Skip to main content

Application of Oncolytic Virus as a Therapy of Cancer

  • Chapter
  • First Online:
Microbial Biotechnology
  • 2057 Accesses

Abstract

Cancer is one of the major threat to human society, which is the second leading global cause of mortality after cardiovascular diseases. Most popular chemo-therapy and radiation-therapy have a significant impact on cancer treatment but till date, they are not successful in many advanced cases and metastatic stage of cancer. This leads the researcher to investigate new strategies to combat by selectively killing cancer cells without damaging normal cells. Viral oncotherapy is such a hopeful treatment option that offers an opportunity for targeting cancer cells. In this therapy, wild type or engineered oncolytic viruses are use to infect and destroy cancer cells by oncolysis. As a result of this new infectious viral particles are release to facilitate the destruction of the remaining cancerous cells. These viruses with anticancer activity can be designed in many ways and use in combination with other cancer therapy to increase their tumor selectivity and improve oncolytic activity. Here, we will discuss the strategies for oncolytic viral engineering with the mechanisms by which these viruses specifically kill tumor cells that make a promising modality for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghi M, Visted T, Depinho RA, Chiocca EA (2008) Oncolytic herpes virus with defective ICP6 specifically replicates in quiescent cells with homozygous genetic mutations in p16. Oncogene 27(30):4249–4254

    CAS  PubMed  Google Scholar 

  • Ahmed M, Cramer SD, Lyles DS (2004) Sensitivity of prostate tumors to wild type and M protein mutant vesicular stomatitis viruses. Virology 330(1):34–49

    CAS  PubMed  Google Scholar 

  • Albelda SM, Thorne SH (2014) Giving oncolytic vaccinia virus more BiTE. Mol Ther J Am Soc Gen Ther 22(1):6–8

    CAS  Google Scholar 

  • Alberts P, Olmane E, Brokane L, Krastina Z, Romanovska M, Kupcs K, Isajevs S, Proboka G, Erdmanis R, Nazarovs J, Venskus D (2016) Long-term treatment with the oncolytic ECHO-7 virus Rigvir of a melanoma stage IV M1c patient, a small cell lung cancer stage IIIA patient, and a histiocytic sarcoma stage IV patient-three case reports. APMIS: Acta Pathol Microbiol, Immunol Scand 124(10):896–904

    CAS  Google Scholar 

  • Altomonte J, Marozin S, Schmid RM, Ebert O (2010) Engineered newcastle disease virus as an improved oncolytic agent against hepatocellular carcinoma. Mol Ther J Am Soc Gen Ther 17(2):275–284

    Google Scholar 

  • Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, Delman KA, Spitler LE, Puzanov I, Agarwala SS, Milhem M, Cranmer L, Curti B, Lewis K, Ross M, Guthrie T, Linette GP, Daniels GA, Harrington K, Middleton MR, Miller WH Jr, Zager JS, Ye Y, Yao B, Li A, Doleman S, VanderWalde A, Gansert J, Coffin RS (2015) Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol Off J Am Soc Clin Oncol 33(25):2780–2788

    CAS  Google Scholar 

  • Angelova AL, Aprahamian M, Balboni G, Delecluse HJ, Feederle R, Kiprianova I, Grekova SP, Galabov AS, Witzens-Harig M, Ho AD, Rommelaere J, Raykov Z (2009) Oncolytic rat parvovirus H-1PV, a candidate for the treatment of human lymphoma: in vitro and in vivo studies. Mol Ther J Am Soc Gen Ther 17(7):1164–1172

    CAS  Google Scholar 

  • Atkins GJ, Sheahan BJ, Dimmock NJ (1985) Semliki Forest virus infection of mice: a model for genetic and molecular analysis of viral pathogenicity. J Gen Virol 66(3):395–408

    PubMed  Google Scholar 

  • Atkins GJ, Sheahan BJ, Liljestrom P (1999) The molecular pathogenesis of Semliki Forest virus: a model virus made useful? J Gen Virol 80(9):2287–2297

    CAS  PubMed  Google Scholar 

  • Au GG, Beagley LG, Haley ES, Barry RD, Shafren DR (2011) Oncolysis of malignant human melanoma tumors by Coxsackieviruses A13, A15 and A17. Virol J 8:22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bar S, Rommelaere J, Nuesch JP (2015) PKCeta/Rdx-driven phosphorylation of PDK1: a novel mechanism promoting cancer cell survival and permissiveness for parvovirus-induced lysis. PLoS Pathog 11(3):e1004703

    PubMed  PubMed Central  Google Scholar 

  • Bergelson JM, Coyne CB (2013) Picornavirus entry. Adv Exp Med Biol 790:24–41

    CAS  PubMed  Google Scholar 

  • Bilbao R, Bustos M, Alzuguren P, Pajares MJ, Drozdzik M, Qian C, Prieto J (2000) A blood-tumor barrier limits gene transfer to experimental liver cancer: the effect of vasoactive compounds. Gene Ther 7(21):1724–1732

    Google Scholar 

  • Bridle BW, Stephenson KB, Boudreau JE, Koshy S, Kazdhan N, Pullenayegum E, Brunelliere J, Bramson JL, Lichty BD, Wan Y (2010) Potentiating cancer immunotherapy using an oncolytic virus. Mol Ther J Am Soc Gen Ther 17(8):1430–1439

    Google Scholar 

  • Brostrom CO, Brostrom MA (1998) Regulation of translational initiation during cellular responses to stress. Prog Nucleic Acid Res Mol Biol 58:79–125

    CAS  PubMed  Google Scholar 

  • Brown MC, Dobrikova EY, Dobrikov MI, Walton RW, Gemberling SL, Nair SK, Desjardins A, Sampson JH, Friedman HS, Friedman AH, Tyler DS, Bigner DD, Gromeier M (2014) Oncolytic polio virotherapy of cancer. Cancer 120(21):3277–3286

    PubMed  PubMed Central  Google Scholar 

  • Cassel WA, Garrett RE (1965) Newcastle disease virus as an antineoplastic agent. Cancer 17:863–868

    Google Scholar 

  • Cerullo V, Pesonen S, Diaconu I, Escutenaire S, Arstila PT, Ugolini M, Nokisalmi P, Raki M, Laasonen L, Sarkioja M, Rajecki M, Kangasniemi L, Guse K, Helminen A, Ahtiainen L, Ristimaki A, Raisanen-Sokolowski A, Haavisto E, Oksanen M, Karli E, Karioja-Kallio A, Holm SL, Kouri M, Joensuu T, Kanerva A, Hemminki A (2010) Oncolytic adenovirus coding for granulocyte macrophage colony-stimulating factor induces antitumoral immunity in cancer patients. Cancer Res 70(11):4297–4309

    CAS  PubMed  Google Scholar 

  • Cerullo V, Diaconu I, Kangasniemi L, Rajecki M, Escutenaire S, Koski A, Romano V, Rouvinen N, Tuuminen T, Laasonen L, Partanen K, Kauppinen S, Joensuu T, Oksanen M, Holm SL, Haavisto E, Karioja-Kallio A, Kanerva A, Pesonen S, Arstila PT, Hemminki A (2011) Immunological effects of low-dose cyclophosphamide in cancer patients treated with oncolytic adenovirus. Mol Ther J Am Soc Gen Ther 19(9):1737–1746

    CAS  Google Scholar 

  • Chang J, Zhao X, Wu X, Guo Y, Guo H, Cao J, Lou D, Yu D, Li J (2009) A Phase I study of KH901, a conditionally replicating granulocyte-macrophage colony-stimulating factor: armed oncolytic adenovirus for the treatment of head and neck cancers. Cancer Biol Ther 8(8):676–682

    CAS  PubMed  Google Scholar 

  • Chen Y, Yu DC, Charlton D, Henderson DR (2000) Pre-existent adenovirus antibody inhibits systemic toxicity and antitumor activity of CN706 in the nude mouse LNCaP xenograft model: implications and proposals for human therapy. Hum Gene Ther 11(11):1553–1567

    CAS  PubMed  Google Scholar 

  • Chumakov PM, Morozova VV, Babkin IV, Baikov IK, Netesov SV, Tikunova NV (2012) Oncolytic enteroviruses. Mol Biol 46(5):712–725

    CAS  Google Scholar 

  • Coffey MC, Strong JE, Forsyth PA, Lee PW (1998) Reovirus therapy of tumors with activated Ras pathway. Science 282(5392):1332–1334

    CAS  PubMed  Google Scholar 

  • Connolly JL, Dermody TS (2002) Virion disassembly is required for apoptosis induced by reovirus. J Virol 76(4):1632–1641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cripe TP, Ngo MC, Geller JI, Louis CU, Currier MA, Racadio JM, Towbin AJ, Rooney CM, Pelusio A, Moon A, Hwang TH, Burke JM, Bell JC, Kirn DH, Breitbach CJ (2015) Phase 1 study of intratumoral Pexa-Vec (JX-594), an oncolytic and immunotherapeutic vaccinia virus, in pediatric cancer patients. Mol Ther J Am Soc Gen Ther 23(3):602–608

    CAS  Google Scholar 

  • DeWeese TL, van der Poel H, Li S, Mikhak B, Drew R, Goemann M, Hamper U, DeJong R, Detorie N, Rodriguez R, Haulk T, DeMarzo AM, Piantadosi S, Yu DC, Chen Y, Henderson DR, Carducci MA, Nelson WG, Simons JW (2001) A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res 61(20):7464–7472

    CAS  PubMed  Google Scholar 

  • de Haro C, Mendez R, Santoyo J (1996) The eIF-2alpha kinases and the control of protein synthesis. FASEB J Off Publ Fed Am Soc Exp Biol 10(12):1378–1387

    Google Scholar 

  • Dock G (1904) Rabies virus vaccination in a patient with cervical carcinoma. Am J Med Sci 127:563

    Google Scholar 

  • Donina S, Strele I, Proboka G, Auzins J, Alberts P, Jonsson B, Venskus D, Muceniece A (2015) Adapted ECHO-7 virus Rigvir immunotherapy (oncolytic virotherapy) prolongs survival in melanoma patients after surgical excision of the tumour in a retrospective study. Melanoma Res 25(5):421–426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Donnelly OG, Errington-Mais F, Prestwich R, Harrington K, Pandha H, Vile R, Melcher AA (2012) Recent clinical experience with oncolytic viruses. Curr Pharm Biotechnol 13(9):1734–1741

    Google Scholar 

  • Ebert O, Harbaran S, Shinozaki K, Woo SL (2005) Systemic therapy of experimental breast cancer metastases by mutant vesicular stomatitis virus in immune-competent mice. Cancer Gene Ther 12(4):350–358

    CAS  PubMed  Google Scholar 

  • Elankumaran S, Rockemann D, Samal SK (2006) Newcastle disease virus exerts oncolysis by both intrinsic and extrinsic caspase-dependent pathways of cell death. J Virol 80(15):7522–7534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elankumaran S, Chavan V, Qiao D, Shobana R, Moorkanat G, Biswas M, Samal SK (2010) Type I interferon-sensitive recombinant newcastle disease virus for oncolytic virotherapy. J Virol 84(8):3835–3844

    CAS  PubMed  PubMed Central  Google Scholar 

  • Escamilla-Tilch M, Filio-Rodriguez G, Garcia-Rocha R, Mancilla-Herrera I, Mitchison NA, Ruiz-Pacheco JA, Sanchez-Garcia FJ, Sandoval-Borrego D, Vazquez-Sanchez EA (2013) The interplay between pathogen-associated and danger-associated molecular patterns: an inflammatory code in cancer? Immunol Cell Biol 91(10):601–610

    CAS  PubMed  Google Scholar 

  • Feng GS, Chong K, Kumar A, Williams BR (1992) Identification of double-stranded RNA-binding domains in the interferon-induced double-stranded RNA-activated p68 kinase. Proc Natl Acad Sci U S A 89(12):5447–5451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson MS, Lemoine NR, Wang Y (2012) Systemic delivery of oncolytic viruses: hopes and hurdles. Adv Virol 2012:805629

    PubMed  PubMed Central  Google Scholar 

  • Freeman AI, Zakay-Rones Z, Gomori JM, Linetsky E, Rasooly L, Greenbaum E, Rozenman-Yair S, Panet A, Libson E, Irving CS, Galun E, Siegal T (2006) Phase I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma multiforme. Mol Ther J Am Soc Gen Ther 13(1):221–228

    CAS  Google Scholar 

  • Galanis E, Atherton PJ, Maurer MJ, Knutson KL, Dowdy SC, Cliby WA, Haluska P Jr, Long HJ, Oberg A, Aderca I, Block MS, Bakkum-Gamez J, Federspiel MJ, Russell SJ, Kalli KR, Keeney G, Peng KW, Hartmann LC (2015) Oncolytic measles virus expressing the sodium iodide symporter to treat drug-resistant ovarian cancer. Cancer Res 75(1):22–30

    CAS  PubMed  Google Scholar 

  • Geletneky K, Nuesch JP, Angelova A, Kiprianova I, Rommelaere J (2015) Double-faceted mechanism of parvoviral oncosuppression. Curr Opin Virol 13:17–24

    CAS  PubMed  Google Scholar 

  • Goetz C, Gromeier M (2010) Preparing an oncolytic poliovirus recombinant for clinical application against glioblastoma multiforme. Cytokine Growth Factor Rev 21(2–3):197–203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldsmith K, Chen W, Johnson DC, Hendricks RL (1998) Infected cell protein (ICP)47 enhances herpes simplex virus neurovirulence by blocking the CD8+ T cell response. J Exp Med 177(3):341–348

    Google Scholar 

  • Gong J, Sachdev E, Mita AC, Mita MM (2016) Clinical development of reovirus for