Skip to main content

A Simplified Ultrasonic Stripping-Chemical Reduction Method for Preparation of Graphene

  • Conference paper
  • First Online:
Advances in Energy and Environmental Materials (CMC 2017)

Part of the book series: Springer Proceedings in Energy ((SPE))

Included in the following conference series:

  • 2452 Accesses

Abstract

Graphene has been widely used in many fields due to its unique excellent mechanical, optical, thermal and electrical properties. A simple approach for reducing graphene oxide (GO) with Tea polyphenols (TP) (TRG) was developed by ultrasonic stripping-chemical reduction method. The reduction products of TRG were obtained, and Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy and X-ray-diffraction were introduced to prove the elimination of oxygen-containing groups from GO. It was found that when the weight of TP was 0.225 g, the reduction degree of GO was the highest. Besides, the thermal gravimetric analysis results showed that there was a close relationship between the reduction degree of GO and thermal stability of TRG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science. 306, 666–669 (2004)

    Article  Google Scholar 

  3. T. Yokoyama, J. Linder, Anomalous magnetic transport in ferromagnetic graphene junctions. Phys. Rev. B. 83, 3002–3005 (2011)

    Google Scholar 

  4. E. Cartlidge, Graphene superconductivity seen. Phys. World 28, 6–7 (2015)

    Google Scholar 

  5. C. Cao, M. Long, X. Mao, Giant magnetoresistance effect, rectifying performance and spin filters in graphene-based heterostructure. J. Comput. Theor. Nanos. 12, 4849–4854 (2015)

    Article  Google Scholar 

  6. C. Androulidakis, G. Tsoukleri, N. Koutroumanis, G. Gkikas, P. Pappas, J. Parthenios, K. Papagelis, C. Galiotis, Carbon 81, 322–328 (2015)

    Article  Google Scholar 

  7. S.N. Leung, M.O. Khan, H. Naguib, F. Dawson, Appl. Phys. Lett. 104, 081904 (2014)

    Article  Google Scholar 

  8. H. Hirai, H. Tsuchiya, Y. Kamakura, N. Mori, M. Ogawa, Electron mobility calculation for graphene on substrates. J. Appl. Phys. 116, 083703–083706 (2014)

    Article  Google Scholar 

  9. A. Deshpande, C.H. Sham, J.M.P. Alaboson, J.M. Mullin, G.C. Schatz, M.C. Hersam, J. Am. Chem. Soc. 134, 16759–16764 (2012)

    Article  Google Scholar 

  10. R.T. Thomas, P.A. Rasheed, N. Sandhyarani, J. Colloid. Interf. Sci. 428, 214–221 (2014)

    Article  Google Scholar 

  11. H.H. Chun, J.Y. Lee, J.H. Lee, W.K. Jo, Ind. Eng. Chem. Res. 55, 45–53 (2016)

    Article  Google Scholar 

  12. M. Pumera, Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 4, 668–674 (2011)

    Article  Google Scholar 

  13. R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271–279 (2015)

    Article  Google Scholar 

  14. R. Stine, S.P. Mulvaney, J.T. Robinson, C.R. Tamanaha, P.E. Sheehan, Fabrication, optimization, and use of graphene field effect sensors. Phys. Rev. C. 85, 509–521 (2013)

    Google Scholar 

  15. S. Wu, Q. He, C. Tan, Y. Wang, H. Zhang, Graphene-based electrochemical sensors. Small 9, 1160–1172 (2013)

    Article  Google Scholar 

  16. D. Reddy, L.F. Register, G.D. Carpenter, S.K. Banerjee, Graphene field-effect transistors. J. Phys. D: Appl. Phys. 44, 313001 (2011)

    Article  Google Scholar 

  17. M. Zhang, C.Z. Liao, Y.L. Yao, Z.K. Liu, F.F. Gong, F. Yan, High-performance dopamine sensors based on whole graphene solution-gated transistors. Adv. Funct. Mater. 24, 978–985 (2014)

    Article  Google Scholar 

  18. H.J. Salavagione, G. Martínez, G. Ellis, Recent advances in the covalent modification of graphene with polymers. Macromol. Rapid. Comm. 32, 1771–1789 (2011)

    Article  Google Scholar 

  19. B.M. Yoo, H.J. Shin, H.W. Yoon, H.B. Park, Graphene and graphene oxide and their uses in barrier polymers. J. Appl. Polym. Sci. 131, 1–15 (2014)

    Article  Google Scholar 

  20. B. Jayasena, S. Subbiah, A novel mechanical cleavage method for synthesizing few layer graphene. Nanoscale Res. Lett. 6, 95 (2011)

    Article  Google Scholar 

  21. R.V. Lapshin, S.T.M observation of a box-shaped graphene nanostructure appeared after mechanical cleavage of pyrolytic graphite. Appl. Surf. Sci. 360, 451–460 (2016)

    Article  Google Scholar 

  22. H. Choi, Y. Lim, M. Park, S. Lee, Y. Kang, M.S. Kim, J. Kim, M. Jeon, Precise control of chemical vapor deposition graphene layer thickness using NixCu1-x alloys. J. Mater. Chem. C. 3, 1463–1467 (2015)

    Article  Google Scholar 

  23. T. Ciuk, P. Caban, W. Strupinski, Charge carrier concentration and offset voltage in quasi-free-standing monolayer chemical vapor deposition graphene on SiC. Carbon 101, 431–438 (2016)

    Article  Google Scholar 

  24. J.J. Ma, Y.S. He, W.M. Zhang, J.L. Wang, X.W. Yang, X.Z. Liao, Z.F. Ma, An experimental insight into the advantages of in situ solvothermal route to construct 3D graphene-based anode materials for lithium-ion batteries. Nano Energy 16, 235–246 (2015)

    Article  Google Scholar 

  25. Y. Lei, J. Xu, R. Li, F.F. Chen, Solvothermal synthesis of CdS-graphene composites by varying the Cd/S ratio. Ceram. Int. 41, 3158–3161 (2015)

    Article  Google Scholar 

  26. N.T. Shelke, B.R. Karche, Ultraviolet photosensor based on few layered reduced graphene oxide nanosheets. Appl. Surf. Sci. 418, 374–379 (2017)

    Article  Google Scholar 

  27. X.F. Li, L. Basile, B. Huang, C. Ma, J.W. Lee, I.V. Vlassiouk, A.A. Puretzky, M.W. Lin, M. Yoon, M.F. Chi, J.C. Idrobo, C.M. Rouleau, B.G. Sumpter, D.B. Geohegan, K. Xiao, Van der waals epitaxial growth of two-dimensional single-crystalline GaSe domains on graphene. ACS Nano 9, 8078–8088 (2015)

    Article  Google Scholar 

  28. S. Haar, A. Ciesielski, J. Clough, H.F. Yang, R. Mazzaro, F. Richard, S. Conti, N. Merstorf, M. Cecchini, V. Morandi, C. Casiraghi, P. Samori, Graphene: a supramolecular strategy to leverage the liquid-phase exfoliation of graphene in the presence of surfactants: unraveling the role of the length of fatty acids. Small 11, 1691–1702 (2015)

    Article  Google Scholar 

  29. A. Ciesielski, P. Samor, Supramolecular approaches to graphene: from self-assembly to molecule-assisted liquid-phase exfoliation. Adv. Mater. 28, 6030–6051 (2016)

    Article  Google Scholar 

  30. S. Gurunathan, J.W. Han, E.S. Kim, J.H. Park, J.H. Kim, Reduction of graphene oxide by resveratrol: A novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule. Int. J. Nanomed. 10, 2951–2969 (2015)

    Article  Google Scholar 

  31. H. Pan, Y.D. Zhang, X.D. Wang, L.G. Yu, Z.J. Zhang, Simultaneous surface modification and chemical reduction of graphene oxide using ethylene diamine. J. Nanosci. Nanotechno. 16, 2557–2563 (2016)

    Article  Google Scholar 

  32. W.C. Ye, J. Yu, Y.X. Zhou, D.Q. Gao, D.A. Wang, C.M. Wang, D.S. Xue, Green synthesis of Pt-Au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4-nitrophenol reduction. Appl. Catal. B-Environ. 28, 258–263 (2014)

    Google Scholar 

  33. D.Z. Chen, L.D. Li, L. Guo, An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid. Nanotechnology 22, 325601–325607 (2011)

    Article  Google Scholar 

  34. M. Salavati-Niasari, M. Ranjbar, M. Sabet, Synthesis and characterization of znin2s4 nanoparticles by a facile microwave approach. J. Inorg. Organomet. Polym. Mater. 23, 452–457 (2013)

    Article  Google Scholar 

  35. S. Thakur, N. Karak, Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50, 5331–5339 (2012)

    Article  Google Scholar 

  36. D.R. Dreyer, S. Murali, Y.W. Zhu, R.S. Ruoff, C.W. Bielawski, Reduction of graphite oxide using alcohols. J. Mater. Chem. 21, 3443–3447 (2011)

    Article  Google Scholar 

  37. K. Kakaei, Palladium silver nanoparticle catalysts synthesis on graphene via a green reduction in tea solution for oxygen reduction reaction in PEM fuel cells. Am. J. Phar. E. 76, 1203–1214 (2014)

    Google Scholar 

  38. O. Akhavan, E. Ghaderi, A. Esfandiar, Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J. Phys. Chem. B. 115, 6279–6288 (2011)

    Article  Google Scholar 

  39. J.B. Liu, S.H. Fu, B. Yuan, Y.L. Li, Z.X. Deng, Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J. Am. Chem. Soc. 132, 7279–7281 (2010)

    Article  Google Scholar 

  40. L.C. Soo, Fabrication of glucose sensor using graphene, University Malaysia Pahang, 2015

    Google Scholar 

  41. X.W. Wang, W. Ai, N. Li, T. Yu, P. Chen, Graphene-bacteria composite for oxygen reduction and lithium ion batteries. J. Mater. Chem. A. 3, 12873–12879 (2015)

    Article  Google Scholar 

  42. C.Z. Zhu, S.J. Guo, Y.X. Fang, S.J. Dong, Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4, 2429–2437 (2010)

    Article  Google Scholar 

  43. M.F. Abdullah, R. Zakaria, S.H.S. Zein, Green tea polyphenol-reduced graphene oxide: derivatisation, reduction efficiency, reduction mechanism and cytotoxicity. RSC Adv. 4, 34510–34518 (2014)

    Article  Google Scholar 

  44. H.J. Chu, C.Y. Lee, N.H. Tai, Green reduction of graphene oxide by Hibiscus sabdariffa L. to fabricate flexible graphene electrode. Carbon 80, 725–733 (2014)

    Article  Google Scholar 

  45. Y. Feng, N.N. Feng, G.X. Du, A green reduction of graphene oxide via starch-based materials. RSC Adv. 3, 21466–21474 (2013)

    Article  Google Scholar 

  46. J.K. Ma, X.R. Wang, Y. Liu, T. Wu, Y. Liu, Y.Q. Guo, R.Q. Li, X.Y. Sun, F. Wu, C.B. Li, J.P. Gao, Reduction of graphene oxide with l-lysine to prepare reduced graphene oxide stabilized with polysaccharide polyelectrolyte. J. Mater. Chem. A. 1, 2192–2201 (2013)

    Article  Google Scholar 

  47. R.J. Liao, Z.H. Tang, T.F. Lin, B.C. Guo, Scalable and versatile graphene functionalized with the mannich condensate. ACS Appl. Mat. Interfaces 5, 2174–2181 (2013)

    Article  Google Scholar 

  48. J. Li, G.Y. Xiao, C.B. Chen, R. Li, D.Y. Yan, Superior dispersions of reduced graphene oxide synthesized by using gallic acid as a reductant and stabilizer. J. Mater. Chem. A. 1, 1481–1487 (2013)

    Article  Google Scholar 

  49. O. Akhavan, M. Kalaee, Z.S. Alavi, S.M.A. Ghiasi, A. Esfandiar, Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide. Carbon 50, 3015–3025 (2012)

    Article  Google Scholar 

  50. B.K. Ahn, J. Sung, Y.H. Li, N. Kim, M. Ikenberry, K. Hohn, N. Mohanty, P. Nguyen, T.S. Sreeprasad, S. Kraft, Synthesis and characterization of amphiphilic reduced graphene oxide with epoxidized methyl oleate. Adv. Mater. 24, 2123–2129 (2012)

    Article  Google Scholar 

  51. Y. Wang, Z.X. Shi, J. Yin, Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Appl. Mater. Interfaces 3, 1127–1133 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Department of Sichuan Province (2017JZ0021, 2017SZ0039) and the Education Department of Sichuan Province (17ZA0298).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanzong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, L., Wang, R., Zhou, D., Liu, Y., Zhang, Y. (2018). A Simplified Ultrasonic Stripping-Chemical Reduction Method for Preparation of Graphene. In: Han, Y. (eds) Advances in Energy and Environmental Materials. CMC 2017. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-13-0158-2_96

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0158-2_96

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0157-5

  • Online ISBN: 978-981-13-0158-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics