Skip to main content

Muscle Atrophy Measurement as Assessment Method for Low Back Pain Patients

  • Chapter
  • First Online:
Muscle Atrophy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1088))

Abstract

Low back pain is one of the most common pain disorders defined as pain, muscle tension, or stiffness localized below the costal margin and above the inferior gluteal folds, sometimes with accompanying leg pain. The meaning of the symptomatic atrophy of paraspinal muscles and some pelvic muscles has been proved. Nowadays, a need for new diagnostic tools for specific examination of low back pain patients is posited, and it has been proposed that magnetic resonance imaging assessment toward muscle atrophy may provide some additional information enabling the subclassification of that group of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoy D, Brooks P, Blyth F, Buchbinder R (2010) The Epidemiology of low back pain. Best Pract Res Clin Rheumatol 24(6):769–781. https://doi.org/10.1016/j.berh.2010.10.002

    Article  CAS  PubMed  Google Scholar 

  2. Cavanaugh JM, Weinstein J (1994) Low back pain: epidemiology, anatomy and neurophysiology. In: Wall PD, Melzack R (eds) The text-book of pain, 3rd edn. Churchil Livingstone, Edinburgh/New York, pp 441–455

    Google Scholar 

  3. Stynes S, Konstantinou K, Dunn KM (2016) Classification of patients with low back-related leg pain: a systematic review. BMC Musculoskelet Disord 17:226. https://doi.org/10.1186/s12891-016-1074-z

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kader DF, Wardlaw D, Smith FW (2000) Correlation between the MRI changes in the lumbar multifidus muscles and leg pain. Clin Radiol 55(2):145–149. https://doi.org/10.1053/crad.1999.0340

    Article  CAS  PubMed  Google Scholar 

  5. Petersen T, Laslett M, Juhl C (2017) Clinical classification in low back pain: best-evidence diagnostic rules based on systematic reviews. BMC Musculoskelet Disord 18(1):188. https://doi.org/10.1186/s12891-017-1549-6

    Article  PubMed  PubMed Central  Google Scholar 

  6. Carragee E, Alamin T, Cheng I, Franklin T, Hurwitz E (2006) Does minor trauma cause serious low back illness? Spine (Phila Pa 1976) 31(25):2942–2949. https://doi.org/10.1097/01.brs.0000248429.10963.13

    Article  Google Scholar 

  7. Carragee EJ, Alamin TF, Miller JL, Carragee JM (2005) Discographic, MRI and psychosocial determinants of low back pain disability and remission: a prospective study in subjects with benign persistent back pain. Spine J 5(1):24–35. https://doi.org/10.1016/j.spinee.2004.05.250

    Article  PubMed  Google Scholar 

  8. McNee P, Shambrook J, Harris EC, Kim M, Sampson M, Palmer KT, Coggon D (2011) Predictors of long-term pain and disability in patients with low back pain investigated by magnetic resonance imaging: a longitudinal study. BMC Musculoskelet Disord 12:234. https://doi.org/10.1186/1471-2474-12-234

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cooper RG, St Clair Forbes W, Jayson MI (1992) Radiographic demonstration of paraspinal muscle wasting in patients with chronic low back pain. Br J Rheumatol 31(6):389–394

    Article  CAS  Google Scholar 

  10. Hides JA, Stokes MJ, Saide M, Jull GA, Cooper DH (1994) Evidence of lumbar multifidus muscle wasting ipsilateral to symptoms in patients with acute/subacute low back pain. Spine (Phila Pa 1976) 19(2):165–172

    Article  CAS  Google Scholar 

  11. Kalichman L, Hunter DJ (2007) Lumbar facet joint osteoarthritis: a review. Semin Arthritis Rheum 37(2):69–80. https://doi.org/10.1016/j.semarthrit.2007.01.007

    Article  PubMed  Google Scholar 

  12. Kalichman L, Li L, Kim DH, Guermazi A, Berkin V, O’Donnell CJ, Hoffmann U, Cole R, Hunter DJ (2008) Facet joint osteoarthritis and low back pain in the community-based population. Spine (Phila Pa 1976) 33(23):2560–2565. https://doi.org/10.1097/BRS.0b013e318184ef95

    Article  Google Scholar 

  13. Zhang JF, Liu C, Yu HJ, Ma JJ, Cai HX, Fan SW (2014) Degenerative changes in the interspinous ligament. Acta Orthop Traumatol Turc 48(6):661–666. https://doi.org/10.3944/AOTT.2014.13.0149

    Article  PubMed  Google Scholar 

  14. Danneels LA, Vanderstraeten GG, Cambier DC, Witvrouw EE, De Cuyper HJ (2000) CT imaging of trunk muscles in chronic low back pain patients and healthy control subjects. Eur Spine J 9(4):266–272

    Article  CAS  Google Scholar 

  15. Mayer TG, Vanharanta H, Gatchel RJ, Mooney V, Barnes D, Judge L, Smith S, Terry A (1989) Comparison of CT scan muscle measurements and isokinetic trunk strength in postoperative patients. Spine (Phila Pa 1976) 14(1):33–36

    Article  CAS  Google Scholar 

  16. Sihvonen T, Herno A, Paljarvi L, Airaksinen O, Partanen J, Tapaninaho A (1993) Local denervation atrophy of paraspinal muscles in postoperative failed back syndrome. Spine (Phila Pa 1976) 18(5):575–581

    Article  CAS  Google Scholar 

  17. Rossi A, Zoico E, Goodpaster BH, Sepe A, Di Francesco V, Fantin F, Pizzini F, Corzato F, Vitali A, Micciolo R, Harris TB, Cinti S, Zamboni M (2010) Quantification of intermuscular adipose tissue in the erector spinae muscle by MRI: agreement with histological evaluation. Obesity (Silver Spring) 18(12):2379–2384. https://doi.org/10.1038/oby.2010.48

    Article  PubMed Central  Google Scholar 

  18. Kjaer P, Bendix T, Sorensen JS, Korsholm L, Leboeuf-Yde C (2007) Are MRI-defined fat infiltrations in the multifidus muscles associated with low back pain? BMC Med 5:2. https://doi.org/10.1186/1741-7015-5-2

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fischer MA, Nanz D, Shimakawa A, Schirmer T, Guggenberger R, Chhabra A, Carrino JA, Andreisek G (2013) Quantification of muscle fat in patients with low back pain: comparison of multi-echo MR imaging with single-voxel MR spectroscopy. Radiology 266(2):555–563. https://doi.org/10.1148/radiol.12120399

    Article  PubMed  Google Scholar 

  20. Mengiardi B, Schmid MR, Boos N, Pfirrmann CW, Brunner F, Elfering A, Hodler J (2006) Fat content of lumbar paraspinal muscles in patients with chronic low back pain and in asymptomatic volunteers: quantification with MR spectroscopy. Radiology 240(3):786–792. https://doi.org/10.1148/radiol.2403050820

    Article  PubMed  Google Scholar 

  21. Kalichman L, Hodges P, Li L, Guermazi A, Hunter DJ (2010) Changes in paraspinal muscles and their association with low back pain and spinal degeneration: CT study. Eur Spine J 19(7):1136–1144. https://doi.org/10.1007/s00586-009-1257-5

    Article  PubMed  Google Scholar 

  22. Barker KL, Shamley DR, Jackson D (2004) Changes in the cross-sectional area of multifidus and psoas in patients with unilateral back pain: the relationship to pain and disability. Spine (Phila Pa 1976) 29(22):E515–E519

    Article  Google Scholar 

  23. Ploumis A, Michailidis N, Christodoulou P, Kalaitzoglou I, Gouvas G, Beris A (2011) Ipsilateral atrophy of paraspinal and psoas muscle in unilateral back pain patients with monosegmental degenerative disc disease. Br J Radiol 84(1004):709–713. https://doi.org/10.1259/bjr/58136533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kang CH, Shin MJ, Kim SM, Lee SH, Lee CS (2007) MRI of paraspinal muscles in lumbar degenerative kyphosis patients and control patients with chronic low back pain. Clin Radiol 62(5):479–486. https://doi.org/10.1016/j.crad.2006.12.002

    Article  CAS  PubMed  Google Scholar 

  25. Thakar S, Sivaraju L, Aryan S, Mohan D, Sai Kiran NA, Hegde AS (2016) Lumbar paraspinal muscle morphometry and its correlations with demographic and radiological factors in adult isthmic spondylolisthesis: a retrospective review of 120 surgically manage.d cases. J Neurosurg Spine 24(5):679–685. https://doi.org/10.3171/2015.9.SPINE15705

    Article  PubMed  Google Scholar 

  26. Nourbakhsh MR, Arab AM (2002) Relationship between mechanical factors and incidence of low back pain. J Orthop Sports Phys Ther 32(9):447–460. https://doi.org/10.2519/jospt.2002.32.9.447

    Article  PubMed  Google Scholar 

  27. Cho KH, Beom JW, Lee TS, Lim JH, Lee TH, Yuk JH (2014) Trunk muscles strength as a risk factor for nonspecific low back pain: a pilot study. Ann Rehabil Med 38(2):234–240. https://doi.org/10.5535/arm.2014.38.2.234

    Article  PubMed  PubMed Central  Google Scholar 

  28. da Silva RA, Vieira ER, Cabrera M, Altimari LR, Aguiar AF, Nowotny AH, Carvalho AF, Oliveira MR (2015) Back muscle fatigue of younger and older adults with and without chronic low back pain using two protocols: A case-control study. J Electromyogr Kinesiol 25(6):928–936. https://doi.org/10.1016/j.jelekin.2015.10.003

    Article  PubMed  Google Scholar 

  29. del Pozo-Cruz B, Gusi N, Adsuar JC, del Pozo-Cruz J, Parraca JA, Hernandez-Mocholi M (2013) Musculoskeletal fitness and health-related quality of life characteristics among sedentary office workers affected by sub-acute, non-specific low back pain: a cross-sectional study. Physiotherapy 99(3):194–200. https://doi.org/10.1016/j.physio.2012.06.006

    Article  PubMed  Google Scholar 

  30. Brumagne S, Cordo P, Lysens R, Verschueren S, Swinnen S (2000) The role of paraspinal muscle spindles in lumbosacral position sense in individuals with and without low back pain. Spine (Phila Pa 1976) 25(8):989–994

    Article  CAS  Google Scholar 

  31. Ebenbichler GR, Oddsson LI, Kollmitzer J, Erim Z (2001) Sensory-motor control of the lower back: implications for rehabilitation. Med Sci Sports Exerc 33(11):1889–1898

    Article  CAS  Google Scholar 

  32. Masse-Alarie H, Beaulieu LD, Preuss R, Schneider C (2016) Corticomotor control of lumbar multifidus muscles is impaired in chronic low back pain: concurrent evidence from ultrasound imaging and double-pulse transcranial magnetic stimulation. Exp Brain Res 234(4):1033–1045. https://doi.org/10.1007/s00221-015-4528-x

    Article  PubMed  Google Scholar 

  33. Appell HJ (1990) Muscular atrophy following immobilisation. A review. Sports Med 10(1):42–58

    Article  CAS  Google Scholar 

  34. Hodges P, Holm AK, Hansson T, Holm S (2006) Rapid atrophy of the lumbar multifidus follows experimental disc or nerve root injury. Spine (Phila Pa 1976) 31(25):2926–2933. https://doi.org/10.1097/01.brs.0000248453.51165.0b

    Article  Google Scholar 

  35. Herbison GJ, Jaweed MM, Ditunno JF (1979) Muscle atrophy in rats following denervation, casting, inflammation, and tenotomy. Arch Phys Med Rehabil 60(9):401–404

    CAS  PubMed  Google Scholar 

  36. Weber BR, Grob D, Dvorak J, Muntener M (1997) Posterior surgical approach to the lumbar spine and its effect on the multifidus muscle. Spine (Phila Pa 1976) 22(15):1765–1772

    Article  CAS  Google Scholar 

  37. Lexell J, Taylor CC, Sjostrom M (1988) What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci 84(2–3):275–294

    Article  CAS  Google Scholar 

  38. Hungerford B, Gilleard W, Hodges P (2003) Evidence of altered lumbopelvic muscle recruitment in the presence of sacroiliac joint pain. Spine (Phila Pa 1976) 28(14):1593–1600

    Google Scholar 

  39. Panjabi MM (1992) The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J Spinal Disord 5(4):383–389 discussion 397

    Article  CAS  Google Scholar 

  40. Hodges PW, Richardson CA (1996) Inefficient muscular stabilization of the lumbar spine associated with low back pain. A motor control evaluation of transversus abdominis. Spine (Phila Pa 1976) 21(22):2640–2650

    Article  CAS  Google Scholar 

  41. Hodges PW, Richardson CA (1998) Delayed postural contraction of transversus abdominis in low back pain associated with movement of the lower limb. J Spinal Disord 11(1):46–56

    Article  CAS  Google Scholar 

  42. Nelson-Wong E, Gregory DE, Winter DA, Callaghan JP (2008) Gluteus medius muscle activation patterns as a predictor of low back pain during standing. Clin Biomech (Bristol, Avon) 23(5):545–553. https://doi.org/10.1016/j.clinbiomech.2008.01.002

    Article  Google Scholar 

  43. Bierry G, Kremer S, Kellner F, Abu Eid M, Bogorin A, Dietemann JL (2008) Disorders of paravertebral lumbar muscles: from pathology to cross-sectional imaging. Skeletal Radiol 37(11):967–977. https://doi.org/10.1007/s00256-008-0494-8

    Article  PubMed  Google Scholar 

  44. MacIntyre DL, Reid WD, McKenzie DC (1995) Delayed muscle soreness. The inflammatory response to muscle injury and its clinical implications. Sports Med 20(1):24–40

    Article  CAS  Google Scholar 

  45. Kamaz M, Kiresi D, Oguz H, Emlik D, Levendoglu F (2007) CT measurement of trunk muscle areas in patients with chronic low back pain. Diagn Interv Radiol 13(3):144–148

    PubMed  Google Scholar 

  46. Hultman G, Nordin M, Saraste H, Ohlsen H (1993) Body composition, endurance, strength, cross-sectional area, and density of MM erector spinae in men with and without low back pain. J Spinal Disord 6(2):114–123

    Article  CAS  Google Scholar 

  47. Hides J, Gilmore C, Stanton W, Bohlscheid E (2008) Multifidus size and symmetry among chronic LBP and healthy asymptomatic subjects. Man Ther 13(1):43–49. https://doi.org/10.1016/j.math.2006.07.017

    Article  PubMed  Google Scholar 

  48. Chan ST, Fung PK, Ng NY, Ngan TL, Chong MY, Tang CN, He JF, Zheng YP (2012) Dynamic changes of elasticity, cross-sectional area, and fat infiltration of multifidus at different postures in men with chronic low back pain. Spine J 12(5):381–388. https://doi.org/10.1016/j.spinee.2011.12.004

    Article  PubMed  Google Scholar 

  49. Lee SW, Chan CK, Lam TS, Lam C, Lau NC, Lau RW, Chan ST (2006) Relationship between low back pain and lumbar multifidus size at different postures. Spine (Phila Pa 1976) 31(19):2258–2262. https://doi.org/10.1097/01.brs.0000232807.76033.33

    Article  Google Scholar 

  50. Wallwork TL, Stanton WR, Freke M, Hides JA (2009) The effect of chronic low back pain on size and contraction of the lumbar multifidus muscle. Man Ther 14(5):496–500. https://doi.org/10.1016/j.math.2008.09.006

    Article  PubMed  Google Scholar 

  51. D’Hooge R, Cagnie B, Crombez G, Vanderstraeten G, Dolphens M, Danneels L (2012) Increased intramuscular fatty infiltration without differences in lumbar muscle cross-sectional area during remission of unilateral recurrent low back pain. Man Ther 17(6):584–588. https://doi.org/10.1016/j.math.2012.06.007

    Article  PubMed  Google Scholar 

  52. Gildea JE, Hides JA, Hodges PW (2013) Size and symmetry of trunk muscles in ballet dancers with and without low back pain. J Orthop Sports Phys Ther 43(8):525–533. https://doi.org/10.2519/jospt.2013.4523

    Article  PubMed  Google Scholar 

  53. Goodpaster BH, Kelley DE, Thaete FL, He J, Ross R (2000) Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol (1985) 89(1):104–110. https://doi.org/10.1152/jappl.2000.89.1.104

    Article  CAS  Google Scholar 

  54. Dannhauer T, Ruhdorfer A, Wirth W, Eckstein F (2015) Quantitative relationship of thigh adipose tissue with pain, radiographic status, and progression of knee osteoarthritis: longitudinal findings from the osteoarthritis initiative. Invest Radiol 50(4):268–274. https://doi.org/10.1097/RLI.0000000000000113

    Article  PubMed  Google Scholar 

  55. Yanik B, Keyik B, Conkbayir I (2013) Fatty degeneration of multifidus muscle in patients with chronic low back pain and in asymptomatic volunteers: quantification with chemical shift magnetic resonance imaging. Skeletal Radiol 42(6):771–778. https://doi.org/10.1007/s00256-012-1545-8

    Article  PubMed  Google Scholar 

  56. Dixon WT (1984) Simple proton spectroscopic imaging. Radiology 153(1):189–194. https://doi.org/10.1148/radiology.153.1.6089263

    Article  CAS  Google Scholar 

  57. Wokke BH, Bos C, Reijnierse M, van Rijswijk CS, Eggers H, Webb A, Verschuuren JJ, Kan HE (2013) Comparison of dixon and T1-weighted MR methods to assess the degree of fat infiltration in duchenne muscular dystrophy patients. J Magn Reson Imaging 38(3):619–624. https://doi.org/10.1002/jmri.23998

    Article  PubMed  Google Scholar 

  58. Petterson SC, Barrance P, Buchanan T, Binder-Macleod S, Snyder-Mackler L (2008) Mechanisms underlying quadriceps weakness in knee osteoarthritis. Med Sci Sports Exerc 40(3):422–427. https://doi.org/10.1249/MSS.0b013e31815ef285

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sattler M, Dannhauer T, Hudelmaier M, Wirth W, Sanger AM, Kwoh CK, Hunter DJ, Eckstein F, investigators OAI (2012) Side differences of thigh muscle cross-sectional areas and maximal isometric muscle force in bilateral knees with the same radiographic disease stage, but unilateral frequent pain – data from the osteoarthritis initiative. Osteoarthritis Cartilage 20(6):532–540. https://doi.org/10.1016/j.joca.2012.02.635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fortin M, Gibbons LE, Videman T, Battie MC (2015) Do variations in paraspinal muscle morphology and composition predict low back pain in men? Scand J Med Sci Sports 25(6):880–887. https://doi.org/10.1111/sms.12301

    Article  CAS  PubMed  Google Scholar 

  61. Kalichman L, Hunter DJ (2008) Diagnosis and conservative management of degenerative lumbar spondylolisthesis. Eur Spine J 17(3):327–335. https://doi.org/10.1007/s00586-007-0543-3

    Article  PubMed  Google Scholar 

  62. Fortin M, Dobrescu O, Courtemanche M, Sparrey CJ, Santaguida C, Fehlings MG, Weber MH (2017) Association between paraspinal muscle morphology, clinical symptoms, and functional status in patients with degenerative cervical myelopathy. Spine (Phila Pa 1976) 42(4):232–239. https://doi.org/10.1097/BRS.0000000000001704

    Article  Google Scholar 

  63. Anderson DE, Quinn E, Parker E, Allaire BT, Muir JW, Rubin CT, Magaziner J, Hannan MT, Bouxsein ML, Kiel DP (2016) Associations of computed tomography-based trunk muscle size and density with balance and falls in older adults. J Gerontol A Biol Sci Med Sci 71(6):811–816. https://doi.org/10.1093/gerona/glv185

    Article  PubMed  Google Scholar 

  64. Visser M, Goodpaster BH, Kritchevsky SB, Newman AB, Nevitt M, Rubin SM, Simonsick EM, Harris TB (2005) Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol A Biol Sci Med Sci 60(3):324–333

    Article  Google Scholar 

  65. Goodpaster BH, Carlson CL, Visser M, Kelley DE, Scherzinger A, Harris TB, Stamm E, Newman AB (2001) Attenuation of skeletal muscle and strength in the elderly: The health ABC study. J Appl Physiol (1985) 90(6):2157–2165. https://doi.org/10.1152/jappl.2001.90.6.2157

    Article  CAS  Google Scholar 

  66. Visser M, Kritchevsky SB, Goodpaster BH, Newman AB, Nevitt M, Stamm E, Harris TB (2002) Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: the health, aging and body composition study. J Am Geriatr Soc 50(5):897–904

    Article  Google Scholar 

  67. Goodpaster BH, Krishnaswami S, Harris TB, Katsiaras A, Kritchevsky SB, Simonsick EM, Nevitt M, Holvoet P, Newman AB (2005) Obesity, regional body fat distribution, and the metabolic syndrome in older men and women. Arch Intern Med 165(7):777–783. https://doi.org/10.1001/archinte.165.7.777

    Article  PubMed  Google Scholar 

  68. Unger RH, Orci L (2002) Lipoapoptosis: its mechanism and its diseases. Biochim Biophys Acta 1585(2-3):202–212

    Article  CAS  Google Scholar 

  69. Kalichman L, Carmeli E, Been E (2017) The Association between Imaging Parameters of the Paraspinal Muscles, Spinal Degeneration, and Low Back Pain. Biomed Res Int 2017:2562957. https://doi.org/10.1155/2017/2562957

    Article  PubMed  PubMed Central  Google Scholar 

  70. Solgaard Sorensen J, Kjaer P, Jensen ST, Andersen P (2006) Low-field magnetic resonance imaging of the lumbar spine: reliability of qualitative evaluation of disc and muscle parameters. Acta Radiol 47(9):947–953. https://doi.org/10.1080/02841850600965062

    Article  CAS  PubMed  Google Scholar 

  71. Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC (1994) Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Clin Orthop Relat Res 304:78–83

    Google Scholar 

  72. Kalichman L, Klindukhov A, Li L, Linov L (2016) Indices of paraspinal muscles degeneration: reliability and association with facet joint osteoarthritis: feasibility study. Clin Spine Surg 29(9):465–470. https://doi.org/10.1097/BSD.0b013e31828be943

    Article  PubMed  Google Scholar 

  73. Tracy BL, Ivey FM, Jeffrey Metter E, Fleg JL, Siegel EL, Hurley BF (2003) A more efficient magnetic resonance imaging-based strategy for measuring quadriceps muscle volume. Med Sci Sports Exerc 35(3):425–433. https://doi.org/10.1249/01.MSS.0000053722.53302.D6

    Article  PubMed  Google Scholar 

  74. Overend TJ, Cunningham DA, Paterson DH, Lefcoe MS (1992) Thigh composition in young and elderly men determined by computed tomography. Clin Physiol 12(6):629–640

    Article  CAS  Google Scholar 

  75. Arokoski MH, Arokoski JP, Haara M, Kankaanpaa M, Vesterinen M, Niemitukia LH, Helminen HJ (2002) Hip muscle strength and muscle cross sectional area in men with and without hip osteoarthritis. J Rheumatol 29(10):2185–2195

    PubMed  Google Scholar 

  76. Inacio M, Ryan AS, Bair WN, Prettyman M, Beamer BA, Rogers MW (2014) Gluteal muscle composition differentiates fallers from non-fallers in community dwelling older adults. BMC Geriatr 14:37. https://doi.org/10.1186/1471-2318-14-37

    Article  PubMed  PubMed Central  Google Scholar 

  77. Marcon M, Ciritsis B, Laux C, Nanz D, Nguyen-Kim TD, Fischer MA, Andreisek G, Ulbrich EJ (2015) Cross-sectional area measurements versus volumetric assessment of the quadriceps femoris muscle in patients with anterior cruciate ligament reconstructions. Eur Radiol 25(2):290–298. https://doi.org/10.1007/s00330-014-3424-2

    Article  PubMed  Google Scholar 

  78. Springer I, Muller M, Hamm B, Dewey M (2012) Intra- and interobserver variability of magnetic resonance imaging for quantitative assessment of abductor and external rotator muscle changes after total hip arthroplasty. Eur J Radiol 81(5):928–933. https://doi.org/10.1016/j.ejrad.2011.01.113

    Article  CAS  PubMed  Google Scholar 

  79. Lube J, Cotofana S, Bechmann I, Milani TL, Ozkurtul O, Sakai T, Steinke H, Hammer N (2016) Reference data on muscle volumes of healthy human pelvis and lower extremity muscles: an in vivo magnetic resonance imaging feasibility study. Surg Radiol Anat 38(1):97–106. https://doi.org/10.1007/s00276-015-1526-4

    Article  PubMed  Google Scholar 

  80. Grimaldi A, Richardson C, Stanton W, Durbridge G, Donnelly W, Hides J (2009) The association between degenerative hip joint pathology and size of the gluteus medius, gluteus minimus and piriformis muscles. Man Ther 14(6):605–610. https://doi.org/10.1016/j.math.2009.07.004

    Article  PubMed  Google Scholar 

  81. Skorupska E, Keczmer P, Lochowski RM, Tomal P, Rychlik M, Samborski W (2016) Reliability of MR-based volumetric 3-D analysis of pelvic muscles among subjects with low back with leg pain and healthy volunteers. PLoS One 11(7):e0159587. https://doi.org/10.1371/journal.pone.0159587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Amabile AH, Bolte JH, Richter SD (2017) Atrophy of gluteus maximus among women with a history of chronic low back pain. PLoS One 12(7):e0177008. https://doi.org/10.1371/journal.pone.0177008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lund H, Christensen L, Savnik A, Boesen J, Danneskiold-Samsoe B, Bliddal H (2002) Volume estimation of extensor muscles of the lower leg based on MR imaging. Eur Radiol 12(12):2982–2987. https://doi.org/10.1007/s00330-002-1334-1

    Article  PubMed  Google Scholar 

  84. Rice CL, Cunningham DA, Paterson DH, Lefcoe MS (1989) Arm and leg composition determined by computed tomography in young and elderly men. Clin Physiol 9(3):207–220

    Article  CAS  Google Scholar 

  85. Miyatani M, Kanehisa H, Ito M, Kawakami Y, Fukunaga T (2004) The accuracy of volume estimates using ultrasound muscle thickness measurements in different muscle groups. Eur J Appl Physiol 91(2-3):264–272. https://doi.org/10.1007/s00421-003-0974-4

    Article  PubMed  Google Scholar 

  86. Sanada K, Kearns CF, Midorikawa T, Abe T (2006) Prediction and validation of total and regional skeletal muscle mass by ultrasound in Japanese adults. Eur J Appl Physiol 96(1):24–31. https://doi.org/10.1007/s00421-005-0061-0

    Article  PubMed  Google Scholar 

  87. Miyatani M, Kanehisa H, Masuo Y, Ito M, Fukunaga T (2001) Validity of estimating limb muscle volume by bioelectrical impedance. J Appl Physiol (1985) 91(1):386–394. https://doi.org/10.1152/jappl.2001.91.1.386

    Article  CAS  Google Scholar 

  88. Salinari S, Bertuzzi A, Mingrone G, Capristo E, Pietrobelli A, Campioni P, Greco AV, Heymsfield SB (2002) New bioimpedance model accurately predicts lower limb muscle volume: validation by magnetic resonance imaging. Am J Physiol Endocrinol Metab 282(4):E960–E966. https://doi.org/10.1152/ajpendo.00109.2001

    Article  CAS  PubMed  Google Scholar 

  89. Jolivet E, Daguet E, Pomero V, Bonneau D, Laredo JD, Skalli W (2008) Volumic patient-specific reconstruction of muscular system based on a reduced dataset of medical images. Comput Methods Biomech Biomed Engin 11(3):281–290. https://doi.org/10.1080/10255840801959479

    Article  CAS  PubMed  Google Scholar 

  90. Shen W, Wang Z, Tang H, Heshka S, Punyanitya M, Zhu S, Lei J, Heymsfield SB (2003) Volume estimates by imaging methods: model comparisons with visible woman as the reference. Obes Res 11(2):217–225. https://doi.org/10.1038/oby.2003.34

    Article  PubMed  PubMed Central  Google Scholar 

  91. Morse CI, Degens H, Jones DA (2007) The validity of estimating quadriceps volume from single MRI cross-sections in young men. Eur J Appl Physiol 100(3):267–274. https://doi.org/10.1007/s00421-007-0429-4

    Article  PubMed  Google Scholar 

  92. Nordez A, Jolivet E, Sudhoff I, Bonneau D, de Guise JA, Skalli W (2009) Comparison of methods to assess quadriceps muscle volume using magnetic resonance imaging. J Magn Reson Imaging 30(5):1116–1123. https://doi.org/10.1002/jmri.21867

    Article  PubMed  Google Scholar 

  93. Fortin M, Videman T, Gibbons LE, Battie MC (2014) Paraspinal muscle morphology and composition: a 15-yr longitudinal magnetic resonance imaging study. Med Sci Sports Exerc 46(5):893–901. https://doi.org/10.1249/MSS.0000000000000179

    Article  CAS  PubMed  Google Scholar 

  94. Hebert JJ, Kjaer P, Fritz JM, Walker BF (2014) The relationship of lumbar multifidus muscle morphology to previous, current, and future low back pain: a 9-year population-based prospective cohort study. Spine (Phila Pa 1976) 39(17):1417–1425. https://doi.org/10.1097/BRS.0000000000000424

    Article  Google Scholar 

  95. Niemelainen R, Briand MM, Battie MC (2011) Substantial asymmetry in paraspinal muscle cross-sectional area in healthy adults questions its value as a marker of low back pain and pathology. Spine (Phila Pa 1976) 36(25):2152–2157. https://doi.org/10.1097/BRS.0b013e318204b05a

    Article  Google Scholar 

  96. Fortin M, Lazary A, Varga PP, McCall I, Battie MC (2016) Paraspinal muscle asymmetry and fat infiltration in patients with symptomatic disc herniation. Eur Spine J 25(5):1452–1459. https://doi.org/10.1007/s00586-016-4503-7

    Article  PubMed  Google Scholar 

  97. Elliott JM, Galloway GJ, Jull GA, Noteboom JT, Centeno CJ, Gibbon WW (2005) Magnetic resonance imaging analysis of the upper cervical spine extensor musculature in an asymptomatic cohort: an index of fat within muscle. Clin Radiol 60(3):355–363. https://doi.org/10.1016/j.crad.2004.08.013

    Article  CAS  PubMed  Google Scholar 

  98. Wan Q, Lin C, Li X, Zeng W, Ma C (2015) MRI assessment of paraspinal muscles in patients with acute and chronic unilateral low back pain. Br J Radiol 88(1053):20140546. https://doi.org/10.1259/bjr.20140546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sdika M, Tonson A, Le Fur Y, Cozzone PJ, Bendahan D (2016) Multi-atlas-based fully automatic segmentation of individual muscles in rat leg. MAGMA 29(2):223–235. https://doi.org/10.1007/s10334-015-0511-6

    Article  PubMed  Google Scholar 

  100. Karampatos S, Papaioannou A, Beattie KA, Maly MR, Chan A, Adachi JD, Pritchard JM (2016) The reliability of a segmentation methodology for assessing intramuscular adipose tissue and other soft-tissue compartments of lower leg MRI images. MAGMA 29(2):237–244. https://doi.org/10.1007/s10334-015-0510-7

    Article  PubMed  Google Scholar 

  101. Le Troter A, Foure A, Guye M, Confort-Gouny S, Mattei JP, Gondin J, Salort-Campana E, Bendahan D (2016) Volume measurements of individual muscles in human quadriceps femoris using atlas-based segmentation approaches. MAGMA 29(2):245–257. https://doi.org/10.1007/s10334-016-0535-6

    Article  CAS  PubMed  Google Scholar 

  102. Baudin PY, Azzabou N, Carlier PG, Paragios N (2012) Prior knowledge, random walks and human skeletal muscle segmentation. Med Image Comput Comput Assist Interv 15(Pt 1):569–576

    CAS  PubMed  Google Scholar 

  103. Gilles B, Magnenat-Thalmann N (2010) Musculoskeletal MRI segmentation using multi-resolution simplex meshes with medial representations. Med Image Anal 14(3):291–302. https://doi.org/10.1016/j.media.2010.01.006

    Article  PubMed  Google Scholar 

  104. Karlsson A, Rosander J, Romu T, Tallberg J, Gronqvist A, Borga M, Dahlqvist Leinhard O (2015) Automatic and quantitative assessment of regional muscle volume by multi-atlas segmentation using whole-body water-fat MRI. J Magn Reson Imaging 41(6):1558–1569. https://doi.org/10.1002/jmri.24726

    Article  PubMed  Google Scholar 

  105. Pedoia V, Majumdar S, Link TM (2016) Segmentation of joint and musculoskeletal tissue in the study of arthritis. MAGMA 29(2):207–221. https://doi.org/10.1007/s10334-016-0532-9

    Article  CAS  PubMed  Google Scholar 

  106. Yoshihara K, Nakayama Y, Fujii N, Aoki T, Ito H (2003) Atrophy of the multifidus muscle in patients with lumbar disk herniation: histochemical and electromyographic study. Orthopedics 26(5):493–495

    PubMed  Google Scholar 

  107. Hides JA, Richardson CA, Jull GA (1995) Magnetic resonance imaging and ultrasonography of the lumbar multifidus muscle. Comparison of two different modalities. Spine (Phila Pa 1976) 20(1):54–58

    Article  CAS  Google Scholar 

  108. Pressler JF, Heiss DG, Buford JA, Chidley JV (2006) Between-day repeatability and symmetry of multifidus cross-sectional area measured using ultrasound imaging. J Orthop Sports Phys Ther 36(1):10–18. https://doi.org/10.2519/jospt.2006.36.1.10

    Article  PubMed  Google Scholar 

  109. Watson T, McPherson S, Starr K (2008) The association of nutritional status and gender with cross-sectional area of the multifidus muscle in establishing normative data. J Man Manip Ther 16(4):E93–E98. https://doi.org/10.1179/jmt.2008.16.4.93E

    Article  PubMed  PubMed Central  Google Scholar 

  110. Macintosh JE, Bogduk N (1991) The attachments of the lumbar erector spinae. Spine (Phila Pa 1976) 16(7):783–792

    Article  CAS  Google Scholar 

  111. Mannion AF, Dumas GA, Cooper RG, Espinosa FJ, Faris MW, Stevenson JM (1997) Muscle fibre size and type distribution in thoracic and lumbar regions of erector spinae in healthy subjects without low back pain: normal values and sex differences. J Anat 190(Pt 4):505–513

    Article  Google Scholar 

  112. Mattila M, Hurme M, Alaranta H, Paljarvi L, Kalimo H, Falck B, Lehto M, Einola S, Jarvinen M (1986) The multifidus muscle in patients with lumbar disc herniation. A histochemical and morphometric analysis of intraoperative biopsies. Spine (Phila Pa 1976) 11(7):732–738

    Article  CAS  Google Scholar 

  113. Zhao WP, Kawaguchi Y, Matsui H, Kanamori M, Kimura T (2000) Histochemistry and morphology of the multifidus muscle in lumbar disc herniation: comparative study between diseased and normal sides. Spine (Phila Pa 1976) 25(17):2191–2199

    Article  CAS  Google Scholar 

  114. Yoshihara K, Shirai Y, Nakayama Y, Uesaka S (2001) Histochemical changes in the multifidus muscle in patients with lumbar intervertebral disc herniation. Spine (Phila Pa 1976) 26(6):622–626

    Article  CAS  Google Scholar 

  115. Hyun JK, Lee JY, Lee SJ, Jeon JY (2007) Asymmetric atrophy of multifidus muscle in patients with unilateral lumbosacral radiculopathy. Spine (Phila Pa 1976) 32(21):E598–E602. https://doi.org/10.1097/BRS.0b013e318155837b

    Article  Google Scholar 

  116. Stokes MJ, Cooper RG, Morris G, Jayson MI (1992) Selective changes in multifidus dimensions in patients with chronic low back pain. Eur Spine J 1(1):38–42

    Article  CAS  Google Scholar 

  117. Campbell WW, Vasconcelos O, Laine FJ (1998) Focal atrophy of the multifidus muscle in lumbosacral radiculopathy. Muscle Nerve 21(10):1350–1353

    Article  CAS  Google Scholar 

  118. Hides JA, Stanton WR, McMahon S, Sims K, Richardson CA (2008) Effect of stabilization training on multifidus muscle cross-sectional area among young elite cricketers with low back pain. J Orthop Sports Phys Ther 38(3):101–108. https://doi.org/10.2519/jospt.2008.2658

    Article  PubMed  Google Scholar 

  119. Kulig K, Scheid AR, Beauregard R, Popovich JM Jr, Beneck GJ, Colletti PM (2009) Multifidus morphology in persons scheduled for single-level lumbar microdiscectomy: qualitative and quantitative assessment with anatomical correlates. Am J Phys Med Rehabil 88(5):355–361

    Article  Google Scholar 

  120. Kim WH, Lee SH, Lee DY (2011) Changes in the cross-sectional area of multifidus and psoas in unilateral sciatica caused by lumbar disc herniation. J Korean Neurosurg Soc 50(3):201–204. https://doi.org/10.3340/jkns.2011.50.3.201

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hayashi N, Masumoto T, Abe O, Aoki S, Ohtomo K, Tajiri Y (2002) Accuracy of abnormal paraspinal muscle findings on contrast-enhanced MR images as indirect signs of unilateral cervical root-avulsion injury. Radiology 223(2):397–402. https://doi.org/10.1148/radiol.2232010857

    Article  PubMed  Google Scholar 

  122. Fortin M, Macedo LG (2013) Multifidus and paraspinal muscle group cross-sectional areas of patients with low back pain and control patients: a systematic review with a focus on blinding. Phys Ther 93(7):873–888. https://doi.org/10.2522/ptj.20120457

    Article  PubMed  PubMed Central  Google Scholar 

  123. Beneck GJ, Kulig K (2012) Multifidus atrophy is localized and bilateral in active persons with chronic unilateral low back pain. Arch Phys Med Rehabil 93(2):300–306. https://doi.org/10.1016/j.apmr.2011.09.017

    Article  PubMed  Google Scholar 

  124. Lee JC, Cha JG, Kim Y, Kim YI, Shin BJ (2008) Quantitative analysis of back muscle degeneration in the patients with the degenerative lumbar flat back using a digital image analysis: comparison with the normal controls. Spine (Phila Pa 1976) 33(3):318–325. https://doi.org/10.1097/BRS.0b013e318162458f

    Article  Google Scholar 

  125. Kottlors M, Glocker FX (2008) Polysegmental innervation of the medial paraspinal lumbar muscles. Eur Spine J 17(2):300–306. https://doi.org/10.1007/s00586-007-0529-1

    Article  PubMed  Google Scholar 

  126. Wu PB, Kingery WS, Frazier ML, Date ES (1997) An electrophysiological demonstration of polysegmental innervation in the lumbar medial paraspinal muscles. Muscle Nerve 20(1):113–115

    Article  CAS  Google Scholar 

  127. Stokes M, Rankin G, Newham DJ (2005) Ultrasound imaging of lumbar multifidus muscle: normal reference ranges for measurements and practical guidance on the technique. Man Ther 10(2):116–126. https://doi.org/10.1016/j.math.2004.08.013

    Article  CAS  PubMed  Google Scholar 

  128. Hides JA, Cooper DH, Stokes MJ (1992) Diagnostic ultrasound imaging for measurement of the lumbar multifidus muscle in normal young adults. Physiotherapy Theory Practice 8:19–26

    Article  Google Scholar 

  129. Paalanne N, Niinimaki J, Karppinen J, Taimela S, Mutanen P, Takatalo J, Korpelainen R, Tervonen O (2011) Assessment of association between low back pain and paraspinal muscle atrophy using opposed-phase magnetic resonance imaging: a population-based study among young adults. Spine (Phila Pa 1976) 36(23):1961–1968. https://doi.org/10.1097/BRS.0b013e3181fef890

    Article  Google Scholar 

  130. Teichtahl AJ, Urquhart DM, Wang Y, Wluka AE, Wijethilake P, O’Sullivan R, Cicuttini FM (2015) Fat infiltration of paraspinal muscles is associated with low back pain, disability, and structural abnormalities in community-based adults. Spine J 15(7):1593–1601. https://doi.org/10.1016/j.spinee.2015.03.039

    Article  PubMed  Google Scholar 

  131. Battie MC, Niemelainen R, Gibbons LE, Dhillon S (2012) Is level- and side-specific multifidus asymmetry a marker for lumbar disc pathology? Spine J 12(10):932–939. https://doi.org/10.1016/j.spinee.2012.08.020

    Article  PubMed  Google Scholar 

  132. Goubert D, De Pauw R, Meeus M, Willems T, Cagnie B, Schouppe S, Van Oosterwijck J, Dhondt E, Danneels L (2017) Lumbar muscle structure and function in chronic versus recurrent low back pain: a cross-sectional study. Spine J 17(9):1285–1296. https://doi.org/10.1016/j.spinee.2017.04.025

    Article  PubMed  Google Scholar 

  133. McLoughlin RF, D’Arcy EM, Brittain MM, Fitzgerald O, Masterson JB (1994) The significance of fat and muscle areas in the lumbar paraspinal space: a CT study. J Comput Assist Tomogr 18(2):275–278

    Article  CAS  Google Scholar 

  134. McGill SM, Grenier S, Kavcic N, Cholewicki J (2003) Coordination of muscle activity to assure stability of the lumbar spine. J Electromyogr Kinesiol 13(4):353–359

    Article  Google Scholar 

  135. Dangaria TR, Naesh O (1998) Changes in cross-sectional area of psoas major muscle in unilateral sciatica caused by disc herniation. Spine (Phila Pa 1976) 23(8):928–931

    Article  CAS  Google Scholar 

  136. Hansen L, de Zee M, Rasmussen J, Andersen TB, Wong C, Simonsen EB (2006) Anatomy and biomechanics of the back muscles in the lumbar spine with reference to biomechanical modeling. Spine (Phila Pa 1976) 31(17):1888–1899. https://doi.org/10.1097/01.brs.0000229232.66090.58

