Skip to main content

Crosslinking Between Trichocyte Keratins and Keratin Associated Proteins

  • Chapter
  • First Online:
The Hair Fibre: Proteins, Structure and Development

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1054))

Abstract

Trichocyte keratins differ considerably from their epithelial cousins in having a higher number of cysteine residues, of which the greater proportion are located in the head and tail regions of these proteins. Coupled with this is the presence of a large number of keratin associated proteins in these fibres that are high in their cysteine content, the high sulfur proteins and ultra-high sulfur proteins. Thus it is the crosslinking that occurs between the cysteines in the keratins and KAPs that is an important determinant in the functionality of wool and hair fibres. Studies have shown the majority of the cysteine residues are involved in internal crosslinking in the KAPs leaving only a few specific cysteines to interact with the keratins, with most evidence pointing to interactions between these KAP cysteines and the keratin head groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fraser, R. D. B., MacRae, T.P., & Rogers, G. E. (1972). Keratins: Their composition, structure and biosynthesis (The Bannerstone division of American lectures in living chemistry, p. 320). Springfield: Charles C Thomas Publisher, Ltd.

    Google Scholar 

  2. Langbein, L., et al. (1999). The catalog of human hair keratins. I. Expression of the nine type I members in the hair follicle. Journal of Biological Chemistry, 274(28), 19874–19884.

    Article  CAS  PubMed  Google Scholar 

  3. Lee, Y. J., Rice, R. H., & Lee, Y. M. (2006). Proteome analysis of human hair shaft – From protein identification to posttranslational modification. Molecular & Cellular Proteomics, 5(5), 789–800.

    Article  CAS  Google Scholar 

  4. Orwin, D. F. G. (1979). The cytology and cytochemistry of the wool follicle. International Review of Cytology, 60, 331–374.

    Article  CAS  PubMed  Google Scholar 

  5. Hill, P., Brantley, H., & Van Dyke, M. (2010). Some properties of keratin biomaterials: Kerateines. Biomaterials, 31(4), 585–593.

    Article  CAS  PubMed  Google Scholar 

  6. Alexander, P., & Earland, C. (1950). Structure of wool fibres: Isolation of an α- and β-protein in wool. Nature, 166(4218), 396–397.

    Article  CAS  PubMed  Google Scholar 

  7. Deb-Choudhury, S., et al. (2015). Mapping the accessibility of the disulfide crosslink network in the wool fiber cortex. Proteins: Structure, Function, and Bioinformatics, 83(2), 224–234.

    Article  CAS  Google Scholar 

  8. Arai, K., et al. (1996). Crosslinking structure of keratin. VI. Number, type, and location of disulfide crosslinkages in low-sulfur protein of wool fiber and their relation to permanent set. Journal of Applied Polymer Science, 60(2), 169–179.

    Article  CAS  Google Scholar 

  9. Stappenbeck, T. S., et al. (1993). Functional analysis of desmoplakin domains: Specification of the interaction with keratin versus vimentin intermediate filament networks. The Journal of Cell Biology, 123(3), 691–705.

    Article  CAS  PubMed  Google Scholar 

  10. Getsios, S., et al. (2004). Coordinated expression of desmoglein 1 and desmocollin 1 regulates intercellular adhesion. Differentiation, 72(8), 419–433.

    Article  CAS  PubMed  Google Scholar 

  11. Syed, S. E., et al. (2002). Molecular interactions between desmosomal cadherins. Biochemical Journal, 362(Pt 2), 317–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Orwin, D. F. G., & Thomson, R. W. (1973). Plasma membrane differentiations of keratinizing cells of the wool follicle (4. Further membrane differentiations). Journal of Ultrastructure Research, 45(1), 41–49.

    Article  CAS  PubMed  Google Scholar 

  13. Plowman, J. E., & Deb-choudhury, S. (2016). Wool proteomics. In S. G. H. (Ed.), Animal proteomics (pp. 201–213). Springer.

    Chapter  Google Scholar 

  14. Steinert, P. M., & Marekov, L. N. (1995). The proteins elafin, filaggrin, keratin intermediate filaments, loricrin, and small proline-rich proteins 1 and 2 are isodipeptide cross-linked components of the human epidermal cornified cell envelope. Journal of Biological Chemistry, 270(30), 17702–17711.

    Article  CAS  PubMed  Google Scholar 

  15. Harding, H. W., & Rogers, G. E. (1971). (γ-glutamyl)lysine cross-linkage in citrulline-containing protein fractions from hair. Biochemistry, 10, 624–630.

    Article  CAS  PubMed  Google Scholar 

  16. Rogers, G. E. (2004). Hair follicle differentiation and regulation. International Journal of Developmental Biology, 48(2-3), 163–170.

    Article  CAS  PubMed  Google Scholar 

  17. Rogers, G. E. (2006). Biology of the wool follicle: An excursion into a unique tissue interaction system waiting to be re-discovered. Experimental Dermatology, 15(12), 931–949.

    Article  PubMed  Google Scholar 

  18. Zahn, H. (1980). Wool is not keratin only. In Proceedings of the 6th International Wool Textile Research. Pretoria: Deutsches Wollforschungsinstitut.

    Google Scholar 

  19. Nienhaus, M. & Föhles, J. (1980). Zur chemie von humanhaar. In 6th quinquennial international wool textile Research conference (pp. 487–495). Pretoria: South African Wool and Textile Reseach Institute.

    Google Scholar 

  20. Harding, H. W. J., & Rogers, G. E. (1972). The occurrence of the (γ-glutamyl)lysine cross-link in the medulla of hair and quill. Biochimica et Biophysica Acta, 257(1), 37–39.

    Article  CAS  PubMed  Google Scholar 

  21. Rogers, G. E. (1989). Special biochemical features of the hair follicle. In G. E. Rogers, P. J. Reis, K. A. Ward, & R. C. Marshall (Eds.), The biology of wool and hair (pp. 69–85). London/New York: Chapman and Hall.

    Chapter  Google Scholar 

  22. Parry, D. A. D., & Steinert, P. M. (1995). Intermediate filament structure. Heidelberg: Springer.

    Google Scholar 

  23. Steinert, P. M. (1993). Structure, function and dynamics of keratin intermediate filaments. Journal of Investigative Dermatology, 100(6), 729–734.

    Article  CAS  PubMed  Google Scholar 

  24. Gillespie, J. M. (1972). Proteins rich in glycine and tyrosine from keratins. Comparative Biochemistry and Physiology B.Biochemistry and Molecular Biology, 41B, 723–734.

    Article  Google Scholar 

  25. Rafik, M. E., Doucet, J., & Briki, F. (2004). The intermediate filament architecture as determined by X-ray diffraction modeling of hard α-keratin. Biophysical Journal, 86, 3893–3904.

    Article  CAS  Google Scholar 

  26. Fraser, R. D. B., MacRae, T. P., & Suzuki, E. (1976). Structure of the α-keratin microfibril. Journal of Molecular Biology, 108, 435–452.

    Article  CAS  PubMed  Google Scholar 

  27. Parry, D. A., et al. (2007). Towards a molecular description of intermediate filament structure and assembly. Experimental Cell Research, 313(10), 2204–2216.

    Article  CAS  PubMed  Google Scholar 

  28. Matsunaga, R., et al. (2013). Bidirectional binding property of high glycine-tyrosine keratin-associated protein contributes to the mechanical strength and shape of hair. Journal of Structural Biology, 183(3), 484–494.

    Article  CAS  PubMed  Google Scholar 

  29. Fujikawa, H., et al. (2012). Characterization of the human hair keratin-associated protein 2 (KRTAP2) gene family. Journal of Investigative Dermatology, 132(7), 1806–1813.

    Article  CAS  PubMed  Google Scholar 

  30. Parry, D. A. D. (1995). Hard α-keratin IF: A structural model lacking a head-to-tail molecular overlap but having hybrid features characteristic of both epidermal keratin and vimentin IF. Proteins: Structure, Function, and Bioinformatics, 22(3), 267–272.

    Article  CAS  Google Scholar 

  31. Parry, D. A. D. (1996). Hard α-keratin intermediate filaments: An alternative interpretation of the low-angle equatorial X-ray diffraction pattern, and the axial disposition of putative disulphide bonds in the intra- and inter-protofilamentous networks. International Journal of Biological Macromolecules, 19(1), 45–50.

    Article  CAS  PubMed  Google Scholar 

  32. Wang, H., et al. (2000). In vitro assembly and structure of trichocyte keratin intermediate filaments: A novel role for stabilization by disulfide bonding. Journal of Cell Biology, 151(7), 1459–1468.

    Article  CAS  PubMed  Google Scholar 

  33. Whiteley, K. J., Balasubramaniam, E., & Armstrong, L. D. (1970). The swelling and supercontraction of sulphur-enriched wool fibers. Textile Research Journal, 40, 1047–1048.

    CAS  Google Scholar 

  34. Parry, D. A. D., et al. (2006). Human hair keratin-associated proteins: Sequence regularities and structural implications. Journal of Structural Biology, 155(2), 361–369.

    Article  CAS  PubMed  Google Scholar 

  35. Wu, D.-D., Irwin, D. M., & Zhang, Y.-P. (2008). Molecular evolution of the keratin associated protein gene family in mammals, role in the evolution of mammalian hair. BMC Evolutionary Biology, 25(8), 241–255.

    Article  CAS  Google Scholar 

  36. Fujimoto, S., et al. (2013). Krtap11-1, a hair keratin-associated protein, as a possible crucial element for the physical properties of hair shafts. Journal of Dermatological Science, 74(1), 39–47.

    Article  CAS  PubMed  Google Scholar 

  37. Langbein, L., et al. (2001). The catalog of human hair keratins. II. Expression of the six type II members in the hair follicle and the combined catalog of human type I and II keratins. Journal of Biological Chemistry, 276(37), 35123–35132.

    Article  CAS  PubMed  Google Scholar 

  38. Plowman, J. E., et al. (2003). The effect of oxidation or alkylation on the separation of wool keratin proteins by two-dimensional gel electrophoresis. Proteomics, 3(6), 942–950.

    Article  CAS  PubMed  Google Scholar 

  39. Benham, C. J., & Saleet Jafri, M. (1993). Disulfide bonding patterns and protein topologies. Protein Science, 2(1), 41–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Steinert, P. M., et al. (1991). Glycine loops in proteins: Their occurrence in certain intermediate filament proteins, loricrins and single-stranded RNA binding proteins. International Journal of Biological Macromolecules, 13(3), 130–139.

    Article  CAS  PubMed  Google Scholar 

  41. Fraser, R. D. B., et al. (1988). Disulphide bonding in α-keratin. International Journal of Biological Macromolecules, 10, 106–112.

    Article  CAS  Google Scholar 

  42. Parry, D. A. D., et al. (2002). A role for the 1A and L1 rod domain segments in head domain organisation and function of intermediate filaments: Structural analysis of trichocyte keratin. Journal of Structural Biology, 137, 97–108.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu Deb-Choudhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deb-Choudhury, S. (2018). Crosslinking Between Trichocyte Keratins and Keratin Associated Proteins. In: Plowman, J., Harland, D., Deb-Choudhury, S. (eds) The Hair Fibre: Proteins, Structure and Development. Advances in Experimental Medicine and Biology, vol 1054. Springer, Singapore. https://doi.org/10.1007/978-981-10-8195-8_12

Download citation

Publish with us

Policies and ethics