Skip to main content

Past, Present, and Future Perspective of Targeting Myostatin and Related Signaling Pathways to Counteract Muscle Atrophy

  • Chapter
  • First Online:
Muscle Atrophy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1088))

Abstract

Myostatin was identified more than 20 years ago as a negative regulator of muscle mass in mice and cattle. Since then, a wealth of studies have uncovered the potential involvement of myostatin in muscle atrophy and sparked interest in myostatin as a promising therapeutic target to counteract decline of muscle mass in patients afflicted with different muscle-wasting conditions. Insight in the molecular mechanism of myostatin signaling and regulation of myostatin activity has resulted in the identification of specific treatments to inhibit myostatin signaling and related signaling pathways. Currently, several treatments that target myostatin and related proteins have been evaluated in preclinical animal models of muscle wasting, and some potential therapies have progressed to clinical trials. However, studies also revealed potential downsides of myostatin targeting in skeletal muscle and other tissues, which raises the question if myostatin is indeed a valuable target to counteract muscle atrophy. In this review we provide an updated overview of the molecular mechanisms of myostatin signaling, the preclinical evidence supporting a role for myostatin and related proteins in muscle atrophy, and the potential issues that arise when targeting myostatin. In addition, we evaluate the current clinical status of different treatments aimed at inhibiting myostatin and discuss future perspectives of targeting myostatin to counteract muscle atrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387(6628):83–90

    Article  CAS  PubMed  Google Scholar 

  2. Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17(1):71–74

    Article  CAS  PubMed  Google Scholar 

  3. Kambadur R, Sharma M, Smith TP, Bass JJ (1997) Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res 7(9):910–916

    Article  CAS  PubMed  Google Scholar 

  4. McPherron AC, Lee SJ (1997) Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A 94(23):12457–12461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B, Bouix J, Caiment F, Elsen JM, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M (2006) A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38(7):813–818

    Article  CAS  PubMed  Google Scholar 

  6. Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS, Parker HG, Ostrander EA (2007) A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet 3(5):e79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bower MA, McGivney BA, Campana MG, Gu J, Andersson LS, Barrett E, Davis CR, Mikko S, Stock F, Voronkova V, Bradley DG, Fahey AG, Lindgren G, MacHugh DE, Sulimova G, Hill EW (2012) The genetic origin and history of speed in the Thoroughbred racehorse. Nat Commun 3:643

    Article  PubMed  CAS  Google Scholar 

  8. Petersen JL, Mickelson JR, Rendahl AK, Valberg SJ, Andersson LS, Axelsson J, Bailey E, Bannasch D, Binns MM, Borges AS, Brama P, da Camara Machado A, Capomaccio S, Cappelli K, Cothran EG, Distl O, Fox-Clipsham L, Graves KT, Guerin G, Haase B, Hasegawa T, Hemmann K, Hill EW, Leeb T, Lindgren G, Lohi H, Lopes MS, McGivney BA, Mikko S, Orr N, Penedo MC, Piercy RJ, Raekallio M, Rieder S, Roed KH, Swinburne J, Tozaki T, Vaudin M, Wade CM, McCue ME (2013) Genome-wide analysis reveals selection for important traits in domestic horse breeds. PLoS Genet 9(1):e1003211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, Komen W, Braun T, Tobin JF, Lee SJ (2004) Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 350(26):2682–2688

    Article  CAS  PubMed  Google Scholar 

  10. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425(6958):577–584

    Article  CAS  PubMed  Google Scholar 

  11. Gonzalez-Cadavid NF, Taylor WE, Yarasheski K, Sinha-Hikim I, Ma K, Ezzat S, Shen R, Lalani R, Asa S, Mamita M, Nair G, Arver S, Bhasin S (1998) Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc Natl Acad Sci U S A 95(25):14938–14943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharma M, Kambadur R, Matthews KG, Somers WG, Devlin GP, Conaglen JV, Fowke PJ, Bass JJ (1999) Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J Cell Physiol 180(1):1–9

    Article  CAS  PubMed  Google Scholar 

  13. Buckingham M, Rigby PW (2014) Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev Cell 28(3):225–238

    Article  CAS  PubMed  Google Scholar 

  14. Relaix F, Zammit PS (2012) Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 139(16):2845–2856

    Article  CAS  PubMed  Google Scholar 

  15. Manceau M, Gros J, Savage K, Thome V, McPherron A, Paterson B, Marcelle C (2008) Myostatin promotes the terminal differentiation of embryonic muscle progenitors. Genes Dev 22(5):668–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Spiller MP, Kambadur R, Jeanplong F, Thomas M, Martyn JK, Bass JJ, Sharma M (2002) The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD. Mol Cell Biol 22(20):7066–7082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Amthor H, Otto A, Macharia R, McKinnell I, Patel K (2006) Myostatin imposes reversible quiescence on embryonic muscle precursors. Dev Dyn 235(3):672–680

    Article  CAS  PubMed  Google Scholar 

  18. Blau HM, Pavlath GK, Hardeman EC, Chiu CP, Silberstein L, Webster SG, Miller SC, Webster C (1985) Plasticity of the differentiated state. Science 230(4727):758–766

    Article  CAS  PubMed  Google Scholar 

  19. Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270(5639):725–727

    Article  CAS  PubMed  Google Scholar 

  20. Rios R, Carneiro I, Arce VM, Devesa J (2001) Myostatin regulates cell survival during C2C12 myogenesis. Biochem Biophys Res Commun 280(2):561–566

    Article  CAS  PubMed  Google Scholar 

  21. Taylor WE, Bhasin S, Artaza J, Byhower F, Azam M, Willard DH Jr, Kull FC Jr, Gonzalez-Cadavid N (2001) Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells. Am J Physiol Endocrinol Metab 280(2):E221–E228

    Article  CAS  PubMed  Google Scholar 

  22. Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R (2000) Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275(51):40235–40243

    Article  CAS  PubMed  Google Scholar 

  23. Langley B, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R (2002) Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 277(51):49831–49840

    Article  CAS  PubMed  Google Scholar 

  24. Rios R, Carneiro I, Arce VM, Devesa J (2002) Myostatin is an inhibitor of myogenic differentiation. Am J Phys Cell Phys 282(5):C993–C999

    Article  CAS  Google Scholar 

  25. Guardiola O, Lafuste P, Brunelli S, Iaconis S, Touvier T, Mourikis P, De Bock K, Lonardo E, Andolfi G, Bouche A, Liguori GL, Shen MM, Tajbakhsh S, Cossu G, Carmeliet P, Minchiotti G (2012) Cripto regulates skeletal muscle regeneration and modulates satellite cell determination by antagonizing myostatin. Proc Natl Acad Sci U S A 109(47):E3231–E3240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R (2003) Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 162(6):1135–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McKay BR, Ogborn DI, Bellamy LM, Tarnopolsky MA, Parise G (2012) Myostatin is associated with age-related human muscle stem cell dysfunction. FASEB J 26(6):2509–2521

    Article  CAS  PubMed  Google Scholar 

  28. McFarlane C, Hennebry A, Thomas M, Plummer E, Ling N, Sharma M, Kambadur R (2008) Myostatin signals through Pax7 to regulate satellite cell self-renewal. Exp Cell Res 314(2):317–329

    Article  CAS  PubMed  Google Scholar 

  29. McCroskery S, Thomas M, Platt L, Hennebry A, Nishimura T, McLeay L, Sharma M, Kambadur R (2005) Improved muscle healing through enhanced regeneration and reduced fibrosis in myostatin-null mice. J Cell Sci 118(Pt 15):3531–3541

    Article  CAS  PubMed  Google Scholar 

  30. Zhu J, Li Y, Shen W, Qiao C, Ambrosio F, Lavasani M, Nozaki M, Branca MF, Huard J (2007) Relationships between transforming growth factor-beta1, myostatin, and decorin: implications for skeletal muscle fibrosis. J Biol Chem 282(35):25852–25863

    Article  CAS  PubMed  Google Scholar 

  31. Wagner KR, Liu X, Chang X, Allen RE (2005) Muscle regeneration in the prolonged absence of myostatin. Proc Natl Acad Sci U S A 102(7):2519–2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Amthor H, Otto A, Vulin A, Rochat A, Dumonceaux J, Garcia L, Mouisel E, Hourde C, Macharia R, Friedrichs M, Relaix F, Zammit PS, Matsakas A, Patel K, Partridge T (2009) Muscle hypertrophy driven by myostatin blockade does not require stem/precursor-cell activity. Proc Natl Acad Sci U S A 106(18):7479–7484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee SJ, Huynh TV, Lee YS, Sebald SM, Wilcox-Adelman SA, Iwamori N, Lepper C, Matzuk MM, Fan CM (2012) Role of satellite cells versus myofibers in muscle hypertrophy induced by inhibition of the myostatin/activin signaling pathway. Proc Natl Acad Sci U S A 109(35):E2353–E2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang Q, McPherron AC (2012) Myostatin inhibition induces muscle fibre hypertrophy prior to satellite cell activation. J Physiol 590(9):2151–2165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bo LZ, Zhang J, Wagner KR (2012) Inhibition of myostatin reverses muscle fibrosis through apoptosis. J Cell Sci 125(Pt 17):3957–3965

    Google Scholar 

  36. Li ZB, Kollias HD, Wagner KR (2008) Myostatin directly regulates skeletal muscle fibrosis. J Biol Chem 283(28):19371–19378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grobet L, Pirottin D, Farnir F, Poncelet D, Royo LJ, Brouwers B, Christians E, Desmecht D, Coignoul F, Kahn R, Georges M (2003) Modulating skeletal muscle mass by postnatal, muscle-specific inactivation of the myostatin gene. Genesis 35(4):227–238

    Article  CAS  PubMed  Google Scholar 

  38. Haidet AM, Rizo L, Handy C, Umapathi P, Eagle A, Shilling C, Boue D, Martin PT, Sahenk Z, Mendell JR, Kaspar BK (2008) Long-term enhancement of skeletal muscle mass and strength by single gene administration of myostatin inhibitors. Proc Natl Acad Sci U S A 105(11):4318–4322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Whittemore LA, Song K, Li X, Aghajanian J, Davies M, Girgenrath S, Hill JJ, Jalenak M, Kelley P, Knight A, Maylor R, O'Hara D, Pearson A, Quazi A, Ryerson S, Tan XY, Tomkinson KN, Veldman GM, Widom A, Wright JF, Wudyka S, Zhao L, Wolfman NM (2003) Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem Biophys Res Commun 300(4):965–971

    Article  CAS  PubMed  Google Scholar 

  40. Durieux AC, Amirouche A, Banzet S, Koulmann N, Bonnefoy R, Pasdeloup M, Mouret C, Bigard X, Peinnequin A, Freyssenet D (2007) Ectopic expression of myostatin induces atrophy of adult skeletal muscle by decreasing muscle gene expression. Endocrinology 148(7):3140–3147

    Article  CAS  PubMed  Google Scholar 

  41. Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF, Tomkinson KN, McPherron AC, Wolfman NM, Lee SJ (2002) Induction of cachexia in mice by systemically administered myostatin. Science 296(5572):1486–1488

    Article  CAS  PubMed  Google Scholar 

  42. Reisz-Porszasz S, Bhasin S, Artaza JN, Shen R, Sinha-Hikim I, Hogue A, Fielder TJ, Gonzalez-Cadavid NF (2003) Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin. Am J Physiol Endocrinol Metab 285(4):E876–E888

    Article  CAS  PubMed  Google Scholar 

  43. Brocca L, Toniolo L, Reggiani C, Bottinelli R, Sandri M, Pellegrino MA (2017) FoxO-dependent atrogenes vary among catabolic conditions and play a key role in muscle atrophy induced by hindlimb suspension. J Physiol 595(4):1143–1158

    Article  CAS  PubMed  Google Scholar 

  44. Milan G, Romanello V, Pescatore F, Armani A, Paik JH, Frasson L, Seydel A, Zhao J, Abraham R, Goldberg AL, Blaauw B, DePinho RA, Sandri M (2015) Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun 6:6670

    Article  CAS  PubMed  Google Scholar 

  45. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117(3):399–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lokireddy S, Mouly V, Butler-Browne G, Gluckman PD, Sharma M, Kambadur R, McFarlane C (2011) Myostatin promotes the wasting of human myoblast cultures through promoting ubiquitin-proteasome pathway-mediated loss of sarcomeric proteins. Am J Phys Cell Phys 301(6):C1316–C1324

    Article  CAS  Google Scholar 

  47. Lokireddy S, Wijesoma IW, Sze SK, McFarlane C, Kambadur R, Sharma M (2012) Identification of atrogin-1-targeted proteins during the myostatin-induced skeletal muscle wasting. Am J Phys Cell Phys 303(5):C512–C529

    Article  CAS  Google Scholar 

  48. McFarlane C, Plummer E, Thomas M, Hennebry A, Ashby M, Ling N, Smith H, Sharma M, Kambadur R (2006) Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism. J Cell Physiol 209(2):501–514

    Article  CAS  PubMed  Google Scholar 

  49. Bollinger LM, Witczak CA, Houmard JA, Brault JJ (2014) SMAD3 augments FoxO3-induced MuRF-1 promoter activity in a DNA-binding-dependent manner. Am J Phys Cell Phys 307(3):C278–C287

    Article  CAS  Google Scholar 

  50. Gomis RR, Alarcon C, He W, Wang Q, Seoane J, Lash A, Massague J (2006) A FoxO-Smad synexpression group in human keratinocytes. Proc Natl Acad Sci U S A 103(34):12747–12752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Seoane J, Le HV, Shen L, Anderson SA, Massague J (2004) Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117(2):211–223

    Article  CAS  PubMed  Google Scholar 

  52. Allen DL, Unterman TG (2007) Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors. Am J Phys Cell Phys 292(1):C188–C199

    Article  CAS  Google Scholar 

  53. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3(11):1014–1019

    Article  CAS  PubMed  Google Scholar 

  54. Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, Glass DJ (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3(11):1009–1013

    Article  CAS  PubMed  Google Scholar 

  55. Morissette MR, Cook SA, Buranasombati C, Rosenberg MA, Rosenzweig A (2009) Myostatin inhibits IGF-I-induced myotube hypertrophy through Akt. Am J Phys Cell Phys 297(5):C1124–C1132

    Article  CAS  Google Scholar 

  56. Welle S, Burgess K, Mehta S (2009) Stimulation of skeletal muscle myofibrillar protein synthesis, p70 S6 kinase phosphorylation, and ribosomal protein S6 phosphorylation by inhibition of myostatin in mature mice. Am J Physiol Endocrinol Metab 296(3):E567–E572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ (2009) Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Phys Cell Phys 296(6):C1258–C1270

    Article  CAS  Google Scholar 

  58. Retamales A, Zuloaga R, Valenzuela CA, Gallardo-Escarate C, Molina A, Valdes JA (2015) Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation. Biochem Biophys Res Commun 464(2):596–602

    Article  CAS  PubMed  Google Scholar 

  59. Conery AR, Cao Y, Thompson EA, Townsend CM Jr, Ko TC, Luo K (2004) Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis. Nat Cell Biol 6(4):366–372

    Article  CAS  PubMed  Google Scholar 

  60. Remy I, Montmarquette A, Michnick SW (2004) PKB/Akt modulates TGF-beta signalling through a direct interaction with Smad3. Nat Cell Biol 6(4):358–365

    Article  CAS  PubMed  Google Scholar 

  61. Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14(3):395–403

    Article  CAS  PubMed  Google Scholar 

  62. Goodman CA, McNally RM, Hoffmann FM, Hornberger TA (2013) Smad3 induces atrogin-1, inhibits mTOR and protein synthesis, and promotes muscle atrophy in vivo. Mol Endocrinol 27(11):1946–1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Carlson CJ, Booth FW, Gordon SE (1999) Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading. Am J Phys 277(2 Pt 2):R601–R606

    CAS  Google Scholar 

  64. Salerno MS, Thomas M, Forbes D, Watson T, Kambadur R, Sharma M (2004) Molecular analysis of fiber type-specific expression of murine myostatin promoter. Am J Phys Cell Phys 287(4):C1031–C1040

    Article  CAS  Google Scholar 

  65. Hughes SM, Taylor JM, Tapscott SJ, Gurley CM, Carter WJ, Peterson CA (1993) Selective accumulation of MyoD and myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones. Development 118(4):1137–1147

    CAS  PubMed  Google Scholar 

  66. Amthor H, Macharia R, Navarrete R, Schuelke M, Brown SC, Otto A, Voit T, Muntoni F, Vrbova G, Partridge T, Zammit P, Bunger L, Patel K (2007) Lack of myostatin results in excessive muscle growth but impaired force generation. Proc Natl Acad Sci U S A 104(6):1835–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hennebry A, Berry C, Siriett V, O'Callaghan P, Chau L, Watson T, Sharma M, Kambadur R (2009) Myostatin regulates fiber-type composition of skeletal muscle by regulating MEF2 and MyoD gene expression. Am J Phys Cell Phys 296(3):C525–C534

    Article  CAS  Google Scholar 

  68. Mouisel E, Relizani K, Mille-Hamard L, Denis R, Hourde C, Agbulut O, Patel K, Arandel L, Morales-Gonzalez S, Vignaud A, Garcia L, Ferry A, Luquet S, Billat V, Ventura-Clapier R, Schuelke M, Amthor H (2014) Myostatin is a key mediator between energy metabolism and endurance capacity of skeletal muscle. Am J Phys Regul Integr Comp Phys 307(4):R444–R454

    CAS  Google Scholar 

  69. Relizani K, Mouisel E, Giannesini B, Hourde C, Patel K, Morales Gonzalez S, Julich K, Vignaud A, Pietri-Rouxel F, Fortin D, Garcia L, Blot S, Ritvos O, Bendahan D, Ferry A, Ventura-Clapier R, Schuelke M, Amthor H (2014) Blockade of ActRIIB signaling triggers muscle fatigability and metabolic myopathy. Mol Ther 22(8):1423–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cadena SM, Tomkinson KN, Monnell TE, Spaits MS, Kumar R, Underwood KW, Pearsall RS, Lachey JL (2010) Administration of a soluble activin type IIB receptor promotes skeletal muscle growth independent of fiber type. J Appl Physiol (1985) 109(3):635–642

    Article  CAS  Google Scholar 

  71. Bechir N, Pecchi E, Relizani K, Vilmen C, Le Fur Y, Bernard M, Amthor H, Bendahan D, Giannesini B (2016) Mitochondrial impairment induced by postnatal ActRIIB blockade does not alter function and energy status in exercising mouse glycolytic muscle in vivo. Am J Physiol Endocrinol Metab 310(7):E539–E549

    Article  PubMed  Google Scholar 

  72. Lee SJ, McPherron AC (2001) Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci U S A 98(16):9306–9311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rebbapragada A, Benchabane H, Wrana JL, Celeste AJ, Attisano L (2003) Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Mol Cell Biol 23(20):7230–7242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee SJ, Reed LA, Davies MV, Girgenrath S, Goad ME, Tomkinson KN, Wright JF, Barker C, Ehrmantraut G, Holmstrom J, Trowell B, Gertz B, Jiang MS, Sebald SM, Matzuk M, Li E, Liang LF, Quattlebaum E, Stotish RL, Wolfman NM (2005) Regulation of muscle growth by multiple ligands signaling through activin type II receptors. Proc Natl Acad Sci U S A 102(50):18117–18122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kemaladewi DU, de Gorter DJ, Aartsma-Rus A, van Ommen GJ, ten Dijke P, t Hoen PA, Hoogaars WM (2012) Cell-type specific regulation of myostatin signaling. FASEB J 26(4):1462–1472

    Article  CAS  PubMed  Google Scholar 

  76. Wolfman NM, McPherron AC, Pappano WN, Davies MV, Song K, Tomkinson KN, Wright JF, Zhao L, Sebald SM, Greenspan DS, Lee SJ (2003) Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases. Proc Natl Acad Sci U S A 100(26):15842–15846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lee SJ (2008) Genetic analysis of the role of proteolysis in the activation of latent myostatin. PLoS One 3(2):e1628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Matsakas A, Foster K, Otto A, Macharia R, Elashry MI, Feist S, Graham I, Foster H, Yaworsky P, Walsh F, Dickson G, Patel K (2009) Molecular, cellular and physiological investigation of myostatin propeptide-mediated muscle growth in adult mice. Neuromuscul Disord 19(7):489–499

    Article  PubMed  Google Scholar 

  79. Qiao C, Li J, Jiang J, Zhu X, Wang B, Li J, Xiao X (2008) Myostatin propeptide gene delivery by adeno-associated virus serotype 8 vectors enhances muscle growth and ameliorates dystrophic phenotypes in mdx mice. Hum Gene Ther 19(3):241–254

    Article  CAS  PubMed  Google Scholar 

  80. Qiao C, Li J, Zheng H, Bogan J, Li J, Yuan Z, Zhang C, Bogan D, Kornegay J, Xiao X (2009) Hydrodynamic limb vein injection of adeno-associated virus serotype 8 vector carrying canine myostatin propeptide gene into normal dogs enhances muscle growth. Hum Gene Ther 20(1):1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hill JJ, Davies MV, Pearson AA, Wang JH, Hewick RM, Wolfman NM, Qiu Y (2002) The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. J Biol Chem 277(43):40735–40741

    Article  CAS  PubMed  Google Scholar 

  82. Amthor H, Nicholas G, McKinnell I, Kemp CF, Sharma M, Kambadur R, Patel K (2004) Follistatin complexes Myostatin and antagonises Myostatin-mediated inhibition of myogenesis. Dev Biol 270(1):19–30

    Article  CAS  PubMed  Google Scholar 

  83. Cash JN, Rejon CA, McPherron AC, Bernard DJ, Thompson TB (2009) The structure of myostatin: follistatin 288: insights into receptor utilization and heparin binding. EMBO J 28(17):2662–2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hill JJ, Qiu Y, Hewick RM, Wolfman NM (2003) Regulation of myostatin in vivo by growth and differentiation factor-associated serum protein-1: a novel protein with protease inhibitor and follistatin domains. Mol Endocrinol 17(6):1144–1154

    Article  CAS  PubMed  Google Scholar 

  85. Kondas K, Szlama G, Trexler M, Patthy L (2008) Both WFIKKN1 and WFIKKN2 have high affinity for growth and differentiation factors 8 and 11. J Biol Chem 283(35):23677–23684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee SJ, Lee YS, Zimmers TA, Soleimani A, Matzuk MM, Tsuchida K, Cohn RD, Barton ER (2010) Regulation of muscle mass by follistatin and activins. Mol Endocrinol 24(10):1998–2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee YS, Lee SJ (2013) Regulation of GDF-11 and myostatin activity by GASP-1 and GASP-2. Proc Natl Acad Sci U S A 110(39):E3713–E3722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gilson H, Schakman O, Kalista S, Lause P, Tsuchida K, Thissen JP (2009) Follistatin induces muscle hypertrophy through satellite cell proliferation and inhibition of both myostatin and activin. Am J Physiol Endocrinol Metab 297(1):E157–E164

    Article  CAS  PubMed  Google Scholar 

  89. Lee SJ (2007) Quadrupling muscle mass in mice by targeting TGF-beta signaling pathways. PLoS One 2(8):e789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Nakatani M, Takehara Y, Sugino H, Matsumoto M, Hashimoto O, Hasegawa Y, Murakami T, Uezumi A, Takeda S, Noji S, Sunada Y, Tsuchida K (2008) Transgenic expression of a myostatin inhibitor derived from follistatin increases skeletal muscle mass and ameliorates dystrophic pathology in mdx mice. FASEB J 22(2):477–487

    Article  CAS  PubMed  Google Scholar 

  91. Zhu J, Li Y, Lu A, Gharaibeh B, Ma J, Kobayashi T, Quintero AJ, Huard J (2011) Follistatin improves skeletal muscle healing after injury and disease through an interaction with muscle regeneration, angiogenesis, and fibrosis. Am J Pathol 179(2):915–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Miura T, Kishioka Y, Wakamatsu J, Hattori A, Hennebry A, Berry CJ, Sharma M, Kambadur R, Nishimura T (2006) Decorin binds myostatin and modulates its activity to muscle cells. Biochem Biophys Res Commun 340(2):675–680

    Article  CAS  PubMed  Google Scholar 

  93. Li Y, Li J, Zhu J, Sun B, Branca M, Tang Y, Foster W, Xiao X, Huard J (2007) Decorin gene transfer promotes muscle cell differentiation and muscle regeneration. Mol Ther 15(9):1616–1622

    Article  CAS  PubMed  Google Scholar 

  94. Xu Z, Ichikawa N, Kosaki K, Yamada Y, Sasaki T, Sakai LY, Kurosawa H, Hattori N, Arikawa-Hirasawa E (2010) Perlecan deficiency causes muscle hypertrophy, a decrease in myostatin expression, and changes in muscle fiber composition. Matrix Biol 29(6):461–470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Sengle G, Ono RN, Sasaki T, Sakai LY (2011) Prodomains of transforming growth factor beta (TGFbeta) superfamily members specify different functions: extracellular matrix interactions and growth factor bioavailability. J Biol Chem 286(7):5087–5099

    Article  CAS  PubMed  Google Scholar 

  96. Anderson SB, Goldberg AL, Whitman M (2008) Identification of a novel pool of extracellular pro-myostatin in skeletal muscle. J Biol Chem 283(11):7027–7035

    Article  CAS  PubMed  Google Scholar 

  97. Pirruccello-Straub M, Jackson J, Wawersik S, Webster MT, Salta L, Long K, McConaughy W, Capili A, Boston C, Carven GJ, Mahanthappa NK, Turner KJ, Donovan A (2018) Blocking extracellular activation of myostatin as a strategy for treating muscle wasting. Sci Rep 8(1):2292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lamar KM, Bogdanovich S, Gardner BB, Gao QQ, Miller T, Earley JU, Hadhazy M, Vo AH, Wren L, Molkentin JD, McNally EM (2016) Overexpression of latent TGFbeta binding Protein 4 in muscle ameliorates muscular dystrophy through myostatin and TGFbeta. PLoS Genet 12(5):e1006019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Coley WD, Bogdanik L, Vila MC, Yu Q, Van Der Meulen JH, Rayavarapu S, Novak JS, Nearing M, Quinn JL, Saunders A, Dolan C, Andrews W, Lammert C, Austin A, Partridge TA, Cox GA, Lutz C, Nagaraju K (2016) Effect of genetic background on the dystrophic phenotype in mdx mice. Hum Mol Genet 25(1):130–145

    Article  CAS  PubMed  Google Scholar 

  100. Heydemann A, Ceco E, Lim JE, Hadhazy M, Ryder P, Moran JL, Beier DR, Palmer AA, McNally EM (2009) Latent TGF-beta-binding protein 4 modifies muscular dystrophy in mice. J Clin Invest 119(12):3703–3712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhu X, Topouzis S, Liang LF, Stotish RL (2004) Myostatin signaling through Smad2, Smad3 and Smad4 is regulated by the inhibitory Smad7 by a negative feedback mechanism. Cytokine 26(6):262–272

    Article  CAS  PubMed  Google Scholar 

  102. Liu D, Black BL, Derynck R (2001) TGF-beta inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3. Genes Dev 15(22):2950–2966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Liu D, Kang JS, Derynck R (2004) TGF-beta-activated Smad3 represses MEF2-dependent transcription in myogenic differentiation. EMBO J 23(7):1557–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Forbes D, Jackman M, Bishop A, Thomas M, Kambadur R, Sharma M (2006) Myostatin auto-regulates its expression by feedback loop through Smad7 dependent mechanism. J Cell Physiol 206(1):264–272

    Article  CAS  PubMed  Google Scholar 

  105. Cohen TV, Kollias HD, Liu N, Ward CW, Wagner KR (2015) Genetic disruption of Smad7 impairs skeletal muscle growth and regeneration. J Physiol 593(11):2479–2497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kollias HD, Perry RL, Miyake T, Aziz A, McDermott JC (2006) Smad7 promotes and enhances skeletal muscle differentiation. Mol Cell Biol 26(16):6248–6260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Winbanks CE, Murphy KT, Bernardo BC, Qian H, Liu Y, Sepulveda PV, Beyer C, Hagg A, Thomson RE, Chen JL, Walton KL, Loveland KL, McMullen JR, Rodgers BD, Harrison CA, Lynch GS, Gregorevic P (2016) Smad7 gene delivery prevents muscle wasting associated with cancer cachexia in mice. Sci Transl Med 8(348):348ra398

    Article  CAS  Google Scholar 

  108. Sartori R, Milan G, Patron M, Mammucari C, Blaauw B, Abraham R, Sandri M (2009) Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Phys Cell Phys 296(6):C1248–C1257

    Article  CAS  Google Scholar 

  109. Tando T, Hirayama A, Furukawa M, Sato Y, Kobayashi T, Funayama A, Kanaji A, Hao W, Watanabe R, Morita M, Oike T, Miyamoto K, Soga T, Nomura M, Yoshimura A, Tomita M, Matsumoto M, Nakamura M, Toyama Y, Miyamoto T (2016) Smad2/3 proteins are required for immobilization-induced skeletal muscle atrophy. J Biol Chem 291(23):12184–12194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ge X, McFarlane C, Vajjala A, Lokireddy S, Ng ZH, Tan CK, Tan NS, Wahli W, Sharma M, Kambadur R (2011) Smad3 signaling is required for satellite cell function and myogenic differentiation of myoblasts. Cell Res 21(11):1591–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ge X, Vajjala A, McFarlane C, Wahli W, Sharma M, Kambadur R (2012) Lack of Smad3 signaling leads to impaired skeletal muscle regeneration. Am J Physiol Endocrinol Metab 303(1):E90–E102

    Article  CAS  PubMed  Google Scholar 

  112. Huang Z, Chen D, Zhang K, Yu B, Chen X, Meng J (2007) Regulation of myostatin signaling by c-Jun N-terminal kinase in C2C12 cells. Cell Signal 19(11):2286–2295

    Article  CAS  PubMed  Google Scholar 

  113. Philip B, Lu Z, Gao Y (2005) Regulation of GDF-8 signaling by the p38 MAPK. Cell Signal 17(3):365–375

    Article  CAS  PubMed  Google Scholar 

  114. Yang W, Chen Y, Zhang Y, Wang X, Yang N, Zhu D (2006) Extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase pathway is involved in myostatin-regulated differentiation repression. Cancer Res 66(3):1320–1326

    Article  CAS  PubMed  Google Scholar 

  115. Seaberg B, Henslee G, Wang S, Paez-Colasante X, Landreth GE, Rimer M (2015) Muscle-derived extracellular signal-regulated kinases 1 and 2 are required for the maintenance of adult myofibers and their neuromuscular junctions. Mol Cell Biol 35(7):1238–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shi H, Scheffler JM, Zeng C, Pleitner JM, Hannon KM, Grant AL, Gerrard DE (2009) Mitogen-activated protein kinase signaling is necessary for the maintenance of skeletal muscle mass. Am J Phys Cell Phys 296(5):C1040–C1048

    Article  CAS  Google Scholar 

  117. Barreto R, Kitase Y, Matsumoto T, Pin F, Colston KC, Couch KE, O'Connell TM, Couch ME, Bonewald LF, Bonetto A (2017) ACVR2B/Fc counteracts chemotherapy-induced loss of muscle and bone mass. Sci Rep 7(1):14470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Barreto R, Waning DL, Gao H, Liu Y, Zimmers TA, Bonetto A (2016) Chemotherapy-related cachexia is associated with mitochondrial depletion and the activation of ERK1/2 and p38 MAPKs. Oncotarget 7(28):43442–43460

    Article  PubMed  PubMed Central  Google Scholar 

  119. MacDonald EM, Andres-Mateos E, Mejias R, Simmers JL, Mi R, Park JS, Ying S, Hoke A, Lee SJ, Cohn RD (2014) Denervation atrophy is independent from Akt and mTOR activation and is not rescued by myostatin inhibition. Dis Model Mech 7(4):471–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Penna F, Costamagna D, Fanzani A, Bonelli G, Baccino FM, Costelli P (2010) Muscle wasting and impaired myogenesis in tumor bearing mice are prevented by ERK inhibition. PLoS One 5(10):e13604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Bonetto A, Aydogdu T, Jin X, Zhang Z, Zhan R, Puzis L, Koniaris LG, Zimmers TA (2012) JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. Am J Physiol Endocrinol Metab 303(3):E410–E421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bonetto A, Aydogdu T, Kunzevitzky N, Guttridge DC, Khuri S, Koniaris LG, Zimmers TA (2011) STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia. PLoS One 6(7):e22538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ma JF, Sanchez BJ, Hall DT, Tremblay AK, Di Marco S, Gallouzi IE (2017) STAT3 promotes IFNgamma/TNFalpha-induced muscle wasting in an NF-kappaB-dependent and IL-6-independent manner. EMBO Mol Med 9(5):622–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Silva KA, Dong J, Dong Y, Dong Y, Schor N, Tweardy DJ, Zhang L, Mitch WE (2015) Inhibition of Stat3 activation suppresses caspase-3 and the ubiquitin-proteasome system, leading to preservation of muscle mass in cancer cachexia. J Biol Chem 290(17):11177–11187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Zhang L, Pan J, Dong Y, Tweardy DJ, Dong Y, Garibotto G, Mitch WE (2013) Stat3 activation links a C/EBPdelta to myostatin pathway to stimulate loss of muscle mass. Cell Metab 18(3):368–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chakraborty D, Sumova B, Mallano T, Chen CW, Distler A, Bergmann C, Ludolph I, Horch RE, Gelse K, Ramming A, Distler O, Schett G, Senolt L, Distler JHW (2017) Activation of STAT3 integrates common profibrotic pathways to promote fibroblast activation and tissue fibrosis. Nat Commun 8(1):1130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Tang LY, Heller M, Meng Z, Yu LR, Tang Y, Zhou M, Zhang YE (2017) Transforming Growth Factor-beta (TGF-beta) Directly Activates the JAK1-STAT3 Axis to Induce Hepatic Fibrosis in Coordination with the SMAD Pathway. J Biol Chem 292(10):4302–4312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang G, Yu Y, Sun C, Liu T, Liang T, Zhan L, Lin X, Feng XH (2016) STAT3 selectively interacts with Smad3 to antagonize TGF-beta. Oncogene 35(33):4388–4398

