Skip to main content

Noncoding RNAs in Muscle Atrophy

  • Chapter
  • First Online:
Muscle Atrophy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1088))

Abstract

Denervation, disuse, fasting, and various diseases could induce skeletal muscle atrophy, which results in the decline of life quality and increase of the mortality risk for patients. Noncoding RNAs (ncRNAs) are implicated important in regulating gene expression. Thus, ncRNAs, especially microRNAs and long noncoding RNAs (lncRNAs), have gained widespread attention as crucial players in numerous physiological and pathological processes, including skeletal muscle atrophy. In this review, we comprehensively described the potential of circulating microRNAs as biomarkers, summarized the profiling of microRNAs and lncRNAs in atrophying muscles, as well as discussed the effects and underlying mechanisms of microRNA machinery proteins, microRNAs, and lncRNAs in skeletal muscle atrophy. Considering the large quantity and variety of ncRNAs, the understanding of ncRNAs in muscle atrophy is still very limited. Future studies are needed to elucidate the possibility of ncRNAs as diagnosis biomarkers and therapeutic targets in muscle atrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruegg MA, Glass DJ (2011) Molecular mechanisms and treatment options for muscle wasting diseases. Annu Rev Pharmacol Toxicol 51:373–395. https://doi.org/10.1146/annurev-pharmtox-010510-100537

    Article  CAS  PubMed  Google Scholar 

  2. Mizuno H, Nakamura A, Aoki Y, Ito N, Kishi S, Yamamoto K, Sekiguchi M, Takeda S, Hashido K (2011) Identification of muscle-specific microRNAs in serum of muscular dystrophy animal models: promising novel blood-based markers for muscular dystrophy. PLoS One 6(3):e18388. https://doi.org/10.1371/journal.pone.0018388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Perfetti A, Greco S, Bugiardini E, Cardani R, Gaia P, Gaetano C, Meola G, Martelli F (2014) Plasma microRNAs as biomarkers for myotonic dystrophy type 1. Neuromuscul Disord 24(6):509–515. https://doi.org/10.1016/j.nmd.2014.02.005

    Article  PubMed  Google Scholar 

  4. Wang XH, Du J, Klein JD, Bailey JL, Mitch WE (2009) Exercise ameliorates chronic kidney disease-induced defects in muscle protein metabolism and progenitor cell function. Kidney Int 76(7):751–759. https://doi.org/10.1038/ki.2009.260

    Article  CAS  PubMed  Google Scholar 

  5. Gordon BS, Kelleher AR, Kimball SR (2013) Regulation of muscle protein synthesis and the effects of catabolic states. Int J Biochem Cell Biol 45(10):2147–2157. https://doi.org/10.1016/j.biocel.2013.05.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bonaldo P, Sandri M (2013) Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech 6(1):25–39. https://doi.org/10.1242/dmm.010389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stephens NA, Gallagher IJ, Rooyackers O, Skipworth RJ, Tan BH, Marstrand T, Ross JA, Guttridge DC, Lundell L, Fearon KC, Timmons JA (2010) Using transcriptomics to identify and validate novel biomarkers of human skeletal muscle cancer cachexia. Genome Med 2(1):1. https://doi.org/10.1186/gm122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. von Haehling S, Ebner N, Dos Santos MR, Springer J, Anker SD (2017) Muscle wasting and cachexia in heart failure: mechanisms and therapies. Nat Rev Cardiol 14(6):323–341. https://doi.org/10.1038/nrcardio.2017.51

    Article  CAS  Google Scholar 

  9. Yu Y, Li X, Liu L, Chai J, Haijun Z, Chu W, Yin H, Ma L, Duan H, Xiao M (2016) miR-628 promotes burn-induced skeletal muscle atrophy via targeting IRS1. Int J Biol Sci 12(10):1213–1224. https://doi.org/10.7150/ijbs.15496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Haijun Z, Yonghui Y, Jiake C, Hongjie D (2015) Detection of the MicroRNA expression profile in skeletal muscles of burn trauma at the early stage in rats. Ulus Travma Acil Cerrahi Derg 21(4):241–247. https://doi.org/10.5505/tjtes.2015.80707

    Article  PubMed  Google Scholar 

  11. Verdijk LB, Dirks ML, Snijders T, Prompers JJ, Beelen M, Jonkers RA, Thijssen DH, Hopman MT, Van Loon LJ (2012) Reduced satellite cell numbers with spinal cord injury and aging in humans. Med Sci Sports Exerc 44(12):2322–2330. https://doi.org/10.1249/MSS.0b013e3182667c2e

    Article  PubMed  Google Scholar 

  12. Gao Y, Arfat Y, Wang H, Goswami N (2018) Muscle atrophy induced by mechanical unloading: mechanisms and potential countermeasures. Front Physiol 9:235. https://doi.org/10.3389/fphys.2018.00235

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cohen S, Nathan JA, Goldberg AL (2015) Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov 14(1):58–74. https://doi.org/10.1038/nrd4467

    Article  CAS  PubMed  Google Scholar 

  14. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. https://doi.org/10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shukla GC, Singh J, Barik S (2011) MicroRNAs: processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol 3(3):83–92

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6(5):376–385. https://doi.org/10.1038/nrm1644

    Article  CAS  PubMed  Google Scholar 

  17. Yates LA, Norbury CJ, Gilbert RJ (2013) The long and short of microRNA. Cell 153(3):516–519. https://doi.org/10.1016/j.cell.2013.04.003

    Article  CAS  PubMed  Google Scholar 

  18. Chekulaeva M, Filipowicz W (2009) Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 21(3):452–460. https://doi.org/10.1016/j.ceb.2009.04.009

    Article  CAS  PubMed  Google Scholar 

  19. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655. https://doi.org/10.1016/j.cell.2009.01.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O’Rourke JR, Georges SA, Seay HR, Tapscott SJ, McManus MT, Goldhamer DJ, Swanson MS, Harfe BD (2007) Essential role for Dicer during skeletal muscle development. Dev Biol 311(2):359–368. https://doi.org/10.1016/j.ydbio.2007.08.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Haramati S, Chapnik E, Sztainberg Y, Eilam R, Zwang R, Gershoni N, McGlinn E, Heiser PW, Wills AM, Wirguin I, Rubin LL, Misawa H, Tabin CJ, Brown R Jr, Chen A, Hornstein E (2010) miRNA malfunction causes spinal motor neuron disease. Proc Natl Acad Sci U S A 107(29):13111–13116. https://doi.org/10.1073/pnas.1006151107

    Article  PubMed  PubMed Central  Google Scholar 

  22. Neppl RL, Kataoka M, Wang DZ (2014) Crystallin-alphaB regulates skeletal muscle homeostasis via modulation of argonaute2 activity. J Biol Chem 289(24):17240–17248. https://doi.org/10.1074/jbc.M114.549584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sakamoto S, Aoki K, Higuchi T, Todaka H, Morisawa K, Tamaki N, Hatano E, Fukushima A, Taniguchi T, Agata Y (2009) The NF90-NF45 complex functions as a negative regulator in the microRNA processing pathway. Mol Cell Biol 29(13):3754–3769. https://doi.org/10.1128/MCB.01836-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Todaka H, Higuchi T, Yagyu K, Sugiyama Y, Yamaguchi F, Morisawa K, Ono M, Fukushima A, Tsuda M, Taniguchi T, Sakamoto S (2015) Overexpression of NF90-NF45 represses myogenic MicroRNA biogenesis, resulting in development of skeletal muscle atrophy and centronuclear muscle fibers. Mol Cell Biol 35(13):2295–2308. https://doi.org/10.1128/MCB.01297-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q (2010) Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31(6):659–666. https://doi.org/10.1093/eurheartj/ehq013

    Article  CAS  PubMed  Google Scholar 

  26. Cacchiarelli D, Legnini I, Martone J, Cazzella V, D’Amico A, Bertini E, Bozzoni I (2011) miRNAs as serum biomarkers for Duchenne muscular dystrophy. EMBO Mol Med 3(5):258–265. https://doi.org/10.1002/emmm.201100133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Koutsoulidou A, Kyriakides TC, Papadimas GK, Christou Y, Kararizou E, Papanicolaou EZ, Phylactou LA (2015) Elevated muscle-specific miRNAs in serum of myotonic dystrophy patients relate to muscle disease progress. PLoS One 10(4):e0125341. https://doi.org/10.1371/journal.pone.0125341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lewis A, Riddoch-Contreras J, Natanek SA, Donaldson A, Man WD, Moxham J, Hopkinson NS, Polkey MI, Kemp PR (2012) Downregulation of the serum response factor/miR-1 axis in the quadriceps of patients with COPD. Thorax 67(1):26–34. https://doi.org/10.1136/thoraxjnl-2011-200309

    Article  PubMed  Google Scholar 

  29. Wang F, Wang J, He J, Li W, Li J, Chen S, Zhang P, Liu H, Chen X (2017) Serum miRNAs miR-23a, 206, and 499 as potential biomarkers for skeletal muscle atrophy. Biomed Res Int 2017:8361237. https://doi.org/10.1155/2017/8361237

    Article  PubMed  PubMed Central  Google Scholar 

  30. Catapano F, Zaharieva I, Scoto M, Marrosu E, Morgan J, Muntoni F, Zhou H (2016) Altered levels of MicroRNA-9, −206, and −132 in spinal muscular atrophy and their response to antisense oligonucleotide therapy. Mol Ther Nucleic Acids 5(7):e331. https://doi.org/10.1038/mtna.2016.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Soares RJ, Cagnin S, Chemello F, Silvestrin M, Musaro A, De Pitta C, Lanfranchi G, Sandri M (2014) Involvement of microRNAs in the regulation of muscle wasting during catabolic conditions. J Biol Chem 289(32):21909–21925. https://doi.org/10.1074/jbc.M114.561845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eisenberg I, Eran A, Nishino I, Moggio M, Lamperti C, Amato AA, Lidov HG, Kang PB, North KN, Mitrani-Rosenbaum S, Flanigan KM, Neely LA, Whitney D, Beggs AH, Kohane IS, Kunkel LM (2007) Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci U S A 104(43):17016–17021. https://doi.org/10.1073/pnas.0708115104

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fritegotto C, Ferrati C, Pegoraro V, Angelini C (2017) Micro-RNA expression in muscle and fiber morphometry in myotonic dystrophy type 1. Neurol Sci 38(4):619–625. https://doi.org/10.1007/s10072-017-2811-2

    Article  PubMed  Google Scholar 

  34. Zhang J, Fu SL, Liu Y, Liu YL, Wang WJ (2015) Analysis of MicroRNA expression profiles in weaned pig skeletal muscle after lipopolysaccharide challenge. Int J Mol Sci 16(9):22438–22455. https://doi.org/10.3390/ijms160922438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hauser CA, Stockler MR, Tattersall MH (2006) Prognostic factors in patients with recently diagnosed incurable cancer: a systematic review. Support Care Cancer 14(10):999–1011. https://doi.org/10.1007/s00520-006-0079-9

    Article  PubMed  Google Scholar 

  36. Lee DE, Brown JL, Rosa-Caldwell ME, Blackwell TA, Perry RA Jr, Brown LA, Khatri B, Seo D, Bottje WG, Washington TA, Wiggs MP, Kong BW, Greene NP (2017) Cancer cachexia-induced muscle atrophy: evidence for alterations in microRNAs important for muscle size. Physiol Genomics 49(5):253–260. https://doi.org/10.1152/physiolgenomics.00006.2017

    Article  CAS  PubMed  Google Scholar 

  37. Khayrullin A, Smith L, Mistry D, Dukes A, Pan YA, Hamrick MW (2016) Chronic alcohol exposure induces muscle atrophy (myopathy) in zebrafish and alters the expression of microRNAs targeting the Notch pathway in skeletal muscle. Biochem Biophys Res Commun 479(3):590–595. https://doi.org/10.1016/j.bbrc.2016.09.117

    Article  CAS  PubMed  Google Scholar 

  38. Weng J, Zhang P, Yin X, Jiang B (2018) The whole transcriptome involved in denervated muscle atrophy following peripheral nerve injury. Front Mol Neurosci 11:69. https://doi.org/10.3389/fnmol.2018.00069

    Article  PubMed  PubMed Central  Google Scholar 

  39. Li G, Li QS, Li WB, Wei J, Chang WK, Chen Z, Qiao HY, Jia YW, Tian JH, Liang BS (2016) miRNA targeted signaling pathway in the early stage of denervated fast and slow muscle atrophy. Neural Regen Res 11(8):1293–1303. https://doi.org/10.4103/1673-5374.189195

    Article  PubMed  PubMed Central  Google Scholar 

  40. Di Pietro L, Baranzini M, Berardinelli MG, Lattanzi W, Monforte M, Tasca G, Conte A, Logroscino G, Michetti F, Ricci E, Sabatelli M, Bernardini C (2017) Potential therapeutic targets for ALS: MIR206, MIR208b and MIR499 are modulated during disease progression in the skeletal muscle of patients. Sci Rep 7(1):9538. https://doi.org/10.1038/s41598-017-10161-z

    Article  PubMed  PubMed Central  Google Scholar 

  41. Waller R, Goodall EF, Milo M, Cooper-Knock J, Da Costa M, Hobson E, Kazoka M, Wollff H, Heath PR, Shaw PJ, Kirby J (2017) Serum miRNAs miR-206, 143-3p and 374b-5p as potential biomarkers for amyotrophic lateral sclerosis (ALS). Neurobiol Aging 55:123–131. https://doi.org/10.1016/j.neurobiolaging.2017.03.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kovanda A, Leonardis L, Zidar J, Koritnik B, Dolenc-Groselj L, Ristic Kovacic S, Curk T, Rogelj B (2018) Differential expression of microRNAs and other small RNAs in muscle tissue of patients with ALS and healthy age-matched controls. Sci Rep 8(1):5609. https://doi.org/10.1038/s41598-018-23139-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Boon H, Sjogren RJ, Massart J, Egan B, Kostovski E, Iversen PO, Hjeltnes N, Chibalin AV, Widegren U, Zierath JR (2015) MicroRNA-208b progressively declines after spinal cord injury in humans and is inversely related to myostatin expression. Physiol Rep 3(11). https://doi.org/10.14814/phy2.12622

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shen H, Liu T, Fu L, Zhao S, Fan B, Cao J, Li X (2013) Identification of microRNAs involved in dexamethasone-induced muscle atrophy. Mol Cell Biochem 381(1–2):105–113. https://doi.org/10.1007/s11010-013-1692-9

    Article  CAS  PubMed  Google Scholar 

  45. Liu C, Wang M, Chen M, Zhang K, Gu L, Li Q, Yu Z, Li N, Meng Q (2017) miR-18a induces myotubes atrophy by down-regulating IgfI. Int J Biochem Cell Biol 90:145–154. https://doi.org/10.1016/j.biocel.2017.07.020

    Article  CAS  PubMed  Google Scholar 

  46. Hudson MB, Rahnert JA, Zheng B, Woodworth-Hobbs ME, Franch HA, Price SR (2014) miR-182 attenuates atrophy-related gene expression by targeting FoxO3 in skeletal muscle. Am J Physiol Cell Physiol 307(4):C314–C319. https://doi.org/10.1152/ajpcell.00395.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kennedy WR, Alter M, Sung JH (1998) Progressive proximal spinal and bulbar muscular atrophy of late onset: a sex-linked recessive trait. Neurology 50(3): 583 and 510 pages following

    Article  PubMed  Google Scholar 

  48. La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352(6330):77–79. https://doi.org/10.1038/352077a0

    Article  PubMed  Google Scholar 

  49. Sobue G, Hashizume Y, Mukai E, Hirayama M, Mitsuma T, Takahashi A (1989) X-linked recessive bulbospinal neuronopathy. A clinicopathological study. Brain 112(Pt 1):209–232

    Article  PubMed  Google Scholar 

  50. Miyazaki Y, Adachi H, Katsuno M, Minamiyama M, Jiang YM, Huang Z, Doi H, Matsumoto S, Kondo N, Iida M, Tohnai G, Tanaka F, Muramatsu S, Sobue G (2012) Viral delivery of miR-196a ameliorates the SBMA phenotype via the silencing of CELF2. Nat Med 18(7):1136–1141. https://doi.org/10.1038/nm.2791

    Article  CAS  PubMed  Google Scholar 

  51. Pourshafie N, Lee PR, Chen KL, Harmison GG, Bott LC, Katsuno M, Sobue G, Burnett BG, Fischbeck KH, Rinaldi C (2016) MiR-298 counteracts mutant androgen receptor toxicity in spinal and bulbar muscular atrophy. Mol Ther 24(5):937–945. https://doi.org/10.1038/mt.2016.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kukreti H, Amuthavalli K, Harikumar A, Sathiyamoorthy S, Feng PZ, Anantharaj R, Tan SL, Lokireddy S, Bonala S, Sriram S, McFarlane C, Kambadur R, Sharma M (2013) Muscle-specific microRNA1 (miR1) targets heat shock protein 70 (HSP70) during dexamethasone-mediated atrophy. J Biol Chem 288(9):6663–6678. https://doi.org/10.1074/jbc.M112.390369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McCarthy JJ, Esser KA, Peterson CA, Dupont-Versteegden EE (2009) Evidence of MyomiR network regulation of beta-myosin heavy chain gene expression during skeletal muscle atrophy. Physiol Genomics 39(3):219–226. https://doi.org/10.1152/physiolgenomics.00042.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38(2):228–233. https://doi.org/10.1038/ng1725

    Article  CAS  PubMed  Google Scholar 

  55. Huang MB, Xu H, Xie SJ, Zhou H, Qu LH (2011) Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis. PLoS One 6(12):e29173. https://doi.org/10.1371/journal.pone.0029173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. He Q, Qiu J, Dai M, Fang Q, Sun X, Gong Y, Ding F, Sun H (2016) MicroRNA-351 inhibits denervation-induced muscle atrophy by targeting TRAF6. Exp Ther Med 12(6):4029–4034. https://doi.org/10.3892/etm.2016.3856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Huang QK, Qiao HY, Fu MH, Li G, Li WB, Chen Z, Wei J, Liang BS (2016) MiR-206 attenuates denervation-induced skeletal muscle atrophy in rats through regulation of satellite cell differentiation via TGF-beta1, Smad3, and HDAC4 signaling. Med Sci Monit 22:1161–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Williams AH, Valdez G, Moresi V, Qi X, McAnally J, Elliott JL, Bassel-Duby R, Sanes JR, Olson EN (2009) MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 326(5959):1549–1554. https://doi.org/10.1126/science.1181046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Connolly M, Paul R, Farre-Garros R, Natanek SA, Bloch S, Lee J, Lorenzo JP, Patel H, Cooper C, Sayer AA, Wort SJ, Griffiths M, Polkey MI, Kemp PR (2018) miR-424-5p reduces ribosomal RNA and protein synthesis in muscle wasting. J Cachexia Sarcopenia Muscle 9(2):400–416. https://doi.org/10.1002/jcsm.12266

    Article  PubMed  Google Scholar 

  60. Li J, Chan MC, Yu Y, Bei Y, Chen P, Zhou Q, Cheng L, Chen L, Ziegler O, Rowe GC, Das S, Xiao J (2017) miR-29b contributes to multiple types of muscle atrophy. Nat Commun 8:15201. https://doi.org/10.1038/ncomms15201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang B, Zhang C, Zhang A, Cai H, Price SR, Wang XH (2017) MicroRNA-23a and MicroRNA-27a mimic exercise by ameliorating CKD-induced muscle atrophy. J Am Soc Nephrol 28(9):2631–2640. https://doi.org/10.1681/ASN.2016111213

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wada S, Kato Y, Okutsu M, Miyaki S, Suzuki K, Yan Z, Schiaffino S, Asahara H, Ushida T, Akimoto T (2011) Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy. J Biol Chem 286(44):38456–38465. https://doi.org/10.1074/jbc.M111.271270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hudson MB, Woodworth-Hobbs ME, Zheng B, Rahnert JA, Blount MA, Gooch JL, Searles CD, Price SR (2014) miR-23a is decreased during muscle atrophy by a mechanism that includes calcineurin signaling and exosome-mediated export. Am J Physiol Cell Physiol 306(6):C551–C558. https://doi.org/10.1152/ajpcell.00266.2013

    Article  CAS  PubMed  Google Scholar 

  64. Devaux Y, Zangrando J, Schroen B, Creemers EE, Pedrazzini T, Chang CP, Dorn GW 2nd, Thum T, Heymans S (2015) Long noncoding RNAs in cardiac development and ageing. Nat Rev Cardiol 12(7):415–425. https://doi.org/10.1038/nrcardio.2015.55

    Article  CAS  PubMed  Google Scholar 

  65. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L, Yang X, Amit I, Meissner A, Regev A, Rinn JL, Root DE, Lander ES (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477(7364):295–300. https://doi.org/10.1038/nature10398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kapusta A, Feschotte C (2014) Volatile evolution of long noncoding RNA repertoires: mechanisms and biological implications. Trends Genet 30(10):439–452. https://doi.org/10.1016/j.tig.2014.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154(1):26–46. https://doi.org/10.1016/j.cell.2013.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4(9):721–726. https://doi.org/10.1038/nmeth1079

    Article  CAS  PubMed  Google Scholar 

  69. Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP (2010) Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3(107):ra8. https://doi.org/10.1126/scisignal.2000568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yin QF, Yang L, Zhang Y, Xiang JF, Wu YW, Carmichael GG, Chen LL (2012) Long noncoding RNAs with snoRNA ends. Mol Cell 48(2):219–230. https://doi.org/10.1016/j.molcel.2012.07.033

    Article  CAS  PubMed  Google Scholar 

  71. Hube F, Velasco G, Rollin J, Furling D, Francastel C (2011) Steroid receptor RNA activator protein binds to and counteracts SRA RNA-mediated activation of MyoD and muscle differentiation. Nucleic Acids Res 39(2):513–525. https://doi.org/10.1093/nar/gkq833

    Article  CAS  PubMed  Google Scholar 

  72. Caretti G, Schiltz RL, Dilworth FJ, Di Padova M, Zhao P, Ogryzko V, Fuller-Pace FV, Hoffman EP, Tapscott SJ, Sartorelli V (2006) The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Dev Cell 11(4):547–560. https://doi.org/10.1016/j.devcel.2006.08.003

    Article  CAS  PubMed  Google Scholar 

  73. Dey BK, Pfeifer K, Dutta A (2014) The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes Dev 28(5):491–501. https://doi.org/10.1101/gad.234419.113

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mueller AC, Cichewicz MA, Dey BK, Layer R, Reon BJ, Gagan JR, Dutta A (2015) MUNC, a long noncoding RNA that facilitates the function of MyoD in skeletal myogenesis. Mol Cell Biol 35(3):498–513. https://doi.org/10.1128/MCB.01079-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gong C, Li Z, Ramanujan K, Clay I, Zhang Y, Lemire-Brachat S, Glass DJ (2015) A long non-coding RNA, LncMyoD, regulates skeletal muscle differentiation by blocking IMP2-mediated mRNA translation. Dev Cell 34(2):181–191. https://doi.org/10.1016/j.devcel.2015.05.009

    Article  CAS  PubMed  Google Scholar 

  76. Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147(2):358–369. https://doi.org/10.1016/j.cell.2011.09.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhu M, Liu J, Xiao J, Yang L, Cai M, Shen H, Chen X, Ma Y, Hu S, Wang Z, Hong A, Li Y, Sun Y, Wang X (2017) Lnc-mg is a long non-coding RNA that promotes myogenesis. Nat Commun 8:14718. https://doi.org/10.1038/ncomms14718

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zhang ZK, Li J, Guan D, Liang C, Zhuo Z, Liu J, Lu A, Zhang G, Zhang BT (2018) A newly identified lncRNA MAR1 acts as a miR-487b sponge to promote skeletal muscle differentiation and regeneration. J Cachexia Sarcopenia Muscle 9:613. https://doi.org/10.1002/jcsm.12281

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhou L, Sun K, Zhao Y, Zhang S, Wang X, Li Y, Lu L, Chen X, Chen F, Bao X, Zhu X, Wang L, Tang LY, Esteban MA, Wang CC, Jauch R, Sun H, Wang H (2015) Linc-YY1 promotes myogenic differentiation and muscle regeneration through an interaction with the transcription factor YY1. Nat Commun 6:10026. https://doi.org/10.1038/ncomms10026

    Article  CAS  PubMed  Google Scholar 

  80. Militello G, Hosen MR, Ponomareva Y, Gellert P, Weirick T, John D, Hindi SM, Mamchaoui K, Mouly V, Doring C, Zhang L, Nakamura M, Kumar A, Fukada SI, Dimmeler S, Uchida S (2018) A novel long non-coding RNA Myolinc regulates myogenesis through TDP-43 and Filip1. J Mol Cell Biol 10:102. https://doi.org/10.1093/jmcb/mjy025

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wang L, Zhao Y, Bao X, Zhu X, Kwok YK, Sun K, Chen X, Huang Y, Jauch R, Esteban MA, Sun H, Wang H (2015) LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration. Cell Res 25(3):335–350. https://doi.org/10.1038/cr.2015.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang J, Gong C, Maquat LE (2013) Control of myogenesis by rodent SINE-containing lncRNAs. Genes Dev 27(7):793–804. https://doi.org/10.1101/gad.212639.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lu L, Sun K, Chen X, Zhao Y, Wang L, Zhou L, Sun H, Wang H (2013) Genome-wide survey by ChIP-seq reveals YY1 regulation of lincRNAs in skeletal myogenesis. EMBO J 32(19):2575–2588. https://doi.org/10.1038/emboj.2013.182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ballarino M, Cazzella V, D’Andrea D, Grassi L, Bisceglie L, Cipriano A, Santini T, Pinnaro C, Morlando M, Tramontano A, Bozzoni I (2015) Novel long noncoding RNAs (lncRNAs) in myogenesis: a miR-31 overlapping lncRNA transcript controls myoblast differentiation. Mol Cell Biol 35(4):728–736. https://doi.org/10.1128/MCB.01394-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Han X, Yang F, Cao H, Liang Z (2015) Malat1 regulates serum response factor through miR-133 as a competing endogenous RNA in myogenesis. FASEB J 29(7):3054–3064. https://doi.org/10.1096/fj.14-259952

    Article  CAS  PubMed  Google Scholar 

  86. Wang GQ, Wang Y, Xiong Y, Chen XC, Ma ML, Cai R, Gao Y, Sun YM, Yang GS, Pang WJ (2016) Sirt1 AS lncRNA interacts with its mRNA to inhibit muscle formation by attenuating function of miR-34a. Sci Rep 6:21865. https://doi.org/10.1038/srep21865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Penna F, Costamagna D, Fanzani A, Bonelli G, Baccino FM, Costelli P (2010) Muscle wasting and impaired myogenesis in tumor bearing mice are prevented by ERK inhibition. PLoS One 5(10):e13604. https://doi.org/10.1371/journal.pone.0013604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lorson CL, Hahnen E, Androphy EJ, Wirth B (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A 96(11):6307–6311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80(1):155–165

    Article  CAS  PubMed  Google Scholar 

  90. d’Ydewalle C, Ramos DM, Pyles NJ, Ng SY, Gorz M, Pilato CM, Ling K, Kong L, Ward AJ, Rubin LL, Rigo F, Bennett CF, Sumner CJ (2017) The antisense transcript SMN-AS1 regulates SMN expression and is a novel therapeutic target for spinal muscular atrophy. Neuron 93(1):66–79. https://doi.org/10.1016/j.neuron.2016.11.033

    Article  CAS  PubMed  Google Scholar 

  91. Woo CJ, Maier VK, Davey R, Brennan J, Li G, Brothers J 2nd, Schwartz B, Gordo S, Kasper A, Okamoto TR, Johansson HE, Mandefro B, Sareen D, Bialek P, Chau BN, Bhat B, Bullough D, Barsoum J (2017) Gene activation of SMN by selective disruption of lncRNA-mediated recruitment of PRC2 for the treatment of spinal muscular atrophy. Proc Natl Acad Sci U S A 114(8):E1509–E1518. https://doi.org/10.1073/pnas.1616521114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Haijun Z, Yonghui Y, Jiake C (2016) Expression signatures of lncRNAs in skeletal muscles at the early flow phase revealed by microarray in burned rats. Ulus Travma Acil Cerrahi Derg 22(3):224–232. https://doi.org/10.5505/tjtes.2015.04831

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from National Natural Science Foundation of China (81722008, 91639101 and 81570362 to JJ Xiao), Innovation Program of Shanghai Municipal Education Commission (2017-01-07-00-09-E00042 to JJ Xiao), the grant from Science and Technology Commission of Shanghai Municipality (17010500100 to JJ Xiao), and the development fund for Shanghai talents (to JJ Xiao).

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y., Meng, X., Li, G., Zhou, Q., Xiao, J. (2018). Noncoding RNAs in Muscle Atrophy. In: Xiao, J. (eds) Muscle Atrophy. Advances in Experimental Medicine and Biology, vol 1088. Springer, Singapore. https://doi.org/10.1007/978-981-13-1435-3_11

Download citation

Publish with us

Policies and ethics