agonists increase lean mass, improve cardiopulmonary functions and extend survival in preclinical models of Duchenne muscular dystrophy. Hum Mol Genet 26(13):2526–2540. https://doi.org/10.1093/hmg/ddx150

    Article  CAS  PubMed  Google Scholar 

  128. Brown M, Ning J, Ferreira JA, Bogener JL, Lubahn DB (2009) Estrogen receptor-alpha and -beta and aromatase knockout effects on lower limb muscle mass and contractile function in female mice. Am J Physiol Endocrinol Metab 296(4):E854–E861. https://doi.org/10.1152/ajpendo.90696.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Enns DL, Tiidus PM (2008) Estrogen influences satellite cell activation and proliferation following downhill running in rats. J Appl Physiol (1985) 104(2):347–353. https://doi.org/10.1152/japplphysiol.00128.2007

    Article  Google Scholar 

  130. McClung JM, Davis JM, Carson JA (2007) Ovarian hormone status and skeletal muscle inflammation during recovery from disuse in rats. Exp Physiol 92(1):219–232. https://doi.org/10.1113/expphysiol.2006.035071

    Article  CAS  PubMed  Google Scholar 

  131. Sipila S, Narici M, Kjaer M, Pollanen E, Atkinson RA, Hansen M, Kovanen V (2013) Sex hormones and skeletal muscle weakness. Biogerontology 14(3):231–245. https://doi.org/10.1007/s10522-013-9425-8

    Article  CAS  PubMed  Google Scholar 

  132. Greising SM, Baltgalvis KA, Lowe DA, Warren GL (2009) Hormone therapy and skeletal muscle strength: a meta-analysis. J Gerontol A Biol Sci Med Sci 64(10):1071–1081. https://doi.org/10.1093/gerona/glp082

    Article  CAS  PubMed  Google Scholar 

  133. Roelfsema F, Boelen A, Kalsbeek A, Fliers E (2017) Regulatory aspects of the human hypothalamus-pituitary-thyroid axis. Best Pract Res Clin Endocrinol Metab 31(5):487–503. https://doi.org/10.1016/j.beem.2017.09.004

    Article  CAS  PubMed  Google Scholar 

  134. Lesmana R, Sinha RA, Singh BK, Zhou J, Ohba K, Wu Y, Yau WW, Bay BH, Yen PM (2016) Thyroid hormone stimulation of autophagy is essential for mitochondrial biogenesis and activity in skeletal muscle. Endocrinology 157(1):23–38. https://doi.org/10.1210/en.2015-1632

    Article  CAS  PubMed  Google Scholar 

  135. Salvatore D, Simonides WS, Dentice M, Zavacki AM, Larsen PR (2014) Thyroid hormones and skeletal muscle–new insights and potential implications. Nat Rev Endocrinol 10(4):206–214. https://doi.org/10.1038/nrendo.2013.238

    Article  CAS  PubMed  Google Scholar 

  136. O'Neal P, Alamdari N, Smith I, Poylin V, Menconi M, Hasselgren PO (2009) Experimental hyperthyroidism in rats increases the expression of the ubiquitin ligases atrogin-1 and MuRF1 and stimulates multiple proteolytic pathways in skeletal muscle. J Cell Biochem 108(4):963–973. https://doi.org/10.1002/jcb.22329

    Article  CAS  PubMed  Google Scholar 

  137. Carneiro I, Castro-Piedras I, Munoz A, Labandeira-Garcia JL, Devesa J, Arce VM (2008) Hypothyroidism is associated with increased myostatin expression in rats. J Endocrinol Investig 31(9):773–778. https://doi.org/10.1007/BF03349256

    Article  CAS  Google Scholar 

  138. Boelen A, van der Spek AH, Bloise F, de Vries EM, Surovtseva OV, van Beeren M, Ackermans MT, Kwakkel J, Fliers E (2017) Tissue thyroid hormone metabolism is differentially regulated during illness in mice. J Endocrinol 233(1):25–36. https://doi.org/10.1530/JOE-16-0483

    Article  CAS  PubMed  Google Scholar 

  139. Van den Berghe G (2016) On the neuroendocrinopathy of critical illness. Perspectives for feeding and novel treatments. Am J Respir Crit Care Med 194(11):1337–1348. https://doi.org/10.1164/rccm.201607-1516CI

    Article  PubMed  Google Scholar 

  140. Boelen A, Kwakkel J, Fliers E (2011) Beyond low plasma T3: local thyroid hormone metabolism during inflammation and infection. Endocr Rev 32(5):670–693. https://doi.org/10.1210/er.2011-0007

    Article  CAS  PubMed  Google Scholar 

  141. Mebis L, Debaveye Y, Visser TJ, Van den Berghe G (2006) Changes within the thyroid axis during the course of critical illness. Endocrinol Metab Clin N Am 35(4):807–821. https://doi.org/10.1016/j.ecl.2006.09.009

    Article  CAS  Google Scholar 

  142. Mebis L, Van den Berghe G (2011) Thyroid axis function and dysfunction in critical illness. Best Pract Res Clin Endocrinol Metab 25(5):745–757. https://doi.org/10.1016/j.beem.2011.03.002

    Article  CAS  PubMed  Google Scholar 

  143. Roy B, Curtis ME, Fears LS, Nahashon SN, Fentress HM (2016) Molecular mechanisms of obesity-induced osteoporosis and muscle atrophy. Front Physiol 7:439. https://doi.org/10.3389/fphys.2016.00439

    Article  PubMed  PubMed Central  Google Scholar 

  144. McKee A, Morley JE, Matsumoto AM, Vinik A (2017) Sarcopenia: an endocrine disorder? Endocr Pract 23(9):1140–1149. https://doi.org/10.4158/EP171795.RA

    Article  PubMed  Google Scholar 

  145. Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395(6704):763–770. https://doi.org/10.1038/27376

    Article  CAS  PubMed  Google Scholar 

  146. Woods SC, Seeley RJ (2000) Adiposity signals and the control of energy homeostasis. Nutrition 16(10):894–902

    Article  CAS  Google Scholar 

  147. Ahima RS, Osei SY (2004) Leptin signaling. Physiol Behav 81(2):223–241. https://doi.org/10.1016/j.physbeh.2004.02.014

    Article  CAS  PubMed  Google Scholar 

  148. Muoio DM, Lynis Dohm G (2002) Peripheral metabolic actions of leptin. Best Pract Res Clin Endocrinol Metab 16(4):653–666

    Article  CAS  Google Scholar 

  149. Rodriguez J, Vernus B, Chelh I, Cassar-Malek I, Gabillard JC, Hadj Sassi A, Seiliez I, Picard B, Bonnieu A (2014) Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways. Cell Mol Life Sci 71(22):4361–4371. https://doi.org/10.1007/s00018-014-1689-x

    Article  CAS  PubMed  Google Scholar 

  150. Arounleut P, Bowser M, Upadhyay S, Shi XM, Fulzele S, Johnson MH, Stranahan AM, Hill WD, Isales CM, Hamrick MW (2013) Absence of functional leptin receptor isoforms in the POUND (Lepr(db/lb)) mouse is associated with muscle atrophy and altered myoblast proliferation and differentiation. PLoS One 8(8):e72330. https://doi.org/10.1371/journal.pone.0072330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sainz N, Rodriguez A, Catalan V, Becerril S, Ramirez B, Gomez-Ambrosi J, Fruhbeck G (2009) Leptin administration favors muscle mass accretion by decreasing FoxO3a and increasing PGC-1alpha in ob/ob mice. PLoS One 4(9):e6808. https://doi.org/10.1371/journal.pone.0006808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bartell SM, Rayalam S, Ambati S, Gaddam DR, Hartzell DL, Hamrick M, She JX, Della-Fera MA, Baile CA (2011) Central (ICV) leptin injection increases bone formation, bone mineral density, muscle mass, serum IGF-1, and the expression of osteogenic genes in leptin-deficient ob/ob mice. J Bone Miner Res 26(8):1710–1720. https://doi.org/10.1002/jbmr.406

    Article  CAS  PubMed  Google Scholar 

  153. Hamrick MW, Dukes A, Arounleut P, Davis C, Periyasamy-Thandavan S, Mork S, Herberg S, Johnson MH, Isales CM, Hill WD, Otvos L Jr, Belin de Chantemele EJ (2015) The adipokine leptin mediates muscle- and liver-derived IGF-1 in aged mice. Exp Gerontol 70:92–96. https://doi.org/10.1016/j.exger.2015.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhou Q, Du J, Hu Z, Walsh K, Wang XH (2007) Evidence for adipose-muscle cross talk: opposing regulation of muscle proteolysis by adiponectin and Fatty acids. Endocrinology 148(12):5696–5705. https://doi.org/10.1210/en.2007-0183

    Article  CAS  PubMed  Google Scholar 

  155. Amitani M, Asakawa A, Amitani H, Inui A (2013) Control of food intake and muscle wasting in cachexia. Int J Biochem Cell Biol 45(10):2179–2185. https://doi.org/10.1016/j.biocel.2013.07.016

    Article  CAS  PubMed  Google Scholar 

  156. Hamrick MW (2017) Role of the Cytokine-like Hormone Leptin in Muscle-bone Crosstalk with Aging. J Bone Metab 24(1):1–8. https://doi.org/10.11005/jbm.2017.24.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  157. O'Neill BT, Lauritzen HP, Hirshman MF, Smyth G, Goodyear LJ, Kahn CR (2015) Differential role of Insulin/IGF-1 receptor signaling in muscle growth and glucose homeostasis. Cell Rep 11(8):1220–1235. https://doi.org/10.1016/j.celrep.2015.04.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. D'Souza DM, Al-Sajee D, Hawke TJ (2013) Diabetic myopathy: impact of diabetes mellitus on skeletal muscle progenitor cells. Front Physiol 4:379. https://doi.org/10.3389/fphys.2013.00379

    Article  PubMed  PubMed Central  Google Scholar 

  159. Mastrocola R, Reffo P, Penna F, Tomasinelli CE, Boccuzzi G, Baccino FM, Aragno M, Costelli P (2008) Muscle wasting in diabetic and in tumor-bearing rats: role of oxidative stress. Free Radic Biol Med 44(4):584–593. https://doi.org/10.1016/j.freeradbiomed.2007.10.047

    Article  CAS  PubMed  Google Scholar 

  160. Girgis CM, Clifton-Bligh RJ, Hamrick MW, Holick MF, Gunton JE (2013) The roles of vitamin D in skeletal muscle: form, function, and metabolism. Endocr Rev 34(1):33–83. https://doi.org/10.1210/er.2012-1012

    Article  CAS  PubMed  Google Scholar 

  161. Fabbriciani G, Pirro M, Leli C, Cecchetti A, Callarelli L, Rinonapoli G, Scarponi AM, Mannarino E (2010) Diffuse muscoskeletal pain and proximal myopathy: do not forget hypovitaminosis D. J Clin Rheumatol 16(1):34–37. https://doi.org/10.1097/RHU.0b013e3181c3b2c0

    Article  PubMed  Google Scholar 

  162. Glerup H, Mikkelsen K, Poulsen L, Hass E, Overbeck S, Andersen H, Charles P, Eriksen EF (2000) Hypovitaminosis D myopathy without biochemical signs of osteomalacic bone involvement. Calcif Tissue Int 66(6):419–424

    Article  CAS  Google Scholar 

  163. van der Heyden JJ, Verrips A, ter Laak HJ, Otten B, Fiselier T (2004) Hypovitaminosis D-related myopathy in immigrant teenagers. Neuropediatrics 35(5):290–292. https://doi.org/10.1055/s-2004-821035

    Article  PubMed  Google Scholar 

  164. Zhu K, Austin N, Devine A, Bruce D, Prince RL (2010) A randomized controlled trial of the effects of vitamin D on muscle strength and mobility in older women with vitamin D insufficiency. J Am Geriatr Soc 58(11):2063–2068. https://doi.org/10.1111/j.1532-5415.2010.03142.x

    Article  PubMed  Google Scholar 

  165. Muir SW, Montero-Odasso M (2011) Effect of vitamin D supplementation on muscle strength, gait and balance in older adults: a systematic review and meta-analysis. J Am Geriatr Soc 59(12):2291–2300. https://doi.org/10.1111/j.1532-5415.2011.03733.x

    Article  PubMed  Google Scholar 

  166. Cipriani C, Pepe J, Piemonte S, Colangelo L, Cilli M, Minisola S (2014) Vitamin D and its relationship with obesity and muscle. Int J Endocrinol 2014:841248. https://doi.org/10.1155/2014/841248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Vitale G, Cesari M, Mari D (2016) Aging of the endocrine system and its potential impact on sarcopenia. Eur J Intern Med 35:10–15. https://doi.org/10.1016/j.ejim.2016.07.017

    Article  CAS  PubMed  Google Scholar 

  168. Brink M, Price SR, Chrast J, Bailey JL, Anwar A, Mitch WE, Delafontaine P (2001) Angiotensin II induces skeletal muscle wasting through enhanced protein degradation and down-regulates autocrine insulin-like growth factor I. Endocrinology 142(4):1489–1496. https://doi.org/10.1210/endo.142.4.8082

    Article  CAS  PubMed  Google Scholar 

  169. Song YH, Li Y, Du J, Mitch WE, Rosenthal N, Delafontaine P (2005) Muscle-specific expression of IGF-1 blocks angiotensin II-induced skeletal muscle wasting. J Clin Invest 115(2):451–458. https://doi.org/10.1172/JCI22324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Cabello-Verrugio C, Cordova G, Salas JD (2012) Angiotensin II: role in skeletal muscle atrophy. Curr Protein Pept Sci 13(6):560–569

    Article  CAS  Google Scholar 

  171. Yoshida T, Tabony AM, Galvez S, Mitch WE, Higashi Y, Sukhanov S, Delafontaine P (2013) Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia. Int J Biochem Cell Biol 45(10):2322–2332. https://doi.org/10.1016/j.biocel.2013.05.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Sartiani L, Spinelli V, Laurino A, Blescia S, Raimondi L, Cerbai E, Mugelli A (2015) Pharmacological perspectives in sarcopenia: a potential role for renin-angiotensin system blockers? Clin Cases Miner Bone Metab 12(2):135–138. https://doi.org/10.11138/ccmbm/2015.12.2.135

    Article  PubMed  PubMed Central  Google Scholar 

  173. Collamati A, Marzetti E, Calvani R, Tosato M, D'Angelo E, Sisto AN, Landi F (2016) Sarcopenia in heart failure: mechanisms and therapeutic strategies. J Geriatr Cardiol 13(7):615–624. https://doi.org/10.11909/j.issn.1671-5411.2016.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Christina Bickart for the English correction of the manuscript. This work was supported by grant BFU2012-38468 and fellowships from UCM to ABGSM.

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asunción López-Calderón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martín, A.I., Priego, T., López-Calderón, A. (2018). Hormones and Muscle Atrophy. In: Xiao, J. (eds) Muscle Atrophy. Advances in Experimental Medicine and Biology, vol 1088. Springer, Singapore. https://doi.org/10.1007/978-981-13-1435-3_9

Download citation

Publish with us

Policies and ethics