    Article  CAS  PubMed  Google Scholar 

  129. Price FD, von Maltzahn J, Bentzinger CF, Dumont NA, Yin H, Chang NC, Wilson DH, Frenette J, Rudnicki MA (2014) Inhibition of JAK-STAT signaling stimulates adult satellite cell function. Nat Med 20(10):1174–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Tierney MT, Aydogdu T, Sala D, Malecova B, Gatto S, Puri PL, Latella L, Sacco A (2014) STAT3 signaling controls satellite cell expansion and skeletal muscle repair. Nat Med 20(10):1182–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Buas MF, Kadesch T (2010) Regulation of skeletal myogenesis by Notch. Exp Cell Res 316(18):3028–3033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. McFarlane C, Hui GZ, Amanda WZ, Lau HY, Lokireddy S, Xiaojia G, Mouly V, Butler-Browne G, Gluckman PD, Sharma M, Kambadur R (2011) Human myostatin negatively regulates human myoblast growth and differentiation. Am J Phys Cell Phys 301(1):C195–C203

    Article  CAS  Google Scholar 

  133. George RM, Biressi S, Beres BJ, Rogers E, Mulia AK, Allen RE, Rawls A, Rando TA, Wilson-Rawls J (2013) Numb-deficient satellite cells have regeneration and proliferation defects. Proc Natl Acad Sci U S A 110(46):18549–18554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Blokzijl A, Dahlqvist C, Reissmann E, Falk A, Moliner A, Lendahl U, Ibanez CF (2003) Cross-talk between the Notch and TGF-beta signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J Cell Biol 163(4):723–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Mu X, Tang Y, Lu A, Takayama K, Usas A, Wang B, Weiss K, Huard J (2015) The role of Notch signaling in muscle progenitor cell depletion and the rapid onset of histopathology in muscular dystrophy. Hum Mol Genet 24(10):2923–2937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sato AY, Richardson D, Cregor M, Davis HM, Au ED, McAndrews K, Zimmers TA, Organ JM, Peacock M, Plotkin LI, Bellido T (2017) Glucocorticoids Induce Bone and Muscle Atrophy by Tissue-Specific Mechanisms Upstream of E3 Ubiquitin Ligases. Endocrinology 158(3):664–677

    PubMed  PubMed Central  Google Scholar 

  137. Steelman CA, Recknor JC, Nettleton D, Reecy JM (2006) Transcriptional profiling of myostatin-knockout mice implicates Wnt signaling in postnatal skeletal muscle growth and hypertrophy. FASEB J 20(3):580–582

    Article  CAS  PubMed  Google Scholar 

  138. Bernardi H, Gay S, Fedon Y, Vernus B, Bonnieu A, Bacou F (2011) Wnt4 activates the canonical beta-catenin pathway and regulates negatively myostatin: functional implication in myogenesis. Am J Phys Cell Phys 300(5):C1122–C1138

    Article  CAS  Google Scholar 

  139. Takata H, Terada K, Oka H, Sunada Y, Moriguchi T, Nohno T (2007) Involvement of Wnt4 signaling during myogenic proliferation and differentiation of skeletal muscle. Dev Dyn 236(10):2800–2807

    Article  CAS  PubMed  Google Scholar 

  140. Gozo MC, Aspuria PJ, Cheon DJ, Walts AE, Berel D, Miura N, Karlan BY, Orsulic S (2013) Foxc2 induces Wnt4 and Bmp4 expression during muscle regeneration and osteogenesis. Cell Death Differ 20(8):1031–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sartori R, Schirwis E, Blaauw B, Bortolanza S, Zhao J, Enzo E, Stantzou A, Mouisel E, Toniolo L, Ferry A, Stricker S, Goldberg AL, Dupont S, Piccolo S, Amthor H, Sandri M (2013) BMP signaling controls muscle mass. Nat Genet 45(11):1309–1318

    Article  CAS  PubMed  Google Scholar 

  142. Winbanks CE, Chen JL, Qian H, Liu Y, Bernardo BC, Beyer C, Watt KI, Thomson RE, Connor T, Turner BJ, McMullen JR, Larsson L, McGee SL, Harrison CA, Gregorevic P (2013) The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass. J Cell Biol 203(2):345–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chen JL, Walton KL, Hagg A, Colgan TD, Johnson K, Qian H, Gregorevic P, Harrison CA (2017) Specific targeting of TGF-beta family ligands demonstrates distinct roles in the regulation of muscle mass in health and disease. Proc Natl Acad Sci U S A 114(26):E5266–E5275

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Ono Y, Calhabeu F, Morgan JE, Katagiri T, Amthor H, Zammit PS (2011) BMP signalling permits population expansion by preventing premature myogenic differentiation in muscle satellite cells. Cell Death Differ 18(2):222–234

    Article  CAS  PubMed  Google Scholar 

  145. Stantzou A, Schirwis E, Swist S, Alonso-Martin S, Polydorou I, Zarrouki F, Mouisel E, Beley C, Julien A, Le Grand F, Garcia L, Colnot C, Birchmeier C, Braun T, Schuelke M, Relaix F, Amthor H (2017) BMP signaling regulates satellite cell-dependent postnatal muscle growth. Development 144(15):2737–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Lalani R, Bhasin S, Byhower F, Tarnuzzer R, Grant M, Shen R, Asa S, Ezzat S, Gonzalez-Cadavid NF (2000) Myostatin and insulin-like growth factor-I and -II expression in the muscle of rats exposed to the microgravity environment of the NeuroLab space shuttle flight. J Endocrinol 167(3):417–428

    Article  CAS  PubMed  Google Scholar 

  147. Reardon KA, Davis J, Kapsa RM, Choong P, Byrne E (2001) Myostatin, insulin-like growth factor-1, and leukemia inhibitory factor mRNAs are upregulated in chronic human disuse muscle atrophy. Muscle Nerve 24(7):893–899

    Article  CAS  PubMed  Google Scholar 

  148. Wehling M, Cai B, Tidball JG (2000) Modulation of myostatin expression during modified muscle use. FASEB J 14(1):103–110

    Article  CAS  PubMed  Google Scholar 

  149. McMahon CD, Popovic L, Oldham JM, Jeanplong F, Smith HK, Kambadur R, Sharma M, Maxwell L, Bass JJ (2003) Myostatin-deficient mice lose more skeletal muscle mass than wild-type controls during hindlimb suspension. Am J Physiol Endocrinol Metab 285(1):E82–E87

    Article  CAS  PubMed  Google Scholar 

  150. Smith HK, Matthews KG, Oldham JM, Jeanplong F, Falconer SJ, Bass JJ, Senna-Salerno M, Bracegirdle JW, McMahon CD (2014) Translational signalling, atrogenic and myogenic gene expression during unloading and reloading of skeletal muscle in myostatin-deficient mice. PLoS One 9(4):e94356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Murphy KT, Cobani V, Ryall JG, Ibebunjo C, Lynch GS (2011) Acute antibody-directed myostatin inhibition attenuates disuse muscle atrophy and weakness in mice. J Appl Physiol (1985) 110(4):1065–1072

    Article  CAS  Google Scholar 

  152. Latres E, Pangilinan J, Miloscio L, Bauerlein R, Na E, Potocky TB, Huang Y, Eckersdorff M, Rafique A, Mastaitis J, Lin C, Murphy AJ, Yancopoulos GD, Gromada J, Stitt T (2015) Myostatin blockade with a fully human monoclonal antibody induces muscle hypertrophy and reverses muscle atrophy in young and aged mice. Skelet Muscle 5:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Tsai SW, Tung YT, Chen HL, Yang SH, Liu CY, Lu M, Pai HJ, Lin CC, Chen CM (2016) Myostatin propeptide gene delivery by gene gun ameliorates muscle atrophy in a rat model of botulinum toxin-induced nerve denervation. Life Sci 146:15–23

    Article  CAS  PubMed  Google Scholar 

  154. Sepulveda PV, Lamon S, Hagg A, Thomson RE, Winbanks CE, Qian H, Bruce CR, Russell AP, Gregorevic P (2015) Evaluation of follistatin as a therapeutic in models of skeletal muscle atrophy associated with denervation and tenotomy. Sci Rep 5:17535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Holzbaur EL, Howland DS, Weber N, Wallace K, She Y, Kwak S, Tchistiakova LA, Murphy E, Hinson J, Karim R, Tan XY, Kelley P, McGill KC, Williams G, Hobbs C, Doherty P, Zaleska MM, Pangalos MN, Walsh FS (2006) Myostatin inhibition slows muscle atrophy in rodent models of amyotrophic lateral sclerosis. Neurobiol Dis 23(3):697–707

    Article  CAS  PubMed  Google Scholar 

  156. Miller TM, Kim SH, Yamanaka K, Hester M, Umapathi P, Arnson H, Rizo L, Mendell JR, Gage FH, Cleveland DW, Kaspar BK (2006) Gene transfer demonstrates that muscle is not a primary target for non-cell-autonomous toxicity in familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 103(51):19546–19551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Morrison BM, Lachey JL, Warsing LC, Ting BL, Pullen AE, Underwood KW, Kumar R, Sako D, Grinberg A, Wong V, Colantuoni E, Seehra JS, Wagner KR (2009) A soluble activin type IIB receptor improves function in a mouse model of amyotrophic lateral sclerosis. Exp Neurol 217(2):258–268

    Article  CAS  PubMed  Google Scholar 

  158. Rindt H, Buckley DM, Vale SM, Krogman M, Rose FF Jr, Garcia ML, Lorson CL (2012) Transgenic inactivation of murine myostatin does not decrease the severity of disease in a model of Spinal Muscular Atrophy. Neuromuscul Disord 22(3):277–285

    Article  PubMed  Google Scholar 

  159. Sumner CJ, Wee CD, Warsing LC, Choe DW, Ng AS, Lutz C, Wagner KR (2009) Inhibition of myostatin does not ameliorate disease features of severe spinal muscular atrophy mice. Hum Mol Genet 18(17):3145–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Rose FF Jr, Mattis VB, Rindt H, Lorson CL (2009) Delivery of recombinant follistatin lessens disease severity in a mouse model of spinal muscular atrophy. Hum Mol Genet 18(6):997–1005

    Article  CAS  PubMed  Google Scholar 

  161. Feng Z, Ling KK, Zhao X, Zhou C, Karp G, Welch EM, Naryshkin N, Ratni H, Chen KS, Metzger F, Paushkin S, Weetall M, Ko CP (2016) Pharmacologically induced mouse model of adult spinal muscular atrophy to evaluate effectiveness of therapeutics after disease onset. Hum Mol Genet 25(5):964–975

    Article  CAS  PubMed  Google Scholar 

  162. Liu M, Hammers DW, Barton ER, Sweeney HL (2016) Activin Receptor Type IIB inhibition improves muscle phenotype and function in a mouse model of Spinal Muscular Atrophy. PLoS One 11(11):e0166803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Tieland M, Trouwborst I, Clark BC (2018) Skeletal muscle performance and ageing. J Cachexia Sarcopenia Muscle 9(1):3–19

