Skip to main content

Influence of Orthogonal Heat Treatments on Mechanical Properties of HT-9 Ferritic/Martensitic Steel

  • Conference paper
  • First Online:
Advances in Energy and Environmental Materials (CMC 2017)

Part of the book series: Springer Proceedings in Energy ((SPE))

Included in the following conference series:

Abstract

A series of heat treatments by orthogonal experimental method were performed to study the mechanical properties of HT-9 ferritic/martensitic steel. The results show that the tempering temperature is the most important factor affecting the yield strength (Rp0.2) and elongation (EL%) of HT-9 steel. With the increments of tempering temperature, EL% increases and Rp0.2 decreases gradually. Both normalizing temperature and tempering temperature show influence on DBTT of HT-9 steel. Considering the tensile strength and impact toughness properties with no abrupt reduction of tensile strength, the optimal heat treatment regime is selected as follows: normalizing at 1000 ℃ for 0.5 h followed by oil cooling, and tempering at 760 ℃ for 1.5 h followed by air cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Abe, T. Noda, H. Araki, M. Okada, Development of reduced-activation martensitic 9Cr steels for fusion reactor. J. Nucl. Sci. Technol. 31, 279–292 (1994)

    Google Scholar 

  2. R.L. Klueh, D.R. Harries, in American Society for Testing and Materials (West Conshohocken, Pennsylvania, 2001)

    Google Scholar 

  3. R.L. Klueh, A.T. Nelson, Ferritic/martensitic steels for next-generation reactors. J. Nucl. Mater. 371, 37–52 (2007)

    Google Scholar 

  4. K. Natesan, A. Purohit, S.W. Tam, Materials Behavior in HTGR Environments (U.S. Department of Commerce, National Bureau of Standards Special Technical Publication, Washington, 2003)

    Google Scholar 

  5. T.R. Allen, R.G. Lott, J.T. Busby, A.S. Kumar, in Effects of Radiation on Materials, 22nd International Symposium, ASTM STP1475, Boston 2004, pp. 99–105

    Google Scholar 

  6. F. Abe, T-U. Kern, R. Viswanathan, Creep-Resistant Steels (Woodhead, Boca Raton, 2008)

    Google Scholar 

  7. S. Sathyanarayanan, J. Basu, A. Moitra, G. Sasikala, V. Singh, Effect of thermal aging on ductile-brittle transition temperature of modified 9Cr-1Mo steel evaluated with reference temperature approach under dynamic loading condition. Metall. Mater. Trans. A. 44, 2141–2155 (2013)

    Google Scholar 

  8. X. Hu, L. X. Huang, W. Yan, W. Wang, W. Sha, Y.Y. Shan, K. Yang, Evolution of microstructure and changes of mechanical properties of CLAM steel after long-term aging. Mater. Sci. Eng. A. 586, 253–258 (2013)

    Google Scholar 

  9. W. L. Zhong, W. Wang, X. Yang, W. S. Li, W. Yan, W. Sha, W. Wang, Y. Y. Shan, K. Yang, Relationship between laves phase and the impact brittleness of P92 steel reevaluated, Mater. Sci. Eng. A. 639, 252–258 (2015)

    Google Scholar 

  10. G. Sasikala, S.K, Ray, Evaluation of quasistatic fracture toughness of a modified 9Cr-1Mo (P91) steel. Master. Sci. Eng. A. 479, 105–111 (2008)

    Google Scholar 

  11. P. Yvon, F. Carré, Structural materials challenges for advanced reactor systems. J. Nucl. Mater. 385, 217–222 (2009)

    Google Scholar 

  12. K.L. Murty, I. Charit, Static strain aging and dislocation-impurity interactions in irradiated mild steel. J. Nucl. Mater. 382, 217–222 (2008)

    Google Scholar 

  13. R.C. Wilcox, B.A. Chin, Austenitizing and microstructure of a HT-9 steel. J. Nucl. Mater. 17, 285–298 (1984)

    Google Scholar 

  14. P.J. Ennis, A. Zielinska-Lipiec, O. Wachter, A. Czyrska-Filemonowicz, Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant original research article. Acta Mater 45, 4901–4907 (1997)

    Google Scholar 

  15. T.C. Totemeier, J.A. Simpson, H. Tian, Effect of weld intercooling temperature on the structure and impact strength of ferritic-martensitic steels. Metall. Sci. Eng. A. 426, 323–331 (2006)

    Google Scholar 

  16. A.F. Rowcliffe, J.P. Robertson, R.L. Klueh, K. Shiba, D.J. Alexander, M.L. Grossbeck, S. Jitsukawa, Fracture toughness and tensile behavior of ferritic-martensitic steels irradiated at low temperatures. J. Nucl. Mater. 258–263, 1275–1279 (1998)

    Google Scholar 

  17. A.H. Cai, Y. Zhou, J.Y. Tan, Y. Luo, T.L. Li, M. Chen, W.K. An, Optimization of composition of heat-treated chromium white cast iron casting by phosphate graphite mold. J. Alloy. Compd. 466, 273–280 (2008)

    Google Scholar 

  18. S.J. Kim, Y.G. Cho, C.S. Oh, D.E. Kim, M.B. Moon, H.N. Han, Development of a dual phase steel using orthogonal design method, Mater. Des. 30, 1251–1257 (2009)

    Google Scholar 

  19. I. Calliari, M. Zanesco, M. Dabalà, K. Brunelli, E. Ramous, Investigation of microstructure and properties of a Ni–Mo martensitic stainless steel, Mater. Des. 29, 246–250 (2008)

    Google Scholar 

  20. R.C. Fan, M. Gao, Y.C. Ma, X.D. Zha, X.C. Hao, K. Liu, Effects of heat treatment and nitrogen on microstructure and mechanical properties of 1Cr12NiMo martensitic stainless steel. J. Mater. Sci. Technol. 28, 1059–1066 (2012)

    Google Scholar 

  21. C.H. Hsu, H.Y. Teng, S.C. Lee, Effects of heat treatment and testing temperature on fracture mechanics behavior of low-Si CA-15 stainless steel. Metall. Mater. Trans. A. 35, 471–480 (2004)

    Google Scholar 

  22. T. Karthikeyan, V. Thomas Paul, S. Saroja, A. Moitra, G. Sasikala, M. Vijayalakshmi, Grain refinement to improve impact toughness in 9Cr-1Mo steel through a double austenitization treatment. J. Nucl. Mater. 419, 256–262 (2011)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Technology R&D Program, China (No. 149601A-A033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, T. et al. (2018). Influence of Orthogonal Heat Treatments on Mechanical Properties of HT-9 Ferritic/Martensitic Steel. In: Han, Y. (eds) Advances in Energy and Environmental Materials. CMC 2017. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-13-0158-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0158-2_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0157-5

  • Online ISBN: 978-981-13-0158-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics