Skip to main content

Nutritional Support to Counteract Muscle Atrophy

  • Chapter
  • First Online:
Muscle Atrophy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1088))

Abstract

Malnutrition is an important factor contributing to muscle atrophy. Both underfeeding and obesity have negative consequences for the preservation of muscle mass and function. In addition, adequate nutrition on an exercise background is an efficacious strategy to counteract the severity of muscle loss associated with numerous clinical muscle wasting conditions. As such, significant research efforts have been dedicated to identifying optimal calorie control and the requirements of particular macro- and micronutrients in attenuating muscle atrophy. This chapter will explore current nutrition strategies with robust evidence to counteract muscle atrophy with a particular focus on protein, as well presenting evidence for other promising emergent strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beasley JM, Deierlein AL, Morland KB, Granieri EC, Spark A (2016) Is meeting the Recommended Dietary Allowance (RDA) for protein related to body composition among older adults?: results from the cardiovascular health of seniors and built environment study. J Nutr Health Aging 20(8):790–796. https://doi.org/10.1007/s12603-015-0707-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dewys WD, Begg C, Lavin PT, Band PR, Bennett JM, Bertino JR, Cohen MH, Douglass HO Jr, Engstrom PF, Ezdinli EZ, Horton J, Johnson GJ, Moertel CG, Oken MM, Perlia C, Rosenbaum C, Silverstein MN, Skeel RT, Sponzo RW, Tormey DC (1980) Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern cooperative oncology group. Am J Med 69(4):491–497

    Article  CAS  PubMed  Google Scholar 

  3. Neary NM, Small CJ, Wren AM, Lee JL, Druce MR, Palmieri C, Frost GS, Ghatei MA, Coombes RC, Bloom SR (2004) Ghrelin increases energy intake in cancer patients with impaired appetite: acute, randomized, placebo-controlled trial. J Clin Endocrinol Metab 89(6):2832–2836. https://doi.org/10.1210/jc.2003-031768

    Article  CAS  PubMed  Google Scholar 

  4. Bennet WM, Connacher AA, Scrimgeour CM, Smith K, Rennie MJ (1989) Increase in anterior tibialis muscle protein synthesis in healthy man during mixed amino acid infusion: studies of incorporation of [1-13C]leucine. Clin Sci (Lond) 76(4):447–454

    Article  CAS  Google Scholar 

  5. Tipton KD, Gurkin BE, Matin S, Wolfe RR (1999) Nonessential amino acids are not necessary to stimulate net muscle protein synthesis in healthy volunteers. J Nutr Biochem 10(2):89–95

    Article  CAS  PubMed  Google Scholar 

  6. Volpi E, Ferrando AA, Yeckel CW, Tipton KD, Wolfe RR (1998) Exogenous amino acids stimulate net muscle protein synthesis in the elderly. J Clin Invest 101(9):2000–2007. https://doi.org/10.1172/JCI939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Borsheim E, Tipton KD, Wolf SE, Wolfe RR (2002) Essential amino acids and muscle protein recovery from resistance exercise. Am J Physiol Endocrinol Metab 283(4):E648–E657. https://doi.org/10.1152/ajpendo.00466.2001

    Article  CAS  PubMed  Google Scholar 

  8. Rieu I, Balage M, Sornet C, Giraudet C, Pujos E, Grizard J, Mosoni L, Dardevet D (2006) Leucine supplementation improves muscle protein synthesis in elderly men independently of hyperaminoacidaemia. J Physiol 575 .(Pt 1:305–315. https://doi.org/10.1113/jphysiol.2006.110742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR (2006) A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol Endocrinol Metab 291(2):E381–E387. https://doi.org/10.1152/ajpendo.00488.2005

    Article  CAS  PubMed  Google Scholar 

  10. Wolfson RL, Chantranupong L, Saxton RA, Shen K, Scaria SM, Cantor JR, Sabatini DM (2016) Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351(6268):43–48. https://doi.org/10.1126/science.aab2674

    Article  CAS  PubMed  Google Scholar 

  11. Saxton RA, Knockenhauer KE, Wolfson RL, Chantranupong L, Pacold ME, Wang T, Schwartz TU, Sabatini DM (2016) Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science 351(6268):53–58. https://doi.org/10.1126/science.aad2087

    Article  CAS  PubMed  Google Scholar 

  12. Churchward-Venne TA, Burd NA, Mitchell CJ, West DW, Philp A, Marcotte GR, Baker SK, Baar K, Phillips SM (2012) Supplementation of a suboptimal protein dose with leucine or essential amino acids: effects on myofibrillar protein synthesis at rest and following resistance exercise in men. J Physiol 590(11):2751–2765. https://doi.org/10.1113/jphysiol.2012.228833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Houston DK, Nicklas BJ, Ding J, Harris TB, Tylavsky FA, Newman AB, Lee JS, Sahyoun NR, Visser M, Kritchevsky SB, Health ABCS (2008) Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the health, aging, and body composition (Health ABC) study. Am J Clin Nutr 87(1):150–155

    Article  CAS  PubMed  Google Scholar 

  14. Bunker VW, Lawson MS, Stansfield MF, Clayton BE (1987) Nitrogen balance studies in apparently healthy elderly people and those who are housebound. Br J Nutr 57(2):211–221

    Article  CAS  PubMed  Google Scholar 

  15. Volpi E, Mittendorfer B, Rasmussen BB, Wolfe RR (2000) The response of muscle protein anabolism to combined hyperaminoacidemia and glucose-induced hyperinsulinemia is impaired in the elderly. J Clin Endocrinol Metab 85(12):4481–4490. https://doi.org/10.1210/jcem.85.12.7021

    Article  CAS  PubMed  Google Scholar 

  16. Guillet C, Prod'homme M, Balage M, Gachon P, Giraudet C, Morin L, Grizard J, Boirie Y (2004) Impaired anabolic response of muscle protein synthesis is associated with S6K1 dysregulation in elderly humans. FASEB J 18(13):1586–1587. https://doi.org/10.1096/fj.03-1341fje

    Article  CAS  PubMed  Google Scholar 

  17. Elliot TA, Cree MG, Sanford AP, Wolfe RR, Tipton KD (2006) Milk ingestion stimulates net muscle protein synthesis following resistance exercise. Med Sci Sports Exerc 38(4):667–674. https://doi.org/10.1249/01.mss.0000210190.64458.25

    Article  CAS  PubMed  Google Scholar 

  18. Symons TB, Schutzler SE, Cocke TL, Chinkes DL, Wolfe RR, Paddon-Jones D (2007) Aging does not impair the anabolic response to a protein-rich meal. Am J Clin Nutr 86(2):451–456

    Article  CAS  PubMed  Google Scholar 

  19. Glover EI, Yasuda N, Tarnopolsky MA, Abadi A, Phillips SM (2010) Little change in markers of protein breakdown and oxidative stress in humans in immobilization-induced skeletal muscle atrophy. Appl Physiol Nutr Metab 35(2):125–133. https://doi.org/10.1139/H09-137

    Article  CAS  PubMed  Google Scholar 

  20. Stuart CA, Shangraw RE, Peters EJ, Wolfe RR (1990) Effect of dietary protein on bed-rest-related changes in whole-body-protein synthesis. Am J Clin Nutr 52(3):509–514

    Article  CAS  PubMed  Google Scholar 

  21. English KL, Mettler JA, Ellison JB, Mamerow MM, Arentson-Lantz E, Pattarini JM, Ploutz-Snyder R, Sheffield-Moore M, Paddon-Jones D (2016) Leucine partially protects muscle mass and function during bed rest in middle-aged adults. Am J Clin Nutr 103(2):465–473. https://doi.org/10.3945/ajcn.115.112359

    Article  CAS  PubMed  Google Scholar 

  22. Drummond MJ, Dickinson JM, Fry CS, Walker DK, Gundermann DM, Reidy PT, Timmerman KL, Markofski MM, Paddon-Jones D, Rasmussen BB, Volpi E (2012) Bed rest impairs skeletal muscle amino acid transporter expression, mTORC1 signaling, and protein synthesis in response to essential amino acids in older adults. Am J Physiol Endocrinol Metab 302(9):E1113–E1122. https://doi.org/10.1152/ajpendo.00603.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Glover EI, Phillips SM, Oates BR, Tang JE, Tarnopolsky MA, Selby A, Smith K, Rennie MJ (2008) Immobilization induces anabolic resistance in human myofibrillar protein synthesis with low and high dose amino acid infusion. J Physiol 586(24):6049–6061. https://doi.org/10.1113/jphysiol.2008.160333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Breen L, Stokes KA, Churchward-Venne TA, Moore DR, Baker SK, Smith K, Atherton PJ, Phillips SM (2013) Two weeks of reduced activity decreases leg lean mass and induces “anabolic resistance” of myofibrillar protein synthesis in healthy elderly. J Clin Endocrinol Metab 98(6):2604–2612. https://doi.org/10.1210/jc.2013-1502

    Article  CAS  PubMed  Google Scholar 

  25. Bozzetti F (1992) Nutritional support in the adult cancer patient. Clin Nutr 11(4):167–179

    Article  CAS  PubMed  Google Scholar 

  26. Deutz NE, Safar A, Schutzler S, Memelink R, Ferrando A, Spencer H, van Helvoort A, Wolfe RR (2011) Muscle protein synthesis in cancer patients can be stimulated with a specially formulated medical food. Clin Nutr 30(6):759–768. https://doi.org/10.1016/j.clnu.2011.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR (1997) Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Phys 273(1 Pt 1):E99–E107. https://doi.org/10.1152/ajpendo.1997.273.1.E99

    Article  CAS  Google Scholar 

  28. Roubenoff R, Wilson IB (2001) Effect of resistance training on self-reported physical functioning in HIV infection. Med Sci Sports Exerc 33(11):1811–1817

    Article  CAS  PubMed  Google Scholar 

  29. Dreyer HC, Drummond MJ, Pennings B, Fujita S, Glynn EL, Chinkes DL, Dhanani S, Volpi E, Rasmussen BB (2008) Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am J Physiol Endocrinol Metab 294(2):E392–E400. https://doi.org/10.1152/ajpendo.00582.2007

    Article  CAS  PubMed  Google Scholar 

  30. Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR (2000) An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J Appl Physiol (1985) 88(2):386–392. https://doi.org/10.1152/jappl.2000.88.2.386

    Article  CAS  Google Scholar 

  31. Agin D, Gallagher D, Wang J, Heymsfield SB, Pierson RN Jr, Kotler DP (2001) Effects of whey protein and resistance exercise on body cell mass, muscle strength, and quality of life in women with HIV. AIDS 15(18):2431–2440

    Article  CAS  PubMed  Google Scholar 

  32. Paddon-Jones D, Rasmussen BB (2009) Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care 12(1):86–90. https://doi.org/10.1097/MCO.0b013e32831cef8b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Areta JL, Burke LM, Ross ML, Camera DM, West DW, Broad EM, Jeacocke NA, Moore DR, Stellingwerff T, Phillips SM, Hawley JA, Coffey VG (2013) Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J Physiol 591(9):2319–2331. https://doi.org/10.1113/jphysiol.2012.244897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mamerow MM, Mettler JA, English KL, Casperson SL, Arentson-Lantz E, Sheffield-Moore M, Layman DK, Paddon-Jones D (2014) Dietary protein distribution positively influences 24-h muscle protein synthesis in healthy adults. J Nutr 144(6):876–880. https://doi.org/10.3945/jn.113.185280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Res PT, Groen B, Pennings B, Beelen M, Wallis GA, Gijsen AP, Senden JMG, van Loon LJC (2012) Protein ingestion before sleep improves postexercise overnight recovery. Med Sci Sports Exerc 44(8):1560–1569. https://doi.org/10.1249/MSS.0b013e31824cc363

    Article  CAS  PubMed  Google Scholar 

  36. Snijders T, Res PT, Smeets JS, van Vliet S, van Kranenburg J, Maase K, Kies AK, Verdijk LB, van Loon LJ (2015) Protein ingestion before sleep increases muscle mass and strength gains during prolonged resistance-type exercise training in healthy young men. J Nutr 145(6):1178–1184. https://doi.org/10.3945/jn.114.208371

    Article  CAS  PubMed  Google Scholar 

  37. Hiroshige K, Sonta T, Suda T, Kanegae K, Ohtani A (2001) Oral supplementation of branched-chain amino acid improves nutritional status in elderly patients on chronic haemodialysis. Nephrol Dial Transplant 16(9):1856–1862

    Article  CAS  PubMed  Google Scholar 

  38. Marcora S, Lemmey A, Maddison P (2005) Dietary treatment of rheumatoid cachexia with beta-hydroxy-beta-methylbutyrate, glutamine and arginine: a randomised controlled trial. Clin Nutr 24(3):442–454. https://doi.org/10.1016/j.clnu.2005.01.006

    Article  CAS  PubMed  Google Scholar 

  39. Clark RH, Feleke G, Din M, Yasmin T, Singh G, Khan FA, Rathmacher JA (2000) Nutritional treatment for acquired immunodeficiency virus-associated wasting using beta-hydroxy beta-methylbutyrate, glutamine, and arginine: a randomized, double-blind, placebo-controlled study. JPEN J Parenter Enteral Nutr 24(3):133–139. https://doi.org/10.1177/0148607100024003133

    Article  CAS  PubMed  Google Scholar 

  40. May PE, Barber A, D'Olimpio JT, Hourihane A, Abumrad NN (2002) Reversal of cancer-related wasting using oral supplementation with a combination of beta-hydroxy-beta-methylbutyrate, arginine, and glutamine. Am J Surg 183(4):471–479

    Article  CAS  PubMed  Google Scholar 

  41. Ruiz JR, Sui X, Lobelo F, Morrow JR Jr, Jackson AW, Sjostrom M, Blair SN (2008) Association between muscular strength and mortality in men: prospective cohort study. BMJ 337:a439. https://doi.org/10.1136/bmj.a439

    Article  PubMed  Google Scholar 

  42. Garcia-Hermoso A, Cavero-Redondo I, Ramirez-Velez R, Ruiz J, Ortega FB, Lee DC, Martinez-Vizcaino V (2018) Muscular strength as a predictor of all-cause mortality in apparently healthy population: a systematic review and meta-analysis of data from approximately 2 million men and women. Arch Phys Med Rehabil. https://doi.org/10.1016/j.apmr.2018.01.008

    Article  PubMed  Google Scholar 

  43. Bergouignan A, Momken I, Schoeller DA, Normand S, Zahariev A, Lescure B, Simon C, Blanc S (2010) Regulation of energy balance during long-term physical inactivity induced by bed rest with and without exercise training. J Clin Endocrinol Metab 95(3):1045–1053. https://doi.org/10.1210/jc.2009-1005

    Article  CAS  PubMed  Google Scholar 

  44. Forbes GB, Brown MR, Welle SL, Lipinski BA (1986) Deliberate overfeeding in women and men: energy cost and composition of the weight gain. Br J Nutr 56(1):1–9

    Article  CAS  PubMed  Google Scholar 

  45. Klement RJ, Kammerer U (2011) Is there a role for carbohydrate restriction in the treatment and prevention of cancer? Nutr Metab (Lond) 8:75. https://doi.org/10.1186/1743-7075-8-75

    Article  CAS  Google Scholar 

  46. Francois ME, Gillen JB, Little JP (2017) Carbohydrate-restriction with high-intensity interval training: an optimal combination for treating metabolic diseases? Front Nutr 4:49. https://doi.org/10.3389/fnut.2017.00049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stephens FB, Chee C, Wall BT, Murton AJ, Shannon CE, van Loon LJ, Tsintzas K (2015) Lipid-induced insulin resistance is associated with an impaired skeletal muscle protein synthetic response to amino acid ingestion in healthy young men. Diabetes 64(5):1615–1620. https://doi.org/10.2337/db14-0961

    Article  CAS  PubMed  Google Scholar 

  48. Powers SK (2014) Can antioxidants protect against disuse muscle atrophy? Sports Med 44(Suppl 2):S155–S165. https://doi.org/10.1007/s40279-014-0255-x

    Article  PubMed  Google Scholar 

  49. Powers SK, Smuder AJ, Criswell DS (2011) Mechanistic links between oxidative stress and disuse muscle atrophy. Antioxid Redox Signal 15(9):2519–2528. https://doi.org/10.1089/ars.2011.3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Davies KJ, Goldberg AL (1987) Oxygen radicals stimulate intracellular proteolysis and lipid peroxidation by independent mechanisms in erythrocytes. J Biol Chem 262(17):8220–8226

    CAS  PubMed  Google Scholar 

  51. Janero DR (1991) Therapeutic potential of vitamin E against myocardial ischemic-reperfusion injury. Free Radic Biol Med 10(5):315–324

    Article  CAS  PubMed  Google Scholar 

  52. Kondo H, Miura M, Itokawa Y (1991) Oxidative stress in skeletal muscle atrophied by immobilization. Acta Physiol Scand 142(4):527–528. https://doi.org/10.1111/j.1748-1716.1991.tb09191.x

    Article  CAS  PubMed  Google Scholar 

  53. Kondo H, Miura M, Kodama J, Ahmed SM, Itokawa Y (1992) Role of iron in oxidative stress in skeletal muscle atrophied by immobilization. Pflugers Arch 421(2–3):295–297

    Article  CAS  PubMed  Google Scholar 

  54. Appell HJ, Duarte JA, Soares JM (1997) Supplementation of vitamin E may attenuate skeletal muscle immobilization atrophy. Int J Sports Med 18(3):157–160

    Article  CAS  PubMed  Google Scholar 

  55. Demiryurek S, Babul A (2004) Effects of vitamin E and electrical stimulation on the denervated rat gastrocnemius muscle malondialdehyde and glutathione levels. Int J Neurosci 114(1):45–54. https://doi.org/10.1080/00207450490249374

    Article  CAS  PubMed  Google Scholar 

  56. Servais S, Letexier D, Favier R, Duchamp C, Desplanches D (2007) Prevention of unloading-induced atrophy by vitamin E supplementation: links between oxidative stress and soleus muscle proteolysis? Free Radic Biol Med 42(5):627–635. https://doi.org/10.1016/j.freeradbiomed.2006.12.001

    Article  CAS  PubMed  Google Scholar 

  57. Senf SM, Dodd SL, McClung JM, Judge AR (2008) Hsp70 overexpression inhibits NF-kappaB and Foxo3a transcriptional activities and prevents skeletal muscle atrophy. FASEB J 22(11):3836–3845. https://doi.org/10.1096/fj.08-110163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McClung JM, Kavazis AN, Whidden MA, DeRuisseau KC, Falk DJ, Criswell DS, Powers SK (2007) Antioxidant administration attenuates mechanical ventilation-induced rat diaphragm muscle atrophy independent of protein kinase B (PKB Akt) signalling. J Physiol 585(Pt 1):203–215. https://doi.org/10.1113/jphysiol.2007.141119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McClung JM, Whidden MA, Kavazis AN, Falk DJ, Deruisseau KC, Powers SK (2008) Redox regulation of diaphragm proteolysis during mechanical ventilation. Am J Physiol Regul Integr Comp Physiol 294(5):R1608–R1617. https://doi.org/10.1152/ajpregu.00044.2008

    Article  CAS  PubMed  Google Scholar 

  60. Whidden MA, Smuder AJ, Wu M, Hudson MB, Nelson WB, Powers SK (2010) Oxidative stress is required for mechanical ventilation-induced protease activation in the diaphragm. J Appl Physiol (1985) 108(5):1376–1382. https://doi.org/10.1152/japplphysiol.00098.2010

    Article  CAS  Google Scholar 

  61. Betters JL, Criswell DS, Shanely RA, Van Gammeren D, Falk D, Deruisseau KC, Deering M, Yimlamai T, Powers SK (2004) Trolox attenuates mechanical ventilation-induced diaphragmatic dysfunction and proteolysis. Am J Respir Crit Care Med 170(11):1179–1184. https://doi.org/10.1164/rccm.200407-939OC

    Article  PubMed  Google Scholar 

  62. Tezze C, Romanello V, Desbats MA, Fadini GP, Albiero M, Favaro G, Ciciliot S, Soriano ME, Morbidoni V, Cerqua C, Loefler S, Kern H, Franceschi C, Salvioli S, Conte M, Blaauw B, Zampieri S, Salviati L, Scorrano L, Sandri M (2017) Age-associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence. Cell Metab 25(6):1374–1389 e1376. https://doi.org/10.1016/j.cmet.2017.04.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Smith GI, Atherton P, Reeds DN, Mohammed BS, Rankin D, Rennie MJ, Mittendorfer B (2011) Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia-hyperaminoacidaemia in healthy young and middle-aged men and women. Clin Sci (Lond) 121(6):267–278. https://doi.org/10.1042/CS20100597

    Article  CAS  Google Scholar 

  64. van Norren K, Kegler D, Argiles JM, Luiking Y, Gorselink M, Laviano A, Arts K, Faber J, Jansen H, van der Beek EM, van Helvoort A (2009) Dietary supplementation with a specific combination of high protein, leucine, and fish oil improves muscle function and daily activity in tumour-bearing cachectic mice. Br J Cancer 100(5):713–722. https://doi.org/10.1038/sj.bjc.6604905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hayashi N, Tashiro T, Yamamori H, Takagi K, Morishima Y, Otsubo Y, Sugiura T, Furukawa K, Nitta H, Nakajima N, Suzuki N, Ito I (1999) Effect of intravenous omega-6 and omega-3 fat emulsions on nitrogen retention and protein kinetics in burned rats. Nutrition 15(2):135–139

    Article  CAS  PubMed  Google Scholar 

  66. Palacios C, Gonzalez L (2014) Is vitamin D deficiency a major global public health problem? J Steroid Biochem Mol Biol 144(Pt A):138–145. https://doi.org/10.1016/j.jsbmb.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  67. Holick MF (2004) Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr 80(6 Suppl):1678S–1688S

    Article  CAS  PubMed  Google Scholar 

  68. Girgis CM, Mokbel N, Cha KM, Houweling PJ, Abboud M, Fraser DR, Mason RS, Clifton-Bligh RJ, Gunton JE (2014) The Vitamin D Receptor (VDR) is expressed in skeletal muscle of male mice and modulates 25-Hydroxyvitamin D (25OHD) uptake in Myofibers. Endocrinology 155(9):3227–3237. https://doi.org/10.1210/en.2014-1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li YC, Pirro AE, Amling M, Delling G, Baron R, Bronson R, Demay MB (1997) Targeted ablation of the vitamin D receptor: an animal model of vitamin D-dependent rickets type II with alopecia. Proc Natl Acad Sci U S A 94(18):9831–9835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim MK, Baek KH, Song KH, Il Kang M, Park CY, Lee WY, Oh KW (2011) Vitamin D deficiency is associated with sarcopenia in older Koreans, regardless of obesity: the fourth Korea National Health and nutrition examination surveys (KNHANES IV) 2009. J Clin Endocrinol Metab 96(10):3250–3256. https://doi.org/10.1210/jc.2011-1602

    Article  CAS  PubMed  Google Scholar 

  71. Bischoff-Ferrari HA, Dawson-Hughes B, Staehelin HB, Orav JE, Stuck AE, Theiler R, Wong JB, Egli A, Kiel DP, Henschkowski J (2009) Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomised controlled trials. BMJ 339:b3692. https://doi.org/10.1136/bmj.b3692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Agergaard J, Trostrup J, Uth J, Iversen JV, Boesen A, Andersen JL, Schjerling P, Langberg H (2015) Does vitamin-D intake during resistance training improve the skeletal muscle hypertrophic and strength response in young and elderly men? – a randomized controlled trial. Nutr Metab (Lond) 12:32. https://doi.org/10.1186/s12986-015-0029-y

    Article  CAS  Google Scholar 

  73. Owens DJ, Allison R, Close GL (2018) Vitamin D and the athlete: current perspectives and new challenges. Sports Med 48(Suppl 1):3–16. https://doi.org/10.1007/s40279-017-0841-9

    Article  PubMed  PubMed Central  Google Scholar 

  74. The National Academies (2011) Dietary reference intakes for calcium and vitamin D, vol 1. National Academic Press, Washington, DC

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel John Owens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Owens, D.J. (2018). Nutritional Support to Counteract Muscle Atrophy. In: Xiao, J. (eds) Muscle Atrophy. Advances in Experimental Medicine and Biology, vol 1088. Springer, Singapore. https://doi.org/10.1007/978-981-13-1435-3_22

Download citation

Publish with us

Policies and ethics