    Article  PubMed  Google Scholar 

  164. Ballak SB, Degens H, de Haan A, Jaspers RT (2014) Aging related changes in determinants of muscle force generating capacity: a comparison of muscle aging in men and male rodents. Ageing Res Rev 14:43–55

    Article  PubMed  Google Scholar 

  165. Almada AE, Wagers AJ (2016) Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease. Nat Rev Mol Cell Biol 17(5):267–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Morissette MR, Stricker JC, Rosenberg MA, Buranasombati C, Levitan EB, Mittleman MA, Rosenzweig A (2009) Effects of myostatin deletion in aging mice. Aging Cell 8(5):573–583

    Article  CAS  PubMed  Google Scholar 

  167. Siriett V, Platt L, Salerno MS, Ling N, Kambadur R, Sharma M (2006) Prolonged absence of myostatin reduces sarcopenia. J Cell Physiol 209(3):866–873

    Article  CAS  PubMed  Google Scholar 

  168. Mendias CL, Bakhurin KI, Gumucio JP, Shallal-Ayzin MV, Davis CS, Faulkner JA (2015) Haploinsufficiency of myostatin protects against aging-related declines in muscle function and enhances the longevity of mice. Aging Cell 14(4):704–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Camporez JP, Petersen MC, Abudukadier A, Moreira GV, Jurczak MJ, Friedman G, Haqq CM, Petersen KF, Shulman GI (2016) Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice. Proc Natl Acad Sci U S A 113(8):2212–2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Murphy KT, Koopman R, Naim T, Leger B, Trieu J, Ibebunjo C, Lynch GS (2010) Antibody-directed myostatin inhibition in 21-mo-old mice reveals novel roles for myostatin signaling in skeletal muscle structure and function. FASEB J 24(11):4433–4442

    Article  CAS  PubMed  Google Scholar 

  171. Arounleut P, Bialek P, Liang LF, Upadhyay S, Fulzele S, Johnson M, Elsalanty M, Isales CM, Hamrick MW (2013) A myostatin inhibitor (propeptide-Fc) increases muscle mass and muscle fiber size in aged mice but does not increase bone density or bone strength. Exp Gerontol 48(9):898–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Collins-Hooper H, Sartori R, Macharia R, Visanuvimol K, Foster K, Matsakas A, Flasskamp H, Ray S, Dash PR, Sandri M, Patel K (2014) Propeptide-mediated inhibition of myostatin increases muscle mass through inhibiting proteolytic pathways in aged mice. J Gerontol A Biol Sci Med Sci 69(9):1049–1059

    Article  CAS  PubMed  Google Scholar 

  173. Benny Klimek ME, Aydogdu T, Link MJ, Pons M, Koniaris LG, Zimmers TA (2010) Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia. Biochem Biophys Res Commun 391(3):1548–1554

    Article  CAS  PubMed  Google Scholar 

  174. Busquets S, Toledo M, Orpi M, Massa D, Porta M, Capdevila E, Padilla N, Frailis V, Lopez-Soriano FJ, Han HQ, Argiles JM (2012) Myostatin blockage using actRIIB antagonism in mice bearing the Lewis lung carcinoma results in the improvement of muscle wasting and physical performance. J Cachexia Sarcopenia Muscle 3(1):37–43

    Article  PubMed  Google Scholar 

  175. Gallot YS, Durieux AC, Castells J, Desgeorges MM, Vernus B, Plantureux L, Remond D, Jahnke VE, Lefai E, Dardevet D, Nemoz G, Schaeffer L, Bonnieu A, Freyssenet DG (2014) Myostatin gene inactivation prevents skeletal muscle wasting in cancer. Cancer Res 74(24):7344–7356

    Article  CAS  PubMed  Google Scholar 

  176. Hatakeyama S, Summermatter S, Jourdain M, Melly S, Minetti GC, Lach-Trifilieff E (2016) ActRII blockade protects mice from cancer cachexia and prolongs survival in the presence of anti-cancer treatments. Skelet Muscle 6:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Murphy KT, Chee A, Gleeson BG, Naim T, Swiderski K, Koopman R, Lynch GS (2011) Antibody-directed myostatin inhibition enhances muscle mass and function in tumor-bearing mice. Am J Phys Regul Integr Comp Phys 301(3):R716–R726

    CAS  Google Scholar 

  178. Smith RC, Cramer MS, Mitchell PJ, Capen A, Huber L, Wang R, Myers L, Jones BE, Eastwood BJ, Ballard D, Hanson J, Credille KM, Wroblewski VJ, Lin BK, Heuer JG (2015) Myostatin neutralization results in preservation of muscle mass and strength in preclinical models of tumor-induced muscle wasting. Mol Cancer Ther 14(7):1661–1670

    Article  CAS  PubMed  Google Scholar 

  179. Zhou X, Wang JL, Lu J, Song Y, Kwak KS, Jiao Q, Rosenfeld R, Chen Q, Boone T, Simonet WS, Lacey DL, Goldberg AL, Han HQ (2010) Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 142(4):531–543

    Article  CAS  PubMed  Google Scholar 

  180. O'Connell KE, Guo W, Serra C, Beck M, Wachtman L, Hoggatt A, Xia D, Pearson C, Knight H, O'Connell M, Miller AD, Westmoreland SV, Bhasin S (2015) The effects of an ActRIIb receptor Fc fusion protein ligand trap in juvenile simian immunodeficiency virus-infected rhesus macaques. FASEB J 29(4):1165–1175

    Article  CAS  PubMed  Google Scholar 

  181. Zhang L, Rajan V, Lin E, Hu Z, Han HQ, Zhou X, Song Y, Min H, Wang X, Du J, Mitch WE (2011) Pharmacological inhibition of myostatin suppresses systemic inflammation and muscle atrophy in mice with chronic kidney disease. FASEB J 25(5):1653–1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Bodine SC, Furlow JD (2015) Glucocorticoids and Skeletal Muscle. Adv Exp Med Biol 872:145–176

    Article  CAS  PubMed  Google Scholar 

  183. Dong Y, Pan JS, Zhang L (2013) Myostatin suppression of Akirin1 mediates glucocorticoid-induced satellite cell dysfunction. PLoS One 8(3):e58554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Ma K, Mallidis C, Bhasin S, Mahabadi V, Artaza J, Gonzalez-Cadavid N, Arias J, Salehian B (2003) Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression. Am J Physiol Endocrinol Metab 285(2):E363–E371

    Article  CAS  PubMed  Google Scholar 

  185. Gilson H, Schakman O, Combaret L, Lause P, Grobet L, Attaix D, Ketelslegers JM, Thissen JP (2007) Myostatin gene deletion prevents glucocorticoid-induced muscle atrophy. Endocrinology 148(1):452–460

    Article  CAS  PubMed  Google Scholar 

  186. Lach-Trifilieff E, Minetti GC, Sheppard K, Ibebunjo C, Feige JN, Hartmann S, Brachat S, Rivet H, Koelbing C, Morvan F, Hatakeyama S, Glass DJ (2014) An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy. Mol Cell Biol 34(4):606–618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Burch PM, Pogoryelova O, Palandra J, Goldstein R, Bennett D, Fitz L, Guglieri M, Bettolo CM, Straub V, Evangelista T, Neubert H, Lochmuller H, Morris C (2017) Reduced serum myostatin concentrations associated with genetic muscle disease progression. J Neurol 264(3):541–553

    Article  CAS  PubMed  Google Scholar 

  188. Wagner KR, McPherron AC, Winik N, Lee SJ (2002) Loss of myostatin attenuates severity of muscular dystrophy in mdx mice. Ann Neurol 52(6):832–836

    Article  CAS  PubMed  Google Scholar 

  189. Kornegay JN, Bogan DJ, Bogan JR, Dow JL, Wang J, Fan Z, Liu N, Warsing LC, Grange RW, Ahn M, Balog-Alvarez CJ, Cotten SW, Willis MS, Brinkmeyer-Langford C, Zhu H, Palandra J, Morris CA, Styner MA, Wagner KR (2016) Dystrophin-deficient dogs with reduced myostatin have unequal muscle growth and greater joint contractures. Skelet Muscle 6:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Stedman HH, Sweeney HL, Shrager JB, Maguire HC, Panettieri RA, Petrof B, Narusawa M, Leferovich JM, Sladky JT, Kelly AM (1991) The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature 352(6335):536–539

    Article  CAS  PubMed  Google Scholar 

  191. Murphy KT, Ryall JG, Snell SM, Nair L, Koopman R, Krasney PA, Ibebunjo C, Holden KS, Loria PM, Salatto CT, Lynch GS (2010) Antibody-directed myostatin inhibition improves diaphragm pathology in young but not adult dystrophic mdx mice. Am J Pathol 176(5):2425–2434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Lee YS, Lehar A, Sebald S, Liu M, Swaggart KA, Talbot CC Jr, Pytel P, Barton ER, McNally EM, Lee SJ (2015) Muscle hypertrophy induced by myostatin inhibition accelerates degeneration in dysferlinopathy. Hum Mol Genet 24(20):5711–5719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Bartoli M, Poupiot J, Vulin A, Fougerousse F, Arandel L, Daniele N, Roudaut C, Noulet F, Garcia L, Danos O, Richard I (2007) AAV-mediated delivery of a mutated myostatin propeptide ameliorates calpain 3 but not alpha-sarcoglycan deficiency. Gene Ther 14(9):733–740

    Article  CAS  PubMed  Google Scholar 

  194. Parsons SA, Millay DP, Sargent MA, McNally EM, Molkentin JD (2006) Age-dependent effect of myostatin blockade on disease severity in a murine model of limb-girdle muscular dystrophy. Am J Pathol 168(6):1975–1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Lawlor MW, Read BP, Edelstein R, Yang N, Pierson CR, Stein MJ, Wermer-Colan A, Buj-Bello A, Lachey JL, Seehra JS, Beggs AH (2011) Inhibition of activin receptor type IIB increases strength and lifespan in myotubularin-deficient mice. Am J Pathol 178(2):784–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Tinklenberg J, Meng H, Yang L, Liu F, Hoffmann RG, Dasgupta M, Allen KP, Beggs AH, Hardeman EC, Pearsall RS, Fitts RH, Lawlor MW (2016) Treatment with ActRIIB-mFc Produces Myofiber Growth and Improves Lifespan in the Acta1 H40Y Murine Model of Nemaline Myopathy. Am J Pathol 186(6):1568–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Tinklenberg JA, Siebers EM, Beatka MJ, Meng H, Yang L, Zhang Z, Ross JA, Ochala J, Morris C, Owens JM, Laing NG, Nowak KJ, Lawlor MW (2018) Myostatin inhibition using mRK35 produces skeletal muscle growth and tubular aggregate formation in wild type and TgACTA1D286G nemaline myopathy mice. Hum Mol Genet 27(4):638–648

    Article  PubMed  Google Scholar 

  198. Li ZF, Shelton GD, Engvall E (2005) Elimination of myostatin does not combat muscular dystrophy in dy mice but increases postnatal lethality. Am J Pathol 166(2):491–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Sidis Y, Mukherjee A, Keutmann H, Delbaere A, Sadatsuki M, Schneyer A (2006) Biological activity of follistatin isoforms and follistatin-like-3 is dependent on differential cell surface binding and specificity for activin, myostatin, and bone morphogenetic proteins. Endocrinology 147(7):3586–3597

    Article  CAS  PubMed  Google Scholar 

  200. Souza TA, Chen X, Guo Y, Sava P, Zhang J, Hill JJ, Yaworsky PJ, Qiu Y (2008) Proteomic identification and functional validation of activins and bone morphogenetic protein 11 as candidate novel muscle mass regulators. Mol Endocrinol 22(12):2689–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. McPherron AC, Huynh TV, Lee SJ (2009) Redundancy of myostatin and growth/differentiation factor 11 function. BMC Dev Biol 9:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. McPherron AC, Lawler AM, Lee SJ (1999) Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nat Genet 22(3):260–264

    Article  CAS  PubMed  Google Scholar 

  203. Poggioli T, Vujic A, Yang P, Macias-Trevino C, Uygur A, Loffredo FS, Pancoast JR, Cho M, Goldstein J, Tandias RM, Gonzalez E, Walker RG, Thompson TB, Wagers AJ, Fong YW, Lee RT (2016) Circulating growth differentiation factor 11/8 levels decline with age. Circ Res 118(1):29–37

    Article  CAS  PubMed  Google Scholar 

  204. Sinha M, Jang YC, Oh J, Khong D, Wu EY, Manohar R, Miller C, Regalado SG, Loffredo FS, Pancoast JR, Hirshman MF, Lebowitz J, Shadrach JL, Cerletti M, Kim MJ, Serwold T, Goodyear LJ, Rosner B, Lee RT, Wagers AJ (2014) Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344(6184):649–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Egerman MA, Cadena SM, Gilbert JA, Meyer A, Nelson HN, Swalley SE, Mallozzi C, Jacobi C, Jennings LL, Clay I, Laurent G, Ma S, Brachat S, Lach-Trifilieff E, Shavlakadze T, Trendelenburg AU, Brack AS, Glass DJ (2015) GDF11 increases with age and inhibits skeletal muscle regeneration. Cell Metab 22(1):164–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Hammers DW, Merscham-Banda M, Hsiao JY, Engst S, Hartman JJ, Sweeney HL (2017) Supraphysiological levels of GDF11 induce striated muscle atrophy. EMBO Mol Med 9(4):531–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Jones JE, Cadena SM, Gong C, Wang X, Chen Z, Wang SX, Vickers C, Chen H, Lach-Trifilieff E, Hadcock JR, Glass DJ (2018) Supraphysiologic administration of GDF11 induces Cachexia in part by upregulating GDF15. Cell Rep 22(6):1522–1530

    Article  CAS  PubMed  Google Scholar 

  208. Zimmers TA, Jiang Y, Wang M, Liang TW, Rupert JE, Au ED, Marino FE, Couch ME, Koniaris LG (2017) Exogenous GDF11 induces cardiac and skeletal muscle dysfunction and wasting. Basic Res Cardiol 112(4):48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Schafer MJ, Atkinson EJ, Vanderboom PM, Kotajarvi B, White TA, Moore MM, Bruce CJ, Greason KL, Suri RM, Khosla S, Miller JD, Bergen HR 3rd, LeBrasseur NK (2016) Quantification of GDF11 and myostatin in human aging and cardiovascular disease. Cell Metab 23(6):1207–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Matzuk MM, Finegold MJ, Mather JP, Krummen L, Lu H, Bradley A (1994) Development of cancer cachexia-like syndrome and adrenal tumors in inhibin-deficient mice. Proc Natl Acad Sci U S A 91(19):8817–8821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Loumaye A, de Barsy M, Nachit M, Lause P, Frateur L, van Maanen A, Trefois P, Gruson D, Thissen JP (2015) Role of Activin A and myostatin in human cancer cachexia. J Clin Endocrinol Metab 100(5):2030–2038

    Article  CAS  PubMed  Google Scholar 

  212. Loumaye A, de Barsy M, Nachit M, Lause P, van Maanen A, Trefois P, Gruson D, Thissen JP (2017) Circulating Activin A predicts survival in cancer patients. J Cachexia Sarcopenia Muscle 8(5):768–777

    Article  PubMed  PubMed Central  Google Scholar 

  213. Chen JL, Walton KL, Winbanks CE, Murphy KT, Thomson RE, Makanji Y, Qian H, Lynch GS, Harrison CA, Gregorevic P (2014) Elevated expression of activins promotes muscle wasting and cachexia. FASEB J 28(4):1711–1723

    Article  CAS  PubMed  Google Scholar 

  214. Latres E, Mastaitis J, Fury W, Miloscio L, Trejos J, Pangilinan J, Okamoto H, Cavino K, Na E, Papatheodorou A, Willer T, Bai Y, Hae Kim J, Rafique A, Jaspers S, Stitt T, Murphy AJ, Yancopoulos GD, Gromada J (2017) Activin A more prominently regulates muscle mass in primates than does GDF8. Nat Commun 8:15153

    Article  PubMed  PubMed Central  Google Scholar 

  215. He L, Vichev K, Macharia R, Huang R, Christ B, Patel K, Amthor H (2005) Activin A inhibits formation of skeletal muscle during chick development. Anat Embryol (Berl) 209(5):401–407

    Article  CAS  Google Scholar 

  216. Link BA, Nishi R (1997) Opposing effects of activin A and follistatin on developing skeletal muscle cells. Exp Cell Res 233(2):350–362

    Article  CAS  PubMed  Google Scholar 

  217. Trendelenburg AU, Meyer A, Jacobi C, Feige JN, Glass DJ (2012) TAK-1/p38/nNFkappaB signaling inhibits myoblast differentiation by increasing levels of Activin A. Skelet Muscle 2(1):3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Mariot V, Joubert R, Hourde C, Feasson L, Hanna M, Muntoni F, Maisonobe T, Servais L, Bogni C, Le Panse R, Benvensite O, Stojkovic T, Machado PM, Voit T, Buj-Bello A, Dumonceaux J (2017) Downregulation of myostatin pathway in neuromuscular diseases may explain challenges of anti-myostatin therapeutic approaches. Nat Commun 8(1):1859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Border WA, Noble NA (1994) Transforming growth factor beta in tissue fibrosis. N Engl J Med 331(19):1286–1292

    Article  CAS  PubMed  Google Scholar 

  220. Massague J, Cheifetz S, Endo T, Nadal-Ginard B (1986) Type beta transforming growth factor is an inhibitor of myogenic differentiation. Proc Natl Acad Sci U S A 83(21):8206–8210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Olson EN, Sternberg E, Hu JS, Spizz G, Wilcox C (1986) Regulation of myogenic differentiation by type beta transforming growth factor. J Cell Biol 103(5):1799–1805

    Article  CAS  PubMed  Google Scholar 

  222. Cohn RD, van Erp C, Habashi JP, Soleimani AA, Klein EC, Lisi MT, Gamradt M, ap Rhys CM, Holm TM, Loeys BL, Ramirez F, Judge DP, Ward CW, Dietz HC (2007) Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of muscle regeneration in multiple myopathic states. Nat Med 13(2):204–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Accornero F, Kanisicak O, Tjondrokoesoemo A, Attia AC, McNally EM, Molkentin JD (2014) Myofiber-specific inhibition of TGFbeta signaling protects skeletal muscle from injury and dystrophic disease in mice. Hum Mol Genet 23(25):6903–6915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Biressi S, Miyabara EH, Gopinath SD, Carlig PM, Rando TA (2014) A Wnt-TGFbeta2 axis induces a fibrogenic program in muscle stem cells from dystrophic mice. Sci Transl Med 6(267):267ra176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Dadgar S, Wang Z, Johnston H, Kesari A, Nagaraju K, Chen YW, Hill DA, Partridge TA, Giri M, Freishtat RJ, Nazarian J, Xuan J, Wang Y, Hoffman EP (2014) Asynchronous remodeling is a driver of failed regeneration in Duchenne muscular dystrophy. J Cell Biol 207(1):139–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Nelson CA, Hunter RB, Quigley LA, Girgenrath S, Weber WD, McCullough JA, Dinardo CJ, Keefe KA, Ceci L, Clayton NP, McVie-Wylie A, Cheng SH, Leonard JP, Wentworth BM (2011) Inhibiting TGF-beta activity improves respiratory function in mdx mice. Am J Pathol 178(6):2611–2621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Vetrone SA, Montecino-Rodriguez E, Kudryashova E, Kramerova I, Hoffman EP, Liu SD, Miceli MC, Spencer MJ (2009) Osteopontin promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets and intramuscular TGF-beta. J Clin Invest 119(6):1583–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Vidal B, Serrano AL, Tjwa M, Suelves M, Ardite E, De Mori R, Baeza-Raja B, Martinez de Lagran M, Lafuste P, Ruiz-Bonilla V, Jardi M, Gherardi R, Christov C, Dierssen M, Carmeliet P, Degen JL, Dewerchin M, Munoz-Canoves P (2008) Fibrinogen drives dystrophic muscle fibrosis via a TGFbeta/alternative macrophage activation pathway. Genes Dev 22(13):1747–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Narola J, Pandey SN, Glick A, Chen YW (2013) Conditional expression of TGF-beta1 in skeletal muscles causes endomysial fibrosis and myofibers atrophy. PLoS One 8(11):e79356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Waning DL, Mohammad KS, Reiken S, Xie W, Andersson DC, John S, Chiechi A, Wright LE, Umanskaya A, Niewolna M, Trivedi T, Charkhzarrin S, Khatiwada P, Wronska A, Haynes A, Benassi MS, Witzmann FA, Zhen G, Wang X, Cao X, Roodman GD, Marks AR, Guise TA (2015) Excess TGF-beta mediates muscle weakness associated with bone metastases in mice. Nat Med 21(11):1262–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Carlson ME, Hsu M, Conboy IM (2008) Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature 454(7203):528–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Conboy IM, Conboy MJ, Smythe GM, Rando TA (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science 302(5650):1575–1577

    Article  CAS  PubMed  Google Scholar 

  233. Carlson ME, Conboy MJ, Hsu M, Barchas L, Jeong J, Agrawal A, Mikels AJ, Agrawal S, Schaffer DV, Conboy IM (2009) Relative roles of TGF-beta1 and Wnt in the systemic regulation and aging of satellite cell responses. Aging Cell 8(6):676–689

    Article  CAS  PubMed  Google Scholar 

  234. Carlson ME, Suetta C, Conboy MJ, Aagaard P, Mackey A, Kjaer M, Conboy I (2009) Molecular aging and rejuvenation of human muscle stem cells. EMBO Mol Med 1(8-9):381–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Wagner KR, Fleckenstein JL, Amato AA, Barohn RJ, Bushby K, Escolar DM, Flanigan KM, Pestronk A, Tawil R, Wolfe GI, Eagle M, Florence JM, King WM, Pandya S, Straub V, Juneau P, Meyers K, Csimma C, Araujo T, Allen R, Parsons SA, Wozney JM, Lavallie ER, Mendell JR (2008) A phase I/IItrial of MYO-029 in adult subjects with muscular dystrophy. Ann Neurol 63(5):561–571

    Article  CAS  PubMed  Google Scholar 

  236. Singh P, Rong H, Gordi T, Bosley J, Bhattacharya I (2016) Translational pharmacokinetic/pharmacodynamic analysis of MYO-029 antibody for muscular dystrophy. Clin Transl Sci 9(6):302–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Bhattacharya I, Manukyan Z, Chan P, Heatherington A, Harnisch L (2017) Application of quantitative pharmacology approaches in bridging pharmacokinetics and pharmacodynamics of Domagrozumab from adult healthy subjects to pediatric patients with Duchenne muscular disease. J Clin Pharmacol 58:314–326

