Skip to main content
  • 518 Accesses

Abstract

In recent decades, dealing with the vibration problem of flexible systems has become an important research topic, driven by practical needs and theoretical challenges. Lightweight mechanical flexible systems possess many advantages over conventional rigid ones, such as lower cost, better energy efficiency, higher operation speed, and improved mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.S. Ge, T.H. Lee, G. Zhu, Improving regulation of a single-link flexible manipulator with strain feedback. IEEE Trans. Robot. Autom. 14(1), 179–185 (1998)

    Article  Google Scholar 

  2. M.J. Balas, Active control of flexible systems. J. Optim. Theory Appl. 25, 415–436 (1978)

    Article  MathSciNet  Google Scholar 

  3. L. Meirovitch, H. Baruh, On the problem of observation spillover in self-adjoint distributed systems. J. Optim. Theory Appl. 30(2), 269–291 (1983)

    Article  MathSciNet  Google Scholar 

  4. W. He, S.S. Ge, B.E. Voon, Dynamics and Control of Mechanical Systems in Offshore Engineering (Springer, London, 2014)

    Book  Google Scholar 

  5. B. Bamieh, F. Paganini, M. Dahleh, Distributed control of spatially invariant systems. IEEE Trans. Autom. Control 47(7), 1091–1107 (2002)

    Article  MathSciNet  Google Scholar 

  6. Z. Luo, B.Z. Guo, O. Morgul, Stability and Stabilization of Infinite Dimensional Systems with Applications (Springer, London, 1999)

    Book  Google Scholar 

  7. B.Z. Guo, Z.C. Shao, Stabilization of an abstract second order system with application to wave equations under non-collocated control and observations. Syst. Control Lett. 58(5), 334–341 (2009)

    Article  MathSciNet  Google Scholar 

  8. B.Z. Guo, C.Z. Xu, The stabilization of a one-dimensional wave equation by boundary feedback with noncollocated observation. IEEE Trans. Autom. Control 52(2), 371–377 (2007)

    Article  MathSciNet  Google Scholar 

  9. R. Curtain, H. Zwart, An Introduction to Infinite-dimensional Linear Systems Theory (Springer, New York, 1995)

    Book  Google Scholar 

  10. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations (Springer, New York, 1983)

    Book  Google Scholar 

  11. K.D. Do, J. Pan, Boundary control of transverse motion of marine risers with actuator dynamics. J. Sound Vib. 318(4–5), 768–791 (2008)

    Article  Google Scholar 

  12. K.J. Yang, K.S. Hong, F. Matsuno, Robust adaptive boundary control of an axially moving string under a spatiotemporally varying tension. J Sound Vib. 273(4–5), 1007–1029 (2004)

    Article  MathSciNet  Google Scholar 

  13. B.Z. Guo, F.F. Jin, Arbitrary decay rate for two connected strings with joint anti-damping by boundary output feedback. Automatica 46(7), 1203–1209 (2010)

    Article  MathSciNet  Google Scholar 

  14. C.D. Rahn, Mechatronic Control of Distributed Noise and Vibration (Springer, New York, 2001)

    Book  Google Scholar 

  15. K.J. Yang, K.S. Hong, F. Matsuno, Robust adaptive boundary control of an axially moving string under a spatiotemporally varying tension. J. Sound Vib. 273(4–5), 1007–1029 (2004)

    Article  MathSciNet  Google Scholar 

  16. Z. Qu, Robust and adaptive boundary control of a stretched string on a moving transporter. IEEE Trans. Autom. Control 46(3), 470–476 (2001)

    Article  MathSciNet  Google Scholar 

  17. C. Rahn, F. Zhang, S. Joshi, D. Dawson, Asymptotically stabilizing angle feedback for a flexible cable gantry crane. J. Dyn. Syst. Meas. Control 121, 563–565 (1999)

    Article  Google Scholar 

  18. C.F. Baicu, C.D. Rahn, B.D. Nibali, Active boundary control of elastic cables: theory and experiment. J. Sound Vib. 198, 17–26 (1996)

    Article  Google Scholar 

  19. R.F. Fung, C.C. Tseng, Boundary control of an axially moving string via Lyapunov method. J. Dyn. Syst. Meas. Control 121, 105–110 (1999)

    Article  Google Scholar 

  20. M.S. Queiroz, C.D. Rahn, Boundary control of vibration and noise in distributed parameter systems: an overview. Mech. Syst. Signal Process. 16, 19–38 (2002)

    Article  Google Scholar 

  21. A. Baz, Dynamic boundary control of beams using active constrained layer damping. Mech. Syst. Signal Process. 11(6), 811–825 (1997)

    Article  MathSciNet  Google Scholar 

  22. N. Tanaka, H. Iwamoto, Active boundary control of an Euler-Bernoulli beam for generating vibration-free state. J. Sound Vib. 304, 570–586 (2007)

    Article  MathSciNet  Google Scholar 

  23. M. Fard, S. Sagatun, Exponential stabilization of a transversely vibrating beam by boundary control via Lyapunov’s direct method. J. Dyn. Syst. Meas. Control 123, 195–200 (2001)

    Article  Google Scholar 

  24. K.D. Do, J. Pan, Boundary control of three-dimensional inextensible marine risers. J. Sound Vib. 327(3–5), 299–321 (2009)

    Article  Google Scholar 

  25. K.D. Do, J. Pan, Boundary control of transverse motion of marine risers with actuator dynamics. J. Sound Vib. 318(4–5), 768–791 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinkun Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Tsinghua University Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J., He, W. (2018). Introduction. In: Distributed Parameter Modeling and Boundary Control of Flexible Manipulators. Springer, Singapore. https://doi.org/10.1007/978-981-10-8300-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8300-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8299-3

  • Online ISBN: 978-981-10-8300-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics