Advertisement

Transport System of Mineral Elements in Rice

  • Namiki Mitani-Ueno
  • Naoki Yamaji
  • Jian Feng Ma
Chapter

Abstract

Plant requires 14 mineral elements for their growth and development. These elements in the soil are taken up by the roots, translocated from the roots to the shoots, and distributed to different organs depending on their demands (Marschner P, Mineral nutrition of higher plants, 3rd edn. Academic, London, 2012). In addition to these essential elements, toxic elements such as Cd and As are also transported from the soils to aboveground parts. All these processes require various transporters (membrane proteins). During the last decades, a number of transporters for uptake, translocation, and distribution of mineral elements have been identified, especially in model plants such as Arabidopsis and rice; however, most transporters remain to be identified. In this chapter, transporters identified so far in rice are described, and the regulation mechanisms of transporters in response to environmental changes are also discussed.

Keywords

Transporter Mineral elements Uptake Distribution 

Notes

Acknowledgment

Some work presented in this chapter was supported by Grant-in-Aid for Specially Promoted Research (JSPS KAKENHI Grant Number 16H06296 to J.F.M.).

References

  1. Abdul KS, Jayasinghe SS, Chandana EP, Jayasumana C, De Silva PM (2015) Arsenic and human health effects: a review. Environ Toxicol Pharmacol 40:828–846CrossRefPubMedGoogle Scholar
  2. Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller AJ, Xu G (2009) Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant J 57:798–809CrossRefPubMedGoogle Scholar
  3. Bashir K, Ishimaru Y, Nishizawa NK (2012) Molecular mechanisms of zinc uptake and translocation in rice. Plant Soil 361:189–201CrossRefGoogle Scholar
  4. Bayle V, Arrighi JF, Creff A, Nespoulous C, Vialaret J, Rossignol M, Gonzalez E, Paz-Ares J, Nussaume L (2011) Arabidopsis thaliana high affinity phosphate transporters exhibit multiple levels of posttranslational regulation. Plant Cell 23:1523–1535CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bughio N, Yamaguchi H, Nishizawa NK, Nakanishi H, Mori S (2002) Cloning an iron-regulated metal transporter from rice. J Exp Bot 53:1677–1682CrossRefPubMedGoogle Scholar
  6. Chen ZC, Ma JF (2015) Improving nitrogen use efficiency in rice through enhancing root nitrate uptake mediated by a nitrate transporter, NRT1.1B. J Genet Genomics 42:463–465CrossRefPubMedGoogle Scholar
  7. Chen ZC, Yamaji N, Motoyama R, Nagamura Y, Ma JF (2012) Up-regulation of a magnesium transporter gene OsMGT1 is required for conferring aluminum tolerance in rice. Plant Physiol 159:1624–1633CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen J, Wang Y, Wang F, Yang J, Gao M, Li C, Liu Y, Liu Y, Yamaji N, Ma JF, Paz-Ares J, Nussaume L, Zhang S, Yi K, Wu Z, Wu P (2015) The rice CK2 kinase regulates trafficking of phosphate transporters in response to phosphate levels. Plant Cell 27:711–723CrossRefPubMedPubMedCentralGoogle Scholar
  9. Deng F, Yamaji N, Xia J, Ma JF (2013) A member of heavy metal P-type ATPase OsHMA5 is involved in xylem loading of copper in rice. Plant Physiol 163:1353–1362CrossRefPubMedPubMedCentralGoogle Scholar
  10. Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci U S A 93:5624–5628CrossRefPubMedPubMedCentralGoogle Scholar
  11. Enstone DE, Peterson CA, Ma F (2002) Root endodermis and exodermis: structure, function, and responses to the environment. J Plant Growth Regul 21:335–351CrossRefGoogle Scholar
  12. Fan X, Tang Z, Tan Y, Zhang Y, Luo B, Yang M, Lian X, Shen Q, Miller AJ, Xu G (2016) Overexpression of a pH sensitive nitrate transporter in rice increases crop yields. Proc Natl Acad Sci U S A 113:7118–7123CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ferreira LM, de Souza VM, Tavares OCH, Zonta E, Santa-Catarina C, de Souza SR, Fernandes MS, Santos LA (2015) OsAMT1.3 expression alters rice ammonium uptake kinetics and root morphology. Plant Biotechnol Rep 9:221–229CrossRefGoogle Scholar
  14. Gierth M, Maser P, Schroeder JI (2005) The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol 137:1105–1114CrossRefPubMedPubMedCentralGoogle Scholar
  15. Godwin RM, Rae AL, Carroll BJ, Smith FW (2003) Cloning and characterization of two genes encoding sulfate transporters from rice (Oryza sativa L.) Plant Soil 257:113–123CrossRefGoogle Scholar
  16. Goff SA, Ricke D, Lan TH et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100CrossRefPubMedGoogle Scholar
  17. Hanaoka H, Uraguchi S, Takano J, Tanaka M, Fujiwara T (2014) OsNIP3;1, a rice boric acid channel, regulates boron distribution and is essential for growth under boron-deficient conditions. Plant J 78:890–902CrossRefPubMedGoogle Scholar
  18. Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280:918–921CrossRefPubMedGoogle Scholar
  19. Ho CH, Lin SH, Hu HC, Tsay YF (2009) CHL1 functions as a nitrate sensor in plants. Cell 138:1184–1194CrossRefPubMedGoogle Scholar
  20. Hoque MS, Masle J, Udvardi MK, Ryan PR, Upadhyaya NM (2006) Over-expression of the rice OsAMT1-1 gene increases ammonium uptake and content, but impairs growth and development of plants under high ammonium nutrition. Funct Plant Biol 33:153–163CrossRefGoogle Scholar
  21. Hu B, Wang W, Ou S, Tang J, Li H, Che R, Zhang Z, Chai X, Wang H, Wang Y, Liang C, Liu L, Piao Z, Deng Q, Deng K, Xu C, Liang Y, Zhang L, Li L, Chu C (2015) Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet 47:834–838CrossRefPubMedGoogle Scholar
  22. Huang XY, Deng F, Yamaji N, Pinson SRM, Fujii-Kashino M, Danku J, Douglas A, Guerinot ML, Salt DE, Ma JF (2016) A heavy metal P-type ATPase OsHMA4 prevents copper accumulation in rice grain. Nat Commun.  https://doi.org/10.1038/ncomms12138
  23. Inoue H, Kobayashi T, Nozoye T, Takahashi M, Kakei Y, Suzuki K, Nakazono M, Nakanishi H, Mori S, Nishizawa NK (2009) Rice OsYSL15 is an iron-regulated iron (III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem 284:3470–3479CrossRefPubMedGoogle Scholar
  24. Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H (2012) Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc Natl Acad Sci U S A 109:19166–19171CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J 45:335–346CrossRefPubMedGoogle Scholar
  26. Ishimaru Y, Masuda H, Bashir K, Inoue H, Tsukamoto T, Takahashi M, Nakanishi H, Aoki N, Hirose T, Ohsugi R, Nishizawa NK (2010) Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J 62:379–390CrossRefPubMedGoogle Scholar
  27. Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2012) Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2.  https://doi.org/10.1038/srep00286
  28. Jabnoune M, Secco D, Lecampion C, Robaglia C, Shu Q, Poirier Y (2013) A rice cis-natural antisense RNA acts as a translational enhancer for its cognate mRNA and contributes to phosphate homeostasis and plant fitness. Plant Cell 25:4166–4182CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jia H, Ren H, Gu M, Zhao J, Sun S, Zhang X, Chen J, Wu P, Xu G (2011) The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice. Plant Physiol 156:1164–1175CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kamiya T, Akahori T, Maeshima M (2005) Expression profile of the genes for rice cation/H+ exchanger family and functional analysis in yeast. Plant Cell Physiol 46:1735–1740CrossRefPubMedGoogle Scholar
  31. Kirk GJD, Kronzucker HJ (2005) The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modelling study. Ann Bot 96:639–646CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kitagishi K, Obata H (1986) Effects of zinc deficiency on the nitrogen metabolism of meristematic tissues of rice plants with reference to protein synthesis. Soil Sci Plant Nutr 32:397–405CrossRefGoogle Scholar
  33. Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152CrossRefPubMedGoogle Scholar
  34. Kobayashi T, Nagasaka S, Senoura T, Itai EN, Nakanishi H, Nishizawa NK (2013) Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation. Nat Commun 4:2792PubMedPubMedCentralGoogle Scholar
  35. Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Trivedi PK (2011) Differential expression and alternative splicing of rice sulphate transporter family members regulate sulphur status during plant growth, development and stress conditions. Funct Integr Genomics 11:259–273CrossRefPubMedGoogle Scholar
  36. Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML, An G (2009) Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol 150:786–800CrossRefPubMedPubMedCentralGoogle Scholar
  37. Leustek T, Martin MN, Bick JA, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51:141–165CrossRefPubMedGoogle Scholar
  38. Li J, Long Y, Qi GN, Li J, Xu ZJ, Wu WH, Wang Y (2014) The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex. Plant Cell 26:3387–3402CrossRefPubMedPubMedCentralGoogle Scholar
  39. Li Y, Ouyang J, Wang YY, Hu R, Xia K, Duan J, Wang Y, Tsay YF, Zhang M (2015) Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development. Sci Rep 5.  https://doi.org/10.1038/srep09635
  40. Li N, Wang J, Song WY (2016) Arsenic uptake and translocation in plants. Plant Cell Physiol 57:4–13CrossRefPubMedGoogle Scholar
  41. Liu TY, Huang TK, Tseng CY, Lai YS, Lin SI, Lin WY, Chen JW, Chiou TJ (2012) PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis. Plant Cell 24:2168–2183CrossRefPubMedPubMedCentralGoogle Scholar
  42. Liu K, Liu LL, Ren YL, Wang ZQ, Zhou KN, Liu X, Wang D, Zheng M, Cheng ZJ, Lin QB, Wang JL, Wu FQ, Zhang X, Guo XP, Wang CM, Zhai HQ, Jiang L, Wan JM (2015) Dwarf and tiller-enhancing 1 regulates growth and development by influencing boron uptake in boron limited conditions in rice. Plant Sci 236:18–28CrossRefPubMedGoogle Scholar
  43. Ma JF, Nomoto K (1996) Effective regulation of iron acquisition in graminaceous plants. The role of mugineic acids as phytosiderophores. Physiol Plant 97:609–617CrossRefGoogle Scholar
  44. Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier, AmsterdamGoogle Scholar
  45. Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397CrossRefPubMedGoogle Scholar
  46. Ma JF, Yamaji N (2015) A cooperative system of silicon transport in plants. Trends Plant Sci 20:435–442CrossRefPubMedGoogle Scholar
  47. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691CrossRefPubMedGoogle Scholar
  48. Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–212CrossRefPubMedGoogle Scholar
  49. Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci U S A 105:9931–9935CrossRefPubMedPubMedCentralGoogle Scholar
  50. Marschner P (2012) Mineral nutrition of higher plants, 3rd edn. Academic, LondonGoogle Scholar
  51. Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H (2011) OsHMA3, a P-1b-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189:190–199CrossRefPubMedGoogle Scholar
  52. Moore KL, Chen Y, van de Meene AM, Hughes L, Liu W, Geraki T, Mosselmans F, McGrath SP, Grovenor C, Zhao FJ (2014) Combined NanoSIMS and synchrotron X-ray fluorescence reveal distinct cellular and subcellular distribution patterns of trace elements in rice tissues. New Phytol 201:104–115CrossRefPubMedGoogle Scholar
  53. Murata Y, Ma JF, Yamaji N, Ueno D, Nomoto K, Iwashita T (2006) A specific transporter for iron (III)–phytosiderophore in barley roots. Plant J 46:563–572CrossRefPubMedGoogle Scholar
  54. Nakagawa Y, Hanaoka H, Kobayashi M, Miyoshi K, Miwa K, Fujiwara T (2007) Cell-type specificity of the expression of Os BOR1, a rice efflux boron transporter gene, is regulated in response to boron availability for efficient boron uptake and xylem loading. Plant Cell 19:2624–2635CrossRefPubMedPubMedCentralGoogle Scholar
  55. Ninnemann O, Jauniaux JC, Frommer WB (1994) Identification of a high affinity NH4 + transporter from plants. EMBO J 13:3464–3471PubMedPubMedCentralGoogle Scholar
  56. Obata H, Kitagishi K (1980a) Longitudinal distribution pattern of Zn and Mn in leaf with special reference to aging: behavior of zinc in rice plants (I) (in Japanese). Jpn J Soil Sci Plant Nutr 51:285–291Google Scholar
  57. Obata H, Kitagishi K (1980b) Investigation on pathway of Zn in vegetative node of rice plants by autoradiography: behavior of zinc in rice plants (III) (in Japanese). Jpn J Soil Sci Plant Nutr 51:297–301Google Scholar
  58. Obata H, Oosawa J, Kitagishi K (1980) Time course of Zn or Mn accumulation within individual leaves: behavior of zinc in rice plants (II) (in Japanese). Jpn J Soil Sci Plant Nutr 51:292–296Google Scholar
  59. Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Biol 50:665–693CrossRefGoogle Scholar
  60. Ramesh SA, Shin R, Eide DJ, Schachtman DP (2003) Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol 133:126–134CrossRefPubMedPubMedCentralGoogle Scholar
  61. Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferricchelate reductase for iron uptake from soils. Nature 397:694–697CrossRefPubMedGoogle Scholar
  62. Saito K (2004) Sulfur assimilatory metabolism. The long and smelling road. Plant Physiol 136:2443–2450CrossRefPubMedPubMedCentralGoogle Scholar
  63. Sakurai G, Satake A, Yamaji N, Mitani-Ueno N, Yokozawa M, Feugier FG, Ma JF (2015) In silico simulation modeling reveals the importance of the Casparian strip for efficient silicon uptake in rice roots. Plant Cell Physiol 56:631–639CrossRefPubMedGoogle Scholar
  64. Sancenón V, Puig S, Mira H, Thiele DJ, Peñarrubia L (2003) Identification of a copper transporter family in Arabidopsis thaliana. Plant Mol Biol 51:577–587CrossRefPubMedGoogle Scholar
  65. Sasaki A, Yamaji Y, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167CrossRefPubMedPubMedCentralGoogle Scholar
  66. Sasaki A, Yamaji N, Ma JF (2014) Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. J Exp Bot 65:6013–6021CrossRefPubMedPubMedCentralGoogle Scholar
  67. Sasaki A, Yamaji N, Mitani-Ueno N, Kashino M, Ma JF (2015) A node-localized transporter OsZIP3 is responsible for the preferential distribution of Zn to developing tissues in rice. Plant J 84:374–384CrossRefPubMedGoogle Scholar
  68. Sasaki A, Yamaji N, Ma JF (2016) Transporters involved in mineral nutrient uptake in rice. J Exp Bot 67:3645–3653CrossRefPubMedGoogle Scholar
  69. Satoh-Nagasawa N, Mori M, Nakazawa N, Kawamoto T, Nagato Y, Sakurai K, Takahashi H, Watanabe A, Akagi H (2012) Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol 53:213–224CrossRefPubMedGoogle Scholar
  70. Secco D, Baumann A, Poirier Y (2010) Characterization of the rice PHO1 gene family reveals a key role for OsPHO1;2 in phosphate homeostasis and the evolution of a distinct clade in dicotyledons. Plant Physiol 152:1693–1704CrossRefPubMedPubMedCentralGoogle Scholar
  71. Song WY, Yamaki T, Yamaji N, Ko D, Jung KH, Fujii-Kashino M, An G, Martinoia E, Lee Y, Ma JF (2014) A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc Natl Acad Sci U S A 111:15699–15704CrossRefPubMedPubMedCentralGoogle Scholar
  72. Sonoda Y, Ikeda A, Saiki S, von Wiren N, Yamaya T, Yamaguchi J (2003) Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3) in rice. Plant Cell Physiol 44:726–734CrossRefPubMedGoogle Scholar
  73. Suzuki M, Tsukamoto T, Inoue H, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2008) Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants. Plant Mol Biol 66:609–617CrossRefPubMedPubMedCentralGoogle Scholar
  74. Takahashi H, Buchner P, Yoshimoto N, Hawkesford MJ, Shiu SH (2012a) Evolutionary relationships and functional diversity of plant sulfate transporters. Front Plant Sci.  https://doi.org/10.3389/fpls.2011.00119
  75. Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa NK, Nakanishi H (2012b) The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ 35:1948–1957CrossRefPubMedGoogle Scholar
  76. Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K, Hayashi H, Yoneyama T, Fujiwara T (2002) Arabidopsis boron transporter for xylem loading. Nature 420:337–340CrossRefPubMedGoogle Scholar
  77. Takano J, Wada M, Ludewig U, Schaaf G, Von Wiren N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509CrossRefPubMedPubMedCentralGoogle Scholar
  78. Tang Z, Fan X, Li Q, Feng H, Miller AJ, Shen Q, Xu G (2012) Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. Plant Physiol 160:2052–2063CrossRefPubMedPubMedCentralGoogle Scholar
  79. Tanoi K, Kobayashi NI, Saito T, Iwata N, Kamada R, Iwata R, Suzuki H, Hirose A, Ohmae Y, Sugita R, Nakanishi TM (2014) Effects of magnesium deficiency on magnesium uptake activity of rice root, evaluated using Mg as a tracer. Plant Soil 384:69–77CrossRefGoogle Scholar
  80. Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF (2010) Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci U S A 107:16500–16505CrossRefPubMedPubMedCentralGoogle Scholar
  81. Ueno D, Sasaki A, Yamaji N, Miyaji T, Fujii Y, Takemoto Y, Moriyama S, Che J, Moriyama Y, Iwasaki K, Ma JF (2015) A polarly localized transporter for efficient manganese uptake in rice. Nat Plants.  https://doi.org/10.1038/nplants.2015.170
  82. Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T (2011) Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc Natl Acad Sci U S A 108:20959–20964CrossRefPubMedPubMedCentralGoogle Scholar
  83. Vlamis J, Williams DE (1964) Iron and manganese relations in rice and barley. Plant Soil 20:221–231CrossRefGoogle Scholar
  84. Wang MY, Siddiqi MY, Ruth TJ, Glass AD (1993) Ammonium uptake by rice roots (II. Kinetics of 13NH4 + influx across the plasmalemma). Plant Physiol 103:1259–1267CrossRefPubMedPubMedCentralGoogle Scholar
  85. Williams PN, Villada A, Deacon C, Raab A, Figuerola J, Green AJ, Feldmann J, Meharg AA (2007) Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol 41:6854–6859CrossRefPubMedGoogle Scholar
  86. Wu P, Shou H, Xu G, Lian X (2013) Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis. Curr Opin Plant Biol 16:205–212CrossRefPubMedGoogle Scholar
  87. Xu XY, McGrath SP, Meharg AA, Zhao FJ (2008) Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol 42:5574–5579CrossRefPubMedGoogle Scholar
  88. Yamaguchi N, Ishikawa S, Abe T, Baba K, Arao T, Terada Y (2012) Role of the node in controlling traffic of cadmium, zinc, and manganese in rice. J Exp Bot 63:2729–2737CrossRefPubMedPubMedCentralGoogle Scholar
  89. Yamaji N, Ma JF (2009) A transporter at the node responsible for intervascular transfer of silicon in rice. Plant Cell 21:2878–2883CrossRefPubMedPubMedCentralGoogle Scholar
  90. Yamaji N, Ma JF (2014) The node, a hub for nutrient distribution in gramineous plants. Trends Plant Sci 19:556–563CrossRefPubMedGoogle Scholar
  91. Yamaji N, Mitani N, Ma JF (2008) A transporter regulating silicon distribution in rice shoots. Plant Cell 20:1381–1389CrossRefPubMedPubMedCentralGoogle Scholar
  92. Yamaji N, Sasaki A, Xia JX, Yokosho K, Ma JF (2013a) A node-based switch for preferential distribution of manganese in rice. Nat Commun.  https://doi.org/10.1038/ncomms3442
  93. Yamaji N, Xia J, Mitani-Ueno N, Yokosho K, Ma JF (2013b) Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiol 162:927–939CrossRefPubMedPubMedCentralGoogle Scholar
  94. Yamaji N, Sakurai G, Mitani-Ueno N, Ma JF (2015) Orchestration of three transporters and distinct vascular structures in node for intervascular transfer of silicon in rice. Proc Natl Acad Sci U S A 112:11401–11406CrossRefPubMedPubMedCentralGoogle Scholar
  95. Yamaji N, Takemoto Y, Miyaji T, Mitani-Ueno N, Yoshida KT, Ma JF (2017) Reducing phosphorus accumulation in rice grains with an impaired transporter in node. Nature 541:92–95CrossRefPubMedGoogle Scholar
  96. Yokosho K, Yamaji N, Ueno D, Mitani N, Ma JF (2009) OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice. Plant Physiol 149:297–305CrossRefPubMedPubMedCentralGoogle Scholar
  97. Yuan M, Li X, Xiao J, Wang S (2011) Molecular and functional analyses of COPT/Ctr-type copper transporter-like gene family in rice. BMC Plant Biol.  https://doi.org/10.1186/1471-2229-11-69
  98. Zhang F, Sun Y, Pei W, Jain A, Sun R, Cao Y, Wu X, Jiang T, Zhang L, Fan X, Chen A, Shen Q, Xu G, Sun S (2015) Involvement of OsPht1;4 in phosphate acquisition and mobilization facilitates embryo development in rice. Plant J 82:556–569CrossRefPubMedGoogle Scholar
  99. Zhao FJ, Ago Y, Mitani N, Li RY, Su YH, Yamaji N, McGrath SP, Ma JF (2010a) The role of the rice aquaporin Lsi1 in arsenite efflux from roots. New Phytol 186:392–399CrossRefPubMedGoogle Scholar
  100. Zhao FJ, McGrath SP, Meharg AA (2010b) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559CrossRefPubMedGoogle Scholar
  101. Zheng L, Yamaji N, Yokosho K, Ma JF (2012) YSL16 is a phloem-localized transporter of the copper-nicotianamine complex that is responsible for copper distribution in rice. Plant Cell 24:3767–3782CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Namiki Mitani-Ueno
    • 1
  • Naoki Yamaji
    • 1
  • Jian Feng Ma
    • 1
  1. 1.Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan

Personalised recommendations