    Article  CAS  PubMed  Google Scholar 

  238. Bhattacharya I, Pawlak S, Marraffino S, Christensen J, Sherlock SP, Alvey C, Morris C, Arkin S, Binks M (2017) Safety, tolerability, pharmacokinetics, and pharmacodynamics of Domagrozumab (PF-06252616), an antimyostatin monoclonal antibody, in healthy subjects. Clin Pharmacol Drug Dev 7:487–497

    Google Scholar 

  239. St Andre M, Johnson M, Bansal PN, Wellen J, Robertson A, Opsahl A, Burch PM, Bialek P, Morris C, Owens J (2017) A mouse anti-myostatin antibody increases muscle mass and improves muscle strength and contractility in the mdx mouse model of Duchenne muscular dystrophy and its humanized equivalent, domagrozumab (PF-06252616), increases muscle volume in cynomolgus monkeys. Skelet Muscle 7(1):25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Becker C, Lord SR, Studenski SA, Warden SJ, Fielding RA, Recknor CP, Hochberg MC, Ferrari SL, Blain H, Binder EF, Rolland Y, Poiraudeau S, Benson CT, Myers SL, Hu L, Ahmad QI, Pacuch KR, Gomez EV, Benichou O, Group S (2015) Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial. Lancet Diabetes Endocrinol 3(12):948–957

    Article  CAS  PubMed  Google Scholar 

  241. Woodhouse L, Gandhi R, Warden SJ, Poiraudeau S, Myers SL, Benson CT, Hu L, Ahmad QI, Linnemeier P, Gomez EV, Benichou O, Study I (2016) A Phase 2 randomized study investigating the efficacy and safety of myostatin antibody LY2495655 versus placebo in patients undergoing elective total Hip arthroplasty. J Frailty Aging 5(1):62–70

    CAS  PubMed  Google Scholar 

  242. Desgeorges MM, Devillard X, Toutain J, Castells J, Divoux D, Arnould DF, Haqq C, Bernaudin M, Durieux AC, Touzani O, Freyssenet DG (2017) Pharmacological inhibition of myostatin improves skeletal muscle mass and function in a mouse model of stroke. Sci Rep 7(1):14000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Zhu Y, D'Arienzo C, Lou Z, Kozhich A, Madireddi M, Chimalakonda A, Tymiak A, Olah TV (2016) LC-MS/MS multiplexed assay for the quantitation of a therapeutic protein BMS-986089 and the target protein Myostatin. Bioanalysis 8(3):193–204

    Article  CAS  PubMed  Google Scholar 

  244. Attie KM, Borgstein NG, Yang Y, Condon CH, Wilson DM, Pearsall AE, Kumar R, Willins DA, Seehra JS, Sherman ML (2013) A single ascending-dose study of muscle regulator ACE-031 in healthy volunteers. Muscle Nerve 47(3):416–423

    Article  CAS  PubMed  Google Scholar 

  245. Campbell C, McMillan HJ, Mah JK, Tarnopolsky M, Selby K, McClure T, Wilson DM, Sherman ML, Escolar D, Attie KM (2017) Myostatin inhibitor ACE-031 treatment of ambulatory boys with Duchenne muscular dystrophy: results of a randomized, placebo-controlled clinical trial. Muscle Nerve 55(4):458–464

    Article  CAS  PubMed  Google Scholar 

  246. Morvan F, Rondeau JM, Zou C, Minetti G, Scheufler C, Scharenberg M, Jacobi C, Brebbia P, Ritter V, Toussaint G, Koelbing C, Leber X, Schilb A, Witte F, Lehmann S, Koch E, Geisse S, Glass DJ, Lach-Trifilieff E (2017) Blockade of activin type II receptors with a dual anti-ActRIIA/IIB antibody is critical to promote maximal skeletal muscle hypertrophy. Proc Natl Acad Sci U S A 114(47):12448–12453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Amato AA, Sivakumar K, Goyal N, David WS, Salajegheh M, Praestgaard J, Lach-Trifilieff E, Trendelenburg AU, Laurent D, Glass DJ, Roubenoff R, Tseng BS, Greenberg SA (2014) Treatment of sporadic inclusion body myositis with bimagrumab. Neurology 83(24):2239–2246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Rooks D, Praestgaard J, Hariry S, Laurent D, Petricoul O, Perry RG, Lach-Trifilieff E, Roubenoff R (2017) Treatment of Sarcopenia with Bimagrumab: results from a phase II, randomized, controlled, proof-of-concept study. J Am Geriatr Soc 65(9):1988–1995

    Article  PubMed  Google Scholar 

  249. Rooks DS, Laurent D, Praestgaard J, Rasmussen S, Bartlett M, Tanko LB (2017) Effect of bimagrumab on thigh muscle volume and composition in men with casting-induced atrophy. J Cachexia Sarcopenia Muscle 8(5):727–734

    Article  PubMed  PubMed Central  Google Scholar 

  250. SA A-Z, Sahenk Z, Rodino-Klapac LR, Kaspar B, Mendell JR (2015) Follistatin gene therapy improves Ambulation in Becker muscular dystrophy. J Neuromuscul Dis 2(3):185–192

    Article  Google Scholar 

  251. Mendell JR, Sahenk Z, Malik V, Gomez AM, Flanigan KM, Lowes LP, Alfano LN, Berry K, Meadows E, Lewis S, Braun L, Shontz K, Rouhana M, Clark KR, Rosales XQ, Al-Zaidy S, Govoni A, Rodino-Klapac LR, Hogan MJ, Kaspar BK (2015) A phase 1/2a follistatin gene therapy trial for Becker muscular dystrophy. Mol Ther 23(1):192–201

    Article  CAS  PubMed  Google Scholar 

  252. Mendell JR, Sahenk Z, Al-Zaidy S, Rodino-Klapac LR, Lowes LP, Alfano LN, Berry K, Miller N, Yalvac M, Dvorchik I, Moore-Clingenpeel M, Flanigan KM, Church K, Shontz K, Curry C, Lewis S, McColly M, Hogan MJ, Kaspar BK (2017) Follistatin gene therapy for Sporadic inclusion body Myositis improves functional outcomes. Mol Ther 25(4):870–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Glasser CE, Gartner MR, Wilson D, Miller B, Sherman ML, Attie KM (2018) Locally acting ACE-083 increases muscle volume in healthy volunteers. Muscle Nerve 57:921–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Dumonceaux J, Marie S, Beley C, Trollet C, Vignaud A, Ferry A, Butler-Browne G, Garcia L (2010) Combination of myostatin pathway interference and dystrophin rescue enhances tetanic and specific force in dystrophic mdx mice. Mol Ther 18(5):881–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Kemaladewi DU, Hoogaars WM, van Heiningen SH, Terlouw S, de Gorter DJ, den Dunnen JT, van Ommen GJ, Aartsma-Rus A, ten Dijke P, t Hoen PA (2011) Dual exon skipping in myostatin and dystrophin for Duchenne muscular dystrophy. BMC Med Genet 4:36

    CAS  Google Scholar 

  256. Lu-Nguyen NB, Jarmin SA, Saleh AF, Popplewell L, Gait MJ, Dickson G (2015) Combination antisense treatment for destructive exon skipping of myostatin and open reading frame rescue of Dystrophin in neonatal mdx mice. Mol Ther 23(8):1341–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Rodino-Klapac LR, Janssen PM, Shontz KM, Canan B, Montgomery CL, Griffin D, Heller K, Schmelzer L, Handy C, Clark KR, Sahenk Z, Mendell JR, Kaspar BK (2013) Micro-dystrophin and follistatin co-delivery restores muscle function in aged DMD model. Hum Mol Genet 22(24):4929–4937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Baumann AP, Ibebunjo C, Grasser WA, Paralkar VM (2003) Myostatin expression in age and denervation-induced skeletal muscle atrophy. J Musculoskelet Neuronal Interact 3(1):8–16

    CAS  PubMed  Google Scholar 

  259. Liu M, Zhang D, Shao C, Liu J, Ding F, Gu X (2007) Expression pattern of myostatin in gastrocnemius muscle of rats after sciatic nerve crush injury. Muscle Nerve 35(5):649–656

    Article  CAS  PubMed  Google Scholar 

  260. Shao C, Liu M, Wu X, Ding F (2007) Time-dependent expression of myostatin RNA transcript and protein in gastrocnemius muscle of mice after sciatic nerve resection. Microsurgery 27(5):487–493

    Article  PubMed  Google Scholar 

  261. Boon H, Sjogren RJ, Massart J, Egan B, Kostovski E, Iversen PO, Hjeltnes N, Chibalin AV, Widegren U, Zierath JR (2015) MicroRNA-208b progressively declines after spinal cord injury in humans and is inversely related to myostatin expression. Phys Rep 3(11):e12622

    Article  CAS  Google Scholar 

  262. Desgeorges MM, Devillard X, Toutain J, Divoux D, Castells J, Bernaudin M, Touzani O, Freyssenet DG (2015) Molecular mechanisms of skeletal muscle atrophy in a mouse model of cerebral ischemia. Stroke 46(6):1673–1680

    Article  CAS  PubMed  Google Scholar 

  263. Ryan AS, Ivey FM, Prior S, Li G, Hafer-Macko C (2011) Skeletal muscle hypertrophy and muscle myostatin reduction after resistive training in stroke survivors. Stroke 42(2):416–420

    Article  CAS  PubMed  Google Scholar 

  264. Sen CK, Khanna S, Harris H, Stewart R, Balch M, Heigel M, Teplitsky S, Gnyawali S, Rink C (2017) Robot-assisted mechanical therapy attenuates stroke-induced limb skeletal muscle injury. FASEB J 31(3):927–936

    Article  CAS  PubMed  Google Scholar 

  265. Kawada S, Tachi C, Ishii N (2001) Content and localization of myostatin in mouse skeletal muscles during aging, mechanical unloading and reloading. J Muscle Res Cell Motil 22(8):627–633

    Article  CAS  PubMed  Google Scholar 

  266. Costelli P, Muscaritoli M, Bonetto A, Penna F, Reffo P, Bossola M, Bonelli G, Doglietto GB, Baccino FM, Rossi Fanelli F (2008) Muscle myostatin signalling is enhanced in experimental cancer cachexia. Eur J Clin Investig 38(7):531–538

    Article  CAS  Google Scholar 

  267. Verzola D, Procopio V, Sofia A, Villaggio B, Tarroni A, Bonanni A, Mannucci I, De Cian F, Gianetta E, Saffioti S, Garibotto G (2011) Apoptosis and myostatin mRNA are upregulated in the skeletal muscle of patients with chronic kidney disease. Kidney Int 79(7):773–782

    Article  CAS  PubMed  Google Scholar 

  268. Hayot M, Rodriguez J, Vernus B, Carnac G, Jean E, Allen D, Goret L, Obert P, Candau R, Bonnieu A (2011) Myostatin up-regulation is associated with the skeletal muscle response to hypoxic stimuli. Mol Cell Endocrinol 332(1-2):38–47

    Article  CAS  PubMed  Google Scholar 

  269. Ju CR, Chen RC (2012) Serum myostatin levels and skeletal muscle wasting in chronic obstructive pulmonary disease. Respir Med 106(1):102–108

    Article  PubMed  Google Scholar 

  270. Kamiide Y, Furuya M, Inomata N, Yada T (2015) Chronic exposure to cigarette smoke causes extrapulmonary abnormalities in rats. Environ Toxicol Pharmacol 39(2):864–870

    Article  CAS  PubMed  Google Scholar 

  271. Plant PJ, Brooks D, Faughnan M, Bayley T, Bain J, Singer L, Correa J, Pearce D, Binnie M, Batt J (2010) Cellular markers of muscle atrophy in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 42(4):461–471

    Article  CAS  PubMed  Google Scholar 

  272. Bish LT, George I, Maybaum S, Yang J, Chen JM, Sweeney HL (2011) Myostatin is elevated in congenital heart disease and after mechanical unloading. PLoS One 6(9):e23818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Furihata T, Kinugawa S, Fukushima A, Takada S, Homma T, Masaki Y, Abe T, Yokota T, Oba K, Okita K, Tsutsui H (2016) Serum myostatin levels are independently associated with skeletal muscle wasting in patients with heart failure. Int J Cardiol 220:483–487

    Article  PubMed  Google Scholar 

  274. George I, Bish LT, Kamalakkannan G, Petrilli CM, Oz MC, Naka Y, Sweeney HL, Maybaum S (2010) Myostatin activation in patients with advanced heart failure and after mechanical unloading. Eur J Heart Fail 12(5):444–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Leger B, Derave W, De Bock K, Hespel P, Russell AP (2008) Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation. Rejuvenation Res 11(1):163–175B

    Article  PubMed  CAS  Google Scholar 

  276. Raue U, Slivka D, Jemiolo B, Hollon C, Trappe S (2006) Myogenic gene expression at rest and after a bout of resistance exercise in young (18–30 yr) and old (80–89 yr) women. J Appl Physiol (1985) 101(1):53–59

    Article  CAS  Google Scholar 

  277. Yarasheski KE, Bhasin S, Sinha-Hikim I, Pak-Loduca J, Gonzalez-Cadavid NF (2002) Serum myostatin-immunoreactive protein is increased in 60–92 year old women and men with muscle wasting. J Nutr Health Aging 6(5):343–348

    CAS  PubMed  Google Scholar 

  278. Hofmann M, Halper B, Oesen S, Franzke B, Stuparits P, Tschan H, Bachl N, Strasser EM, Quittan M, Ploder M, Wagner KH, Wessner B (2015) Serum concentrations of insulin-like growth factor-1, members of the TGF-beta superfamily and follistatin do not reflect different stages of dynapenia and sarcopenia in elderly women. Exp Gerontol 64:35–45

    Article  PubMed  Google Scholar 

  279. Ratkevicius A, Joyson A, Selmer I, Dhanani T, Grierson C, Tommasi AM, DeVries A, Rauchhaus P, Crowther D, Alesci S, Yaworsky P, Gilbert F, Redpath TW, Brady J, Fearon KC, Reid DM, Greig CA, Wackerhage H (2011) Serum concentrations of myostatin and myostatin-interacting proteins do not differ between young and sarcopenic elderly men. J Gerontol A Biol Sci Med Sci 66(6):620–626

    Article  CAS  PubMed  Google Scholar 

  280. Welle S, Bhatt K, Shah B, Thornton C (2002) Insulin-like growth factor-1 and myostatin mRNA expression in muscle: comparison between 62–77 and 21–31 yr old men. Exp Gerontol 37(6):833–839

    Article  CAS  PubMed  Google Scholar 

  281. Bergen HR 3rd, Farr JN, Vanderboom PM, Atkinson EJ, White TA, Singh RJ, Khosla S, LeBrasseur NK (2015) Myostatin as a mediator of sarcopenia versus homeostatic regulator of muscle mass: insights using a new mass spectrometry-based assay. Skelet Muscle 5:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  282. Lakshman KM, Bhasin S, Corcoran C, Collins-Racie LA, Tchistiakova L, Forlow SB, St Ledger K, Burczynski ME, Dorner AJ, Lavallie ER (2009) Measurement of myostatin concentrations in human serum: circulating concentrations in young and older men and effects of testosterone administration. Mol Cell Endocrinol 302(1):26–32

    Article  CAS  PubMed  Google Scholar 

  283. Testerink J, Jaspers RT, Rittweger J, de Haan A, Degens H (2011) Effects of alfacalcidol on circulating cytokines and growth factors in rat skeletal muscle. J Physiol Sci 61(6):525–535

    Article  CAS  PubMed  Google Scholar 

  284. Wojcik S, Engel WK, McFerrin J, Askanas V (2005) Myostatin is increased and complexes with amyloid-beta within sporadic inclusion-body myositis muscle fibers. Acta Neuropathol 110(2):173–177

    Article  CAS  PubMed  Google Scholar 

  285. Tseng BS, Zhao P, Pattison JS, Gordon SE, Granchelli JA, Madsen RW, Folk LC, Hoffman EP, Booth FW (2002) Regenerated mdx mouse skeletal muscle shows differential mRNA expression. J Appl Physiol (1985) 93(2):537–545

    Article  CAS  Google Scholar 

  286. Pasteuning-Vuhman S, Putker K, Tanganyika-de Winter CL, Boertje-van der Meulen JW, van Vliet L, Overzier M, Plomp JJ, Aartsma-Rus A, van Putten M (2017) Natural disease history of mouse models for limb girdle muscular dystrophy types 2D and 2F. PLoS One 12(8):e0182704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Graham ZA, Collier L, Peng Y, Saez JC, Bauman WA, Qin W, Cardozo CP (2016) A soluble activin receptor IIB fails to prevent muscle atrophy in a mouse model of spinal cord injury. J Neurotrauma 33(12):1128–1135

    Article  PubMed  Google Scholar 

  288. Heineke J, Auger-Messier M, Xu J, Sargent M, York A, Welle S, Molkentin JD (2010) Genetic deletion of myostatin from the heart prevents skeletal muscle atrophy in heart failure. Circulation 121(3):419–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Cotten SW, Kornegay JN, Bogan DJ, Wadosky KM, Patterson C, Willis MS (2013) Genetic myostatin decrease in the golden retriever muscular dystrophy model does not significantly affect the ubiquitin proteasome system despite enhancing the severity of disease. Am J Transl Res 6(1):43–53

    PubMed  PubMed Central  Google Scholar 

  290. Bogdanovich S, Krag TO, Barton ER, Morris LD, Whittemore LA, Ahima RS, Khurana TS (2002) Functional improvement of dystrophic muscle by myostatin blockade. Nature 420(6914):418–421

    Article  CAS  PubMed  Google Scholar 

  291. Bogdanovich S, Perkins KJ, Krag TO, Whittemore LA, Khurana TS (2005) Myostatin propeptide-mediated amelioration of dystrophic pathophysiology. FASEB J 19(6):543–549

    Article  CAS  PubMed  Google Scholar 

  292. Morine KJ, Bish LT, Selsby JT, Gazzara JA, Pendrak K, Sleeper MM, Barton ER, Lee SJ, Sweeney HL (2010) Activin IIB receptor blockade attenuates dystrophic pathology in a mouse model of Duchenne muscular dystrophy. Muscle Nerve 42(5):722–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Bish LT, Sleeper MM, Forbes SC, Morine KJ, Reynolds C, Singletary GE, Trafny D, Pham J, Bogan J, Kornegay JN, Vandenborne K, Walter GA, Sweeney HL (2011) Long-term systemic myostatin inhibition via liver-targeted gene transfer in golden retriever muscular dystrophy. Hum Gene Ther 22(12):1499–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Bechir N, Pecchi E, Vilmen C, Le Fur Y, Amthor H, Bernard M, Bendahan D, Giannesini B (2016) ActRIIB blockade increases force-generating capacity and preserves energy supply in exercising mdx mouse muscle in vivo. FASEB J 30(10):3551–3562

    Article  CAS  PubMed  Google Scholar 

  295. Pistilli EE, Bogdanovich S, Goncalves MD, Ahima RS, Lachey J, Seehra J, Khurana T (2011) Targeting the activin type IIB receptor to improve muscle mass and function in the mdx mouse model of Duchenne muscular dystrophy. Am J Pathol 178(3):1287–1297

    Article  PubMed  PubMed Central  Google Scholar 

  296. Ohsawa Y, Hagiwara H, Nakatani M, Yasue A, Moriyama K, Murakami T, Tsuchida K, Noji S, Sunada Y (2006) Muscular atrophy of caveolin-3-deficient mice is rescued by myostatin inhibition. J Clin Invest 116(11):2924–2934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Ohsawa Y, Takayama K, Nishimatsu S, Okada T, Fujino M, Fukai Y, Murakami T, Hagiwara H, Itoh F, Tsuchida K, Hayashi Y, Sunada Y (2015) The inhibitory core of the Myostatin Prodomain: its interaction with both type I and II membrane receptors, and potential to treat muscle atrophy. PLoS One 10(7):e0133713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  298. Kawakami E, Kawai N, Kinouchi N, Mori H, Ohsawa Y, Ishimaru N, Sunada Y, Noji S, Tanaka E (2013) Local applications of myostatin-siRNA with atelocollagen increase skeletal muscle mass and recovery of muscle function. PLoS One 8(5):e64719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Kawakami E, Kinouchi N, Adachi T, Ohsawa Y, Ishimaru N, Ohuchi H, Sunada Y, Hayashi Y, Tanaka E, Noji S (2011) Atelocollagen-mediated systemic administration of myostatin-targeting siRNA improves muscular atrophy in caveolin-3-deficient mice. Develop Growth Differ 53(1):48–54

    Article  CAS  Google Scholar 

  300. Ohsawa Y, Okada T, Nishimatsu S, Ishizaki M, Suga T, Fujino M, Murakami T, Uchino M, Tsuchida K, Noji S, Hinohara A, Shimizu T, Shimizu K, Sunada Y (2012) An inhibitor of transforming growth factor beta type I receptor ameliorates muscle atrophy in a mouse model of caveolin 3-deficient muscular dystrophy. Lab Investig 92(8):1100–1114

    Article  CAS  PubMed  Google Scholar 

  301. Bogdanovich S, McNally EM, Khurana TS (2008) Myostatin blockade improves function but not histopathology in a murine model of limb-girdle muscular dystrophy 2C. Muscle Nerve 37(3):308–316

    Article  CAS  PubMed  Google Scholar 

  302. Krivickas LS, Walsh R, Amato AA (2009) Single muscle fiber contractile properties in adults with muscular dystrophy treated with MYO-029. Muscle Nerve 39(1):3–9

    Article  CAS  PubMed  Google Scholar 

  303. Padhi D, Higano CS, Shore ND, Sieber P, Rasmussen E, Smith MR (2014) Pharmacological inhibition of myostatin and changes in lean body mass and lower extremity muscle size in patients receiving androgen deprivation therapy for prostate cancer. J Clin Endocrinol Metab 99(10):E1967–E1975

    Article  CAS  PubMed  Google Scholar 

  304. Polkey MI, Praestgaard J, Berwick A, Franssen FME, Singh D, Steiner MC, Casaburi R, Tillmann H-C, Lach-Trifilieff E, Roubenoff R, Rooks DS (2018) Activin type II receptor blockade for treatment of muscle depletion in COPD: a randomized trial. Am J Respir Crit Care Med (article in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem M. H. Hoogaars .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hoogaars, W.M.H., Jaspers, R.T. (2018). Past, Present, and Future Perspective of Targeting Myostatin and Related Signaling Pathways to Counteract Muscle Atrophy. In: Xiao, J. (eds) Muscle Atrophy. Advances in Experimental Medicine and Biology, vol 1088. Springer, Singapore. https://doi.org/10.1007/978-981-13-1435-3_8

Download citation

Publish with us

Policies and ethics