    Article  Google Scholar 

  137. Hides J, Stanton W, Freke M, Wilson S, McMahon S, Richardson C (2008) MRI study of the size, symmetry and function of the trunk muscles among elite cricketers with and without low back pain. Br J Sports Med 42:809–813

    Article  CAS  Google Scholar 

  138. Villavicencio AT, Burneikiene S, Hernandez TD, Thramann J (2006) Back and neck pain in triathletes. Neurosurg Focus 21(4):E7

    Article  Google Scholar 

  139. Xu WB, Chen S, Fan SW, Zhao FD, Yu XJ, Hu ZJ (2016) Facet orientation and tropism: Associations with asymmetric lumbar paraspinal and psoas muscle parameters in patients with chronic low back pain. J Back Musculoskelet Rehabil 29(3):581–586. https://doi.org/10.3233/BMR-160661

    Article  CAS  PubMed  Google Scholar 

  140. Hides JA, Belavy DL, Stanton W, Wilson SJ, Rittweger J, Felsenberg D, Richardson CA (2007) Magnetic resonance imaging assessment of trunk muscles during prolonged bed rest. Spine (Phila Pa 1976) 32(15):1687–1692. https://doi.org/10.1097/BRS.0b013e318074c386

    Article  Google Scholar 

  141. Liebenson C (2007) Rehabilitation of the spine: a practitioner’s manual. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  142. Arab AM, Nourbakhsh MR (2010) The relationship between hip abductor muscle strength and iliotibial band tightness in individuals with low back pain. Chiropr Osteopat 18(1). https://doi.org/10.1186/1746-1340-18-1

    Article  Google Scholar 

  143. Kendall KD, Schmidt C, Ferber R (2010) The relationship between hip-abductor strength and the magnitude of pelvic drop in patients with low back pain. J Sport Rehabil 19(4):422–435

    Article  Google Scholar 

  144. Bewyer KJ, Bewyer DC, Messenger D, Kennedy CM (2009) Pilot data: association between gluteus medius weakness and low back pain during pregnancy. Iowa Orthop J 29:97–99

    PubMed  PubMed Central  Google Scholar 

  145. Nadler SF, Malanga GA, Bartoli LA, Feinberg JH, Prybicien M, Deprince M (2002) Hip muscle imbalance and low back pain in athletes: influence of core strengthening. Med Sci Sports Exerc 34(1):9–16

    Article  Google Scholar 

  146. Cooper NA, Scavo KM, Strickland KJ, Tipayamongkol N, Nicholson JD, Bewyer DC, Sluka KA (2016) Prevalence of gluteus medius weakness in people with chronic low back pain compared to healthy controls. Eur Spine J 25(4):1258–1265. https://doi.org/10.1007/s00586-015-4027-6

    Article  PubMed  Google Scholar 

  147. McClure PW, Esola M, Schreier R, Siegler S (1997) Kinematic analysis of lumbar and hip motion while rising from a forward, flexed position in patients with and without a history of low back pain. Spine (Phila Pa 1976) 22(5):552–558

    Article  CAS  Google Scholar 

  148. Milosavljevic S, Pal P, Bain D, Johnson G (2008) Kinematic and temporal interactions of the lumbar spine and hip during trunk extension in healthy male subjects. Eur Spine J 17(1):122–128. https://doi.org/10.1007/s00586-007-0487-7

    Article  PubMed  Google Scholar 

  149. Leinonen V, Kankaanpaa M, Airaksinen O, Hanninen O (2000) Back and hip extensor activities during trunk flexion/extension: effects of low back pain and rehabilitation. Arch Phys Med Rehabil 81(1):32–37

    Article  CAS  Google Scholar 

  150. Marras WS (2012) The complex spine: the multidimensional system of causal pathways for low-back disorders. Hum Factors 54(6):881–889. https://doi.org/10.1177/0018720812452129

    Article  PubMed  Google Scholar 

  151. Marras WS, Lavender SA, Ferguson SA, Splittstoesser RE, Yang G (2010) Quantitative dynamic measures of physical exposure predict low back functional impairment. Spine (Phila Pa 1976) 35(8):914–923. https://doi.org/10.1097/BRS.0b013e3181ce1201

    Article  Google Scholar 

  152. Marras WS, Lavender SA, Leurgans SE, Rajulu SL, Allread WG, Fathallah FA, Ferguson SA (1993) The role of dynamic three-dimensional trunk motion in occupationally-related low back disorders. The effects of workplace factors, trunk position, and trunk motion characteristics on risk of injury. Spine (Phila Pa 1976) 18(5):617–628

    Article  CAS  Google Scholar 

  153. Nachemson A (1966) The load on lumbar disks in different positions of the body. Clin Orthop Relat Res 45:107–122

    Article  CAS  Google Scholar 

  154. Coenen P, Gouttebarge V, van der Burght AS, van Dieen JH, Frings-Dresen MH, van der Beek AJ, Burdorf A (2014) The effect of lifting during work on low back pain: a health impact assessment based on a meta-analysis. Occup Environ Med 71(12):871–877. https://doi.org/10.1136/oemed-2014-102346

    Article  PubMed  Google Scholar 

  155. Nadler SF, Malanga GA, DePrince M, Stitik TP, Feinberg JH (2000) The relationship between lower extremity injury, low back pain, and hip muscle strength in male and female collegiate athletes. Clin J Sport Med 10(2):89–97

    Article  CAS  Google Scholar 

  156. Visser LH, Nijssen PG, Tijssen CC, van Middendorp JJ, Schieving J (2013) Sciatica-like symptoms and the sacroiliac joint: clinical features and differential diagnosis. Eur Spine J 22(7):1657–1664. https://doi.org/10.1007/s00586-013-2660-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Freynhagen R, Rolke R, Baron R, Tolle TR, Rutjes AK, Schu S, Treede RD (2008) Pseudoradicular and radicular low-back pain--a disease continuum rather than different entities? Answers from quantitative sensory testing. Pain 135(12):65–74. https://doi.org/10.1016/j.pain.2007.05.004

    Article  PubMed  Google Scholar 

  158. Hofstee DJ, Gijtenbeek JM, Hoogland PH, van Houwelingen HC, Kloet A, Lotters F, Tans JT (2002) Westeinde sciatica trial: randomized controlled study of bed rest and physiotherapy for acute sciatica. J Neurosurg 96(1 Suppl):45–49

    PubMed  Google Scholar 

  159. van Rijn JC, Klemetso N, Reitsma JB, Majoie CB, Hulsmans FJ, Peul WC, Bossuyt PM, Heeten GJ, Stam J (2006) Symptomatic and asymptomatic abnormalities in patients with lumbosacral radicular syndrome: Clinical examination compared with MRI. Clin Neurol Neurosurg 108(6):553–557. https://doi.org/10.1016/j.clineuro.2005.10.003

    Article  PubMed  Google Scholar 

  160. Capra F, Vanti C, Donati R, Tombetti S, O’Reilly C, Pillastrini P (2011) Validity of the straight-leg raise test for patients with sciatic pain with or without lumbar pain using magnetic resonance imaging results as a reference standard. J Manipulative Physiol Ther 34(4):231–238. https://doi.org/10.1016/j.jmpt.2011.04.010

    Article  PubMed  Google Scholar 

  161. Endean A, Palmer KT, Coggon D (2011) Potential of magnetic resonance imaging findings to refine case definition for mechanical low back pain in epidemiological studies: a systematic review. Spine (Phila Pa 1976) 36(2):160–169. https://doi.org/10.1097/BRS.0b013e3181cd9adb

    Article  Google Scholar 

  162. Al Nezari NH, Schneiders AG, Hendrick PA (2013) Neurological examination of the peripheral nervous system to diagnose lumbar spinal disc herniation with suspected radiculopathy: a systematic review and meta-analysis. Spine J 13(6):657–674. https://doi.org/10.1016/j.spinee.2013.02.007

    Article  PubMed  Google Scholar 

  163. Min JH, Choi HS, Ihl Rhee W, Lee JI (2013) Association between radiculopathy and lumbar multifidus atrophy in magnetic resonance imaging. J Back Musculoskelet Rehabil 26(2):175–181. https://doi.org/10.3233/BMR-130365

    Article  PubMed  Google Scholar 

  164. Voronov AV (2003) [Anatomical cross-sectional areas and volumes of the lower extremity muscles]. Fiziol Cheloveka 29(2):81-91

    Google Scholar 

  165. Laasonen EM (1984) Atrophy of sacrospinal muscle groups in patients with chronic, diffusely radiating lumbar back pain. Neuroradiology 26(1):9–13

    Article  CAS  Google Scholar 

  166. Hides JRC, Jull G (1996) Multifidus recovery is not automatic after resolution of acute, first-episode low back pain. Spine (Phila Pa 1976) 21:2763–2769

    Article  CAS  Google Scholar 

  167. Danneels LA, Vanderstraeten GG, Cambier DC, Witvrouw EE, Bourgois J, Dankaerts W, De Cuyper HJ (2001) Effects of three different training modalities on the cross sectional area of the lumbar multifidus muscle in patients with chronic low back pain. Br J Sports Med 35(3):186–191

    Article  CAS  Google Scholar 

  168. Moes JR, Holden JE (2014) Characterizing activity and muscle atrophy changes in rats with neuropathic pain: a pilot study. Biol Res Nurs 16(1):16–22. https://doi.org/10.1177/1099800413502722

    Article  PubMed  Google Scholar 

  169. Baron R, Binder A, Attal N, Casale R, Dickenson AH, Treede RD (2016) Neuropathic low back pain in clinical practice. Eur J Pain 20(6):861–873. https://doi.org/10.1002/ejp.838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Oki S, Desaki J, Matsuda Y, Okumura H, Shibata T (1995) Capillaries with fenestrae in the rat soleus muscle after experimental limb immobilization. J Electron Microsc (Tokyo) 44(5):307–310

    CAS  Google Scholar 

  171. Smith HK, Maxwell L, Martyn JA, Bass JJ (2000) Nuclear DNA fragmentation and morphological alterations in adult rabbit skeletal muscle after short-term immobilization. Cell Tissue Res 302(2):235–241

    Article  CAS  Google Scholar 

  172. Indahl A, Kaigle A, Reikeras O, Holm S (1999) Sacroiliac joint involvement in activation of the porcine spinal and gluteal musculature. J Spinal Disord 12(4):325–330

    Article  CAS  Google Scholar 

  173. Marcon M, Berger N, Manoliu A, Fischer MA, Nanz D, Andreisek G, Ulbrich EJ (2016) Normative values for volume and fat content of the hip abductor muscles and their dependence on side, age and gender in a healthy population. Skeletal Radiol 45(4):465–474. https://doi.org/10.1007/s00256-015-2325-z

    Article  PubMed  Google Scholar 

  174. Rossi P, Cardinali P, Serrao M, Parisi L, Bianco F, De Bac S (2001) Magnetic resonance imaging findings in piriformis syndrome: a case report. Arch Phys Med Rehabil 82(4):519–521. https://doi.org/10.1053/apmr.2001.21971

    Article  CAS  PubMed  Google Scholar 

  175. Jankiewicz JJ, Hennrikus WL, Houkom JA (1991) The appearance of the piriformis muscle syndrome in computed tomography and magnetic resonance imaging. A case report and review of the literature. Clin Orthop Relat Res 262:205–209

    Google Scholar 

  176. Pecina M (1979) Contribution to the etiological explanation of the piriformis syndrome. Acta Anat (Basel) 105(2):181–187

    Article  CAS  Google Scholar 

  177. Benzon HT, Katz JA, Benzon HA, Iqbal MS (2003) Piriformis syndrome: anatomic considerations, a new injection technique, and a review of the literature. Anesthesiology 98(6):1442–1448

    Article  Google Scholar 

  178. Petchprapa CN, Rosenberg ZS, Sconfienza LM, Cavalcanti CF, Vieira RL, Zember JS (2010) MR imaging of entrapment neuropathies of the lower extremity. Part 1. The pelvis and hip. Radiographics 30(4):983–1000. https://doi.org/10.1148/rg.304095135

    Article  PubMed  Google Scholar 

  179. Filler AG, Haynes J, Jordan SE, Prager J, Villablanca JP, Farahani K, McBride DQ, Tsuruda JS, Morisoli B, Batzdorf U, Johnson JP (2005) Sciatica of nondisc origin and piriformis syndrome: diagnosis by magnetic resonance neurography and interventional magnetic resonance imaging with outcome study of resulting treatment. J Neurosurg Spine 2(2):99–115. https://doi.org/10.3171/spi.2005.2.2.0099

    Article  PubMed  Google Scholar 

  180. Al-Al-Shaikh M, Michel F, Parratte B, Kastler B, Vidal C, Aubry S (2015) An MRI evaluation of changes in piriformis muscle morphology induced by botulinum toxin injections in the treatment of piriformis syndrome. Diagn Interv Imaging 96(1):37–43. https://doi.org/10.1016/j.diii.2014.02.015

    Article  CAS  PubMed  Google Scholar 

  181. Ranger TA, Cicuttini FM, Jensen TS, Peiris WL, Hussain SM, Fairley J, Urquhart DM (2017) Are the size and composition of the paraspinal muscles associated with low back pain? A systematic review. Spine J 17(11):1729–1748. https://doi.org/10.1016/j.spinee.2017.07.002

    Article  PubMed  Google Scholar 

  182. Goubert D, Oosterwijck JV, Meeus M, Danneels L (2016) Structural changes of lumbar muscles in non-specific low back pain: a systematic review. Pain Physician 19(7):E985–E1000

    PubMed  Google Scholar 

  183. Suri P, Fry AL, Gellhorn AC (2015) Do muscle characteristics on lumbar spine magnetic resonance imaging or computed tomography predict future low back pain, physical function, or performance? A systematic review. PM R 7(12):1269–1281. https://doi.org/10.1016/j.pmrj.2015.04.016

    Article  PubMed  Google Scholar 

Download references

Competing Financial Interests

The author declares no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elżbieta Skorupska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Skorupska, E. (2018). Muscle Atrophy Measurement as Assessment Method for Low Back Pain Patients. In: Xiao, J. (eds) Muscle Atrophy. Advances in Experimental Medicine and Biology, vol 1088. Springer, Singapore. https://doi.org/10.1007/978-981-13-1435-3_20

Download citation

Publish with us

Policies and ethics