Advertisement

Abstract

In recent decades, dealing with the vibration problem of flexible systems has become an important research topic, driven by practical needs and theoretical challenges. Lightweight mechanical flexible systems possess many advantages over conventional rigid ones, such as lower cost, better energy efficiency, higher operation speed, and improved mobility.

References

  1. 1.
    S.S. Ge, T.H. Lee, G. Zhu, Improving regulation of a single-link flexible manipulator with strain feedback. IEEE Trans. Robot. Autom. 14(1), 179–185 (1998)CrossRefGoogle Scholar
  2. 2.
    M.J. Balas, Active control of flexible systems. J. Optim. Theory Appl. 25, 415–436 (1978)MathSciNetCrossRefGoogle Scholar
  3. 3.
    L. Meirovitch, H. Baruh, On the problem of observation spillover in self-adjoint distributed systems. J. Optim. Theory Appl. 30(2), 269–291 (1983)MathSciNetCrossRefGoogle Scholar
  4. 4.
    W. He, S.S. Ge, B.E. Voon, Dynamics and Control of Mechanical Systems in Offshore Engineering (Springer, London, 2014)CrossRefGoogle Scholar
  5. 5.
    B. Bamieh, F. Paganini, M. Dahleh, Distributed control of spatially invariant systems. IEEE Trans. Autom. Control 47(7), 1091–1107 (2002)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Z. Luo, B.Z. Guo, O. Morgul, Stability and Stabilization of Infinite Dimensional Systems with Applications (Springer, London, 1999)CrossRefGoogle Scholar
  7. 7.
    B.Z. Guo, Z.C. Shao, Stabilization of an abstract second order system with application to wave equations under non-collocated control and observations. Syst. Control Lett. 58(5), 334–341 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    B.Z. Guo, C.Z. Xu, The stabilization of a one-dimensional wave equation by boundary feedback with noncollocated observation. IEEE Trans. Autom. Control 52(2), 371–377 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    R. Curtain, H. Zwart, An Introduction to Infinite-dimensional Linear Systems Theory (Springer, New York, 1995)CrossRefGoogle Scholar
  10. 10.
    A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations (Springer, New York, 1983)CrossRefGoogle Scholar
  11. 11.
    K.D. Do, J. Pan, Boundary control of transverse motion of marine risers with actuator dynamics. J. Sound Vib. 318(4–5), 768–791 (2008)CrossRefGoogle Scholar
  12. 12.
    K.J. Yang, K.S. Hong, F. Matsuno, Robust adaptive boundary control of an axially moving string under a spatiotemporally varying tension. J Sound Vib. 273(4–5), 1007–1029 (2004)MathSciNetCrossRefGoogle Scholar
  13. 13.
    B.Z. Guo, F.F. Jin, Arbitrary decay rate for two connected strings with joint anti-damping by boundary output feedback. Automatica 46(7), 1203–1209 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    C.D. Rahn, Mechatronic Control of Distributed Noise and Vibration (Springer, New York, 2001)CrossRefGoogle Scholar
  15. 15.
    K.J. Yang, K.S. Hong, F. Matsuno, Robust adaptive boundary control of an axially moving string under a spatiotemporally varying tension. J. Sound Vib. 273(4–5), 1007–1029 (2004)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Z. Qu, Robust and adaptive boundary control of a stretched string on a moving transporter. IEEE Trans. Autom. Control 46(3), 470–476 (2001)MathSciNetCrossRefGoogle Scholar
  17. 17.
    C. Rahn, F. Zhang, S. Joshi, D. Dawson, Asymptotically stabilizing angle feedback for a flexible cable gantry crane. J. Dyn. Syst. Meas. Control 121, 563–565 (1999)CrossRefGoogle Scholar
  18. 18.
    C.F. Baicu, C.D. Rahn, B.D. Nibali, Active boundary control of elastic cables: theory and experiment. J. Sound Vib. 198, 17–26 (1996)CrossRefGoogle Scholar
  19. 19.
    R.F. Fung, C.C. Tseng, Boundary control of an axially moving string via Lyapunov method. J. Dyn. Syst. Meas. Control 121, 105–110 (1999)CrossRefGoogle Scholar
  20. 20.
    M.S. Queiroz, C.D. Rahn, Boundary control of vibration and noise in distributed parameter systems: an overview. Mech. Syst. Signal Process. 16, 19–38 (2002)CrossRefGoogle Scholar
  21. 21.
    A. Baz, Dynamic boundary control of beams using active constrained layer damping. Mech. Syst. Signal Process. 11(6), 811–825 (1997)MathSciNetCrossRefGoogle Scholar
  22. 22.
    N. Tanaka, H. Iwamoto, Active boundary control of an Euler-Bernoulli beam for generating vibration-free state. J. Sound Vib. 304, 570–586 (2007)MathSciNetCrossRefGoogle Scholar
  23. 23.
    M. Fard, S. Sagatun, Exponential stabilization of a transversely vibrating beam by boundary control via Lyapunov’s direct method. J. Dyn. Syst. Meas. Control 123, 195–200 (2001)CrossRefGoogle Scholar
  24. 24.
    K.D. Do, J. Pan, Boundary control of three-dimensional inextensible marine risers. J. Sound Vib. 327(3–5), 299–321 (2009)CrossRefGoogle Scholar
  25. 25.
    K.D. Do, J. Pan, Boundary control of transverse motion of marine risers with actuator dynamics. J. Sound Vib. 318(4–5), 768–791 (2008)CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press, Beijing and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of Automation Science and Electrical EngineeringBeihang UniversityBeijingChina
  2. 2.School of Automation and Electric EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations