Advertisement

Genome Sequences of Oryza Species

  • Masahiko Kumagai
  • Tsuyoshi Tanaka
  • Hajime Ohyanagi
  • Yue-Ie C. Hsing
  • Takeshi Itoh
Chapter

Abstract

This chapter summarizes recent data obtained from genome sequencing, annotation projects, and studies on the genome diversity of Oryza sativa and related Oryza species. O. sativa, commonly known as Asian rice, is the first monocot species whose complete genome sequence was deciphered based on physical mapping by an international collaborative effort. This genome, along with its accurate and comprehensive annotation, has become an indispensable foundation for crop genomics and breeding. With the development of innovative sequencing technologies, genomic studies of O. sativa have dramatically increased; in particular, a large number of cultivars and wild accessions have been sequenced and compared with the reference rice genome. Since de novo genome sequencing has become cost-effective, the genome of African cultivated rice, O. glaberrima, has also been determined. Comparative genomic studies have highlighted the independent domestication processes of different rice species, but it also turned out that Asian and African rice share a common gene set that has experienced similar artificial selection. An international project aimed at constructing reference genomes and examining the genome diversity of wild Oryza species is currently underway, and the genomes of some species are publicly available. This project provides a platform for investigations such as the evolution, development, polyploidization, and improvement of crops. Studies on the genomic diversity of Oryza species, including wild species, should provide new insights to solve the problem of growing food demands in the face of rapid climatic changes.

Keywords

Genome sequencing Reference genome Annotation Next-generation sequencing technology Resequencing Biodiversity Comparative genomics 

Notes

Acknowledgments

This work was supported by a grant from the Ministry of Agriculture, Forestry, and Fisheries of Japan (Genomics-based Technology for Agricultural Improvement, IVG2001).

References

  1. Ammiraju JSS, Luo M, Goicoechea JL et al (2006) The Oryza bacterial artificial chromosome library resource: construction and analysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus Oryza. Genome Res 16:140–147.  https://doi.org/10.1101/gr.3766306 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ammiraju JSS, Song X, Luo M et al (2010) The Oryza BAC resource: a genus-wide and genome scale tool for exploring rice genome evolution and leveraging useful genetic diversity from wild relatives. Breed Sci 60:536–543CrossRefGoogle Scholar
  3. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815.  https://doi.org/10.1038/35048692 CrossRefGoogle Scholar
  4. Baldrich P, Hsing Y-IC, San Segundo B (2016) Genome-wide analysis of polycistronic microRNAs in cultivated and wild rice. Genome Biol Evol 8:1104–1114.  https://doi.org/10.1093/gbe/evw062 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barry GF (2001) The use of the Monsanto draft rice genome sequence in research. Plant Physiol 125:1164–1165CrossRefPubMedPubMedCentralGoogle Scholar
  6. Buell CR, Yuan Q, Ouyang S et al (2005) Sequence, annotation, and analysis of synteny between rice chromosome 3 and diverged grass species. Genome Res 15:1284–1291.  https://doi.org/10.1101/gr.3869505 CrossRefPubMedGoogle Scholar
  7. Chen J, Huang Q, Gao D et al (2013) Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nat Commun 4:1595.  https://doi.org/10.1038/ncomms2596 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cheng C, Motohashi R, Tsuchimoto S et al (2003) Polyphyletic origin of cultivated rice: based on the interspersion pattern of SINEs. Mol Biol Evol 20:67–75.  https://doi.org/10.1093/molbev/msg004 CrossRefPubMedGoogle Scholar
  9. Choi JY, Platts AE, Fuller DQ et al (2017) The rice paradox: multiple origins but single domestication in Asian rice. Mol Biol Evol 34:969–979.  https://doi.org/10.1093/molbev/msx049 PubMedPubMedCentralGoogle Scholar
  10. Civáň P, Craig H, Cox CJ, Brown TA (2015) Three geographically separate domestications of Asian rice. Nat Plants 1:15164.  https://doi.org/10.1038/nplants.2015.164 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Du H, Yu Y, Ma Y et al (2017) Sequencing and de novo assembly of a near complete indica rice genome. Nat Commun 8:15324.  https://doi.org/10.1038/ncomms15324 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dudchenko O, Batra SS, Omer AD et al (2017) De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356:92–95.  https://doi.org/10.1126/science.aal3327 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dulbecco R (1986) A turning point in cancer research: sequencing the human genome. Science 231:1055–1056CrossRefPubMedGoogle Scholar
  14. Eid J, Fehr A, Gray J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138.  https://doi.org/10.1126/science.1162986 CrossRefPubMedGoogle Scholar
  15. Fleischmann RD, Adams MD, White O et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512CrossRefPubMedGoogle Scholar
  16. Fuller DQ (2006) Agricultural origins and frontiers in South Asia: a working synthesis. J World Prehistory 20:1–86.  https://doi.org/10.1007/s10963-006-9006-8 CrossRefGoogle Scholar
  17. Gao L-Z, Innan H (2008) Nonindependent domestication of the two rice subspecies, Oryza sativa ssp. indica and ssp. japonica, demonstrated by multilocus microsatellites. Genetics 179:965–976.  https://doi.org/10.1534/genetics.106.068072 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Garris AJ, Tai TH, Coburn J et al (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631–1638.  https://doi.org/10.1534/genetics.104.035642 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ge S, Sang T, Lu B, Horton M (1999) Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc Natl Acad Sci U S A 96:14400–14405CrossRefPubMedPubMedCentralGoogle Scholar
  20. Glaszmann JC (1987) Isozymes and classification of Asian rice varieties. Theor Appl Genet 74:21–30.  https://doi.org/10.1007/BF00290078 CrossRefPubMedGoogle Scholar
  21. Goff SA, Ricke D, Lan T-H et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100.  https://doi.org/10.1126/science.1068275 CrossRefPubMedGoogle Scholar
  22. Huang Z, He G, Shu L et al (2001) Identification and mapping of two brown planthopper resistance genes in rice. TAG Theor Appl Genet 102:929–934.  https://doi.org/10.1007/s001220000455 CrossRefGoogle Scholar
  23. Huang X, Wei X, Sang T et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967.  https://doi.org/10.1038/ng.695 CrossRefPubMedGoogle Scholar
  24. Huang X, Kurata N, Wei X et al (2012) A map of rice genome variation reveals the origin of cultivated rice. Nature 490:497–501.  https://doi.org/10.1038/nature11532 CrossRefPubMedGoogle Scholar
  25. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800.  https://doi.org/10.1038/nature03895 CrossRefGoogle Scholar
  26. Jacquemin J, Bhatia D, Singh K, Wing RA (2013) The international Oryza map alignment project: development of a genus-wide comparative genomics platform to help solve the 9 billion-people question. Curr Opin Plant Biol 16:147–156.  https://doi.org/10.1016/j.pbi.2013.02.014 CrossRefPubMedGoogle Scholar
  27. Jacquemin J, Ammiraju JSS, Haberer G et al (2014) Fifteen million years of evolution in the Oryza genus shows extensive gene family expansion. Mol Plant 7:642–656.  https://doi.org/10.1093/mp/sst149 CrossRefPubMedGoogle Scholar
  28. Jena KK (2010) The species of the genus Oryza and transfer of useful genes from wild species into cultivated rice, O. sativa. Breed Sci 60:518–523.  https://doi.org/10.1270/jsbbs.60.518 CrossRefGoogle Scholar
  29. Kawahara Y, de la Bastide M, Hamilton JP et al (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice (N Y) 6:4.  https://doi.org/10.1186/1939-8433-6-4 CrossRefGoogle Scholar
  30. Kim H, Hurwitz B, Yu Y et al (2008) Construction, alignment and analysis of twelve framework physical maps that represent the ten genome types of the genus Oryza. Genome Biol 9:R45.  https://doi.org/10.1186/gb-2008-9-2-r45 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Konishi S, Izawa T, Lin SY et al (2006) An SNP caused loss of seed shattering during rice domestication. Science 312:1392–1396.  https://doi.org/10.1126/science.1126410 CrossRefPubMedGoogle Scholar
  32. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefPubMedGoogle Scholar
  33. Li C, Zhou A, Sang T (2006) Rice domestication by reducing shattering. Science 311:1936–1939.  https://doi.org/10.1126/science.1123604 CrossRefPubMedGoogle Scholar
  34. Linares OF (2002) African rice (Oryza glaberrima): history and future potential. Proc Natl Acad Sci U S A 99:16360–16365.  https://doi.org/10.1073/pnas.252604599 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Londo JP, Chiang Y-C, Hung K-H et al (2006) Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc Natl Acad Sci U S A 103:9578–9583.  https://doi.org/10.1073/pnas.0603152103 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci U S A 101:12404–12410.  https://doi.org/10.1073/pnas.0403715101 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Matsumoto T, Wu J, Itoh T et al (2016) The Nipponbare genome and the next-generation of rice genomics research in Japan. Rice (N Y) 9:33.  https://doi.org/10.1186/s12284-016-0107-4 CrossRefGoogle Scholar
  38. McNally KL, Childs KL, Bohnert R et al (2009) Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci U S A 106:12273–12278.  https://doi.org/10.1073/pnas.0900992106 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Michael TP, Jupe F, Bemm F, et al (2017) High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell. bioRxiv:1–18.  https://doi.org/10.1101/149997
  40. Miyabayashi T, Nonomura K-I, Morishima H, Kurata N (2007) Genome size of twenty wild species of Oryza determined by flow cytometric and chromosome analyses. Breed Sci 57:73–78.  https://doi.org/10.1270/jsbbs.57.73 CrossRefGoogle Scholar
  41. Molina J, Sikora M, Garud N et al (2011) Molecular evidence for a single evolutionary origin of domesticated rice. Proc Natl Acad Sci U S A 108:8351–8356.  https://doi.org/10.1073/pnas.1104686108 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Nagaki K, Cheng Z, Ouyang S et al (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145.  https://doi.org/10.1038/ng1289 CrossRefPubMedGoogle Scholar
  43. Nonomura K-I, Morishima H, Miyabayashi T et al (2010) The wild Oryza collection in National BioResource Project (NBRP) of Japan: history, biodiversity and utility. Breed Sci 60:502–508.  https://doi.org/10.1270/jsbbs.60.502 CrossRefGoogle Scholar
  44. Ohyanagi H, Tanaka T, Sakai H et al (2006) The Rice Annotation Project Database (RAP-DB): hub for Oryza sativa ssp. japonica genome information. Nucleic Acids Res 34:D741–D744.  https://doi.org/10.1093/nar/gkj094 CrossRefPubMedGoogle Scholar
  45. Rakshit S, Rakshit A, Matsumura H et al (2007) Large-scale DNA polymorphism study of Oryza sativa and O. rufipogon reveals the origin and divergence of Asian rice. Theor Appl Genet 114:731–743.  https://doi.org/10.1007/s00122-006-0473-1 CrossRefPubMedGoogle Scholar
  46. Ram T, Laha GS, Gautam SK et al (2010) Identification of new gene introgressed from Oryza brachyantha with broad-spectrum resistance to bacterial blight of rice in India. Rice Genet Newsl 25:57–58Google Scholar
  47. Sakai H, Itoh T (2010) Massive gene losses in Asian cultivated rice unveiled by comparative genome analysis. BMC Genomics 11:121. doi: 10.1186/1471-2164-11-121Google Scholar
  48. Sakai H, Ikawa H, Tanaka T et al (2011) Distinct evolutionary patterns of Oryza glaberrima deciphered by genome sequencing and comparative analysis. Plant J 66:796–805.  https://doi.org/10.1111/j.1365-313X.2011.04539.x CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sakai H, Kanamori H, Arai-Kichise Y et al (2014) Construction of pseudomolecule sequences of the aus rice cultivar Kasalath for comparative genomics of Asian cultivated rice. DNA Res 21:397–405.  https://doi.org/10.1093/dnares/dsu006 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Sakai H, Naito K, Ogiso-Tanaka E et al (2015) The power of single molecule real-time sequencing technology in the de novo assembly of a eukaryotic genome. Sci Rep 5:16780.  https://doi.org/10.1038/srep16780 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sanchez PL, Wing RA, Brar DS (2013) The wild relative of rice: genomes and genomics. In: Zhang Q, Wing RA (eds) Genetics and genomics of rice. Springer, New York, pp 9–25CrossRefGoogle Scholar
  52. Sanyal A, Ammiraju JS, Lu F et al (2010) Orthologous comparisons of the Hd1 region across genera reveal Hd1 gene lability within diploid Oryza species and disruptions to microsynteny in sorghum. Mol Biol Evol 27:2487–2506.  https://doi.org/10.1093/molbev/msq133 CrossRefPubMedGoogle Scholar
  53. Sasaki T (1998) The rice genome project in Japan. Proc Natl Acad Sci U S A 95:2027–2028CrossRefPubMedPubMedCentralGoogle Scholar
  54. Schatz MC, Maron LG, Stein JC et al (2014) Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica. Genome Biol 15:506.  https://doi.org/10.1186/PREACCEPT-2784872521277375 PubMedPubMedCentralGoogle Scholar
  55. Takahashi Y, Teshima KM, Yokoi S et al (2009) Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice. Proc Natl Acad Sci U S A 106:4555–4560.  https://doi.org/10.1073/pnas.0812092106 CrossRefPubMedPubMedCentralGoogle Scholar
  56. The 3000 rice genomes project (2014) The 3,000 rice genomes project. Gigascience 3:7.  https://doi.org/10.1186/2047-217X-3-7 CrossRefGoogle Scholar
  57. The International Oryza Map Alignment Consortium (2018) Sequence of 11 rice-related species unveils conservation, turnover and innovation across the genus Oryza. Nature Genetics.  https://doi.org/10.1038/s41588-018-0040-0
  58. Uozu S, Ikehashi H, Ohmido N et al (1997) Repetitive sequences: cause for variation in genome size and chromosome morphology in the genus Oryza. Plant Mol Biol 35:791–799.  https://doi.org/10.1023/A:1005823124989 CrossRefPubMedGoogle Scholar
  59. Vaughan DA, Morishima H, Kadowaki K (2003) Diversity in the Oryza genus. Curr Opin Plant Biol 6:139–146.  https://doi.org/10.1016/S1369-5266(03)00009-8 CrossRefPubMedGoogle Scholar
  60. Vitte C, Ishii T, Lamy F et al (2004) Genomic paleontology provides evidence for two distinct origins of Asian rice (Oryza sativa L.) Mol Gen Genomics 272:504–511.  https://doi.org/10.1007/s00438-004-1069-6 CrossRefGoogle Scholar
  61. Wang M, Yu Y, Haberer G et al (2014) The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nat Genet 46:982–988.  https://doi.org/10.1038/ng.3044 CrossRefPubMedGoogle Scholar
  62. Wing RA, Ammiraju JSS, Luo M et al (2005) The Oryza map alignment project: the golden path to unlocking the genetic potential of wild rice species. Plant Mol Biol 59:53–62.  https://doi.org/10.1007/s11103-004-6237-x CrossRefPubMedGoogle Scholar
  63. Wu J, Yamagata H, Hayashi-Tsugane M et al (2004) Composition and structure of the centromeric region of rice chromosome 8. Plant Cell 16:967–976.  https://doi.org/10.1105/tpc.019273.1 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Xu X, Liu X, Ge S et al (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30:105–111.  https://doi.org/10.1038/nbt.2050 CrossRefGoogle Scholar
  65. Yamamoto T, Nagasaki H, Yonemaru J et al (2010) Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms. BMC Genomics 11:267.  https://doi.org/10.1186/1471-2164-11-267 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Yang C, Kawahara Y, Mizuno H et al (2012) Independent domestication of Asian rice followed by gene flow from japonica to indica. Mol Biol Evol 29:1–9.  https://doi.org/10.1093/molbev/msr315 CrossRefGoogle Scholar
  67. Yano M, Katayose Y, Ashikari M et al (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2484CrossRefPubMedPubMedCentralGoogle Scholar
  68. Yano K, Yamamoto E, Aya K et al (2016) Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nat Genet 48:927–934.  https://doi.org/10.1038/ng.3596 CrossRefPubMedGoogle Scholar
  69. Yu J, Hu S, Wang J et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92.  https://doi.org/10.1126/science.1068037 CrossRefPubMedGoogle Scholar
  70. Yuan Q, Ouyang S, Liu J et al (2003) The TIGR rice genome annotation resource: annotating the rice genome and creating resources for plant biologists. Nucleic Acids Res 31:229–233.  https://doi.org/10.1093/nar/gkg059 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Zhang Y, Huang Y, Zhang L et al (2004) Structural features of the rice chromosome 4 centromere. Nucleic Acids Res 32:2023–2030.  https://doi.org/10.1093/nar/gkh521 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Zhang J, Chen LL, Xing F et al (2016) Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63. Proc Nat Acad Sci 113:E5163–E5171.  https://doi.org/10.1073/pnas.1611012113 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Zhao Y, Tang L, Li Z et al (2015) Identification and analysis of unitary loss of long-established protein-coding genes in Poaceae shows evidences for biased gene loss and putatively functional transcription of relics. BMC Evol Biol 15:66.  https://doi.org/10.1186/s12862-015-0345-x CrossRefPubMedPubMedCentralGoogle Scholar
  74. Zhu Q, Ge S (2005) Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes. New Phytol 167:249–265.  https://doi.org/10.1111/j.1469-8137.2005.01406.x CrossRefPubMedGoogle Scholar
  75. Zou X, Zhang F, Zhang J et al (2008) Analysis of 142 genes resolves the rapid diversification of the rice genus. Genome Biol.  https://doi.org/10.1186/gb-2008-9-3-r49

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Masahiko Kumagai
    • 1
  • Tsuyoshi Tanaka
    • 1
  • Hajime Ohyanagi
    • 2
  • Yue-Ie C. Hsing
    • 3
  • Takeshi Itoh
    • 1
  1. 1.Advanced Analysis CenterNational Agriculture and Food Research OrganizationTsukubaJapan
  2. 2.King Abdullah University of Science and Technology (KAUST)Computational Bioscience Research Center (CBRC)ThuwalKingdom of Saudi Arabia
  3. 3.Academica SinicaInstitute of Plant and Microbial BiologyTaipeiTaiwan

Personalised recommendations