Advertisement

Influence of Orthogonal Heat Treatments on Mechanical Properties of HT-9 Ferritic/Martensitic Steel

  • Tingwei Ma
  • Xianchao Hao
  • Tian Liang
  • Bo Chen
  • Ping Wang
  • Yingche Ma
  • Kui Liu
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)

Abstract

A series of heat treatments by orthogonal experimental method were performed to study the mechanical properties of HT-9 ferritic/martensitic steel. The results show that the tempering temperature is the most important factor affecting the yield strength (Rp0.2) and elongation (EL%) of HT-9 steel. With the increments of tempering temperature, EL% increases and Rp0.2 decreases gradually. Both normalizing temperature and tempering temperature show influence on DBTT of HT-9 steel. Considering the tensile strength and impact toughness properties with no abrupt reduction of tensile strength, the optimal heat treatment regime is selected as follows: normalizing at 1000 ℃ for 0.5 h followed by oil cooling, and tempering at 760 ℃ for 1.5 h followed by air cooling.

Keywords

Ferritic/martensitic steel Orthogonal analysis Tempering Ductile-to-brittle transition temperature 

Notes

Acknowledgements

This work was supported by the National Key Technology R&D Program, China (No. 149601A-A033).

References

  1. 1.
    F. Abe, T. Noda, H. Araki, M. Okada, Development of reduced-activation martensitic 9Cr steels for fusion reactor. J. Nucl. Sci. Technol. 31, 279–292 (1994)Google Scholar
  2. 2.
    R.L. Klueh, D.R. Harries, in American Society for Testing and Materials (West Conshohocken, Pennsylvania, 2001)Google Scholar
  3. 3.
    R.L. Klueh, A.T. Nelson, Ferritic/martensitic steels for next-generation reactors. J. Nucl. Mater. 371, 37–52 (2007)Google Scholar
  4. 4.
    K. Natesan, A. Purohit, S.W. Tam, Materials Behavior in HTGR Environments (U.S. Department of Commerce, National Bureau of Standards Special Technical Publication, Washington, 2003)Google Scholar
  5. 5.
    T.R. Allen, R.G. Lott, J.T. Busby, A.S. Kumar, in Effects of Radiation on Materials, 22nd International Symposium, ASTM STP1475, Boston 2004, pp. 99–105Google Scholar
  6. 6.
    F. Abe, T-U. Kern, R. Viswanathan, Creep-Resistant Steels (Woodhead, Boca Raton, 2008)Google Scholar
  7. 7.
    S. Sathyanarayanan, J. Basu, A. Moitra, G. Sasikala, V. Singh, Effect of thermal aging on ductile-brittle transition temperature of modified 9Cr-1Mo steel evaluated with reference temperature approach under dynamic loading condition. Metall. Mater. Trans. A. 44, 2141–2155 (2013)Google Scholar
  8. 8.
    X. Hu, L. X. Huang, W. Yan, W. Wang, W. Sha, Y.Y. Shan, K. Yang, Evolution of microstructure and changes of mechanical properties of CLAM steel after long-term aging. Mater. Sci. Eng. A. 586, 253–258 (2013)Google Scholar
  9. 9.
    W. L. Zhong, W. Wang, X. Yang, W. S. Li, W. Yan, W. Sha, W. Wang, Y. Y. Shan, K. Yang, Relationship between laves phase and the impact brittleness of P92 steel reevaluated, Mater. Sci. Eng. A. 639, 252–258 (2015)Google Scholar
  10. 10.
    G. Sasikala, S.K, Ray, Evaluation of quasistatic fracture toughness of a modified 9Cr-1Mo (P91) steel. Master. Sci. Eng. A. 479, 105–111 (2008)Google Scholar
  11. 11.
    P. Yvon, F. Carré, Structural materials challenges for advanced reactor systems. J. Nucl. Mater. 385, 217–222 (2009)Google Scholar
  12. 12.
    K.L. Murty, I. Charit, Static strain aging and dislocation-impurity interactions in irradiated mild steel. J. Nucl. Mater. 382, 217–222 (2008)Google Scholar
  13. 13.
    R.C. Wilcox, B.A. Chin, Austenitizing and microstructure of a HT-9 steel. J. Nucl. Mater. 17, 285–298 (1984)Google Scholar
  14. 14.
    P.J. Ennis, A. Zielinska-Lipiec, O. Wachter, A. Czyrska-Filemonowicz, Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant original research article. Acta Mater 45, 4901–4907 (1997)Google Scholar
  15. 15.
    T.C. Totemeier, J.A. Simpson, H. Tian, Effect of weld intercooling temperature on the structure and impact strength of ferritic-martensitic steels. Metall. Sci. Eng. A. 426, 323–331 (2006)Google Scholar
  16. 16.
    A.F. Rowcliffe, J.P. Robertson, R.L. Klueh, K. Shiba, D.J. Alexander, M.L. Grossbeck, S. Jitsukawa, Fracture toughness and tensile behavior of ferritic-martensitic steels irradiated at low temperatures. J. Nucl. Mater. 258–263, 1275–1279 (1998)Google Scholar
  17. 17.
    A.H. Cai, Y. Zhou, J.Y. Tan, Y. Luo, T.L. Li, M. Chen, W.K. An, Optimization of composition of heat-treated chromium white cast iron casting by phosphate graphite mold. J. Alloy. Compd. 466, 273–280 (2008)Google Scholar
  18. 18.
    S.J. Kim, Y.G. Cho, C.S. Oh, D.E. Kim, M.B. Moon, H.N. Han, Development of a dual phase steel using orthogonal design method, Mater. Des. 30, 1251–1257 (2009)Google Scholar
  19. 19.
    I. Calliari, M. Zanesco, M. Dabalà, K. Brunelli, E. Ramous, Investigation of microstructure and properties of a Ni–Mo martensitic stainless steel, Mater. Des. 29, 246–250 (2008)Google Scholar
  20. 20.
    R.C. Fan, M. Gao, Y.C. Ma, X.D. Zha, X.C. Hao, K. Liu, Effects of heat treatment and nitrogen on microstructure and mechanical properties of 1Cr12NiMo martensitic stainless steel. J. Mater. Sci. Technol. 28, 1059–1066 (2012)Google Scholar
  21. 21.
    C.H. Hsu, H.Y. Teng, S.C. Lee, Effects of heat treatment and testing temperature on fracture mechanics behavior of low-Si CA-15 stainless steel. Metall. Mater. Trans. A. 35, 471–480 (2004)Google Scholar
  22. 22.
    T. Karthikeyan, V. Thomas Paul, S. Saroja, A. Moitra, G. Sasikala, M. Vijayalakshmi, Grain refinement to improve impact toughness in 9Cr-1Mo steel through a double austenitization treatment. J. Nucl. Mater. 419, 256–262 (2011)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Tingwei Ma
    • 1
    • 3
  • Xianchao Hao
    • 2
  • Tian Liang
    • 2
  • Bo Chen
    • 2
  • Ping Wang
    • 1
  • Yingche Ma
    • 2
  • Kui Liu
    • 2
  1. 1.Key Laboratory of Electromagnetic Processing of Materials, Ministry of EducationNortheastern UniversityShenyangChina
  2. 2.Institute of Metal Research, Chinese Academy of SciencesShenyangChina
  3. 3.Yingkou Institute of TechnologyYingkouChina

Personalised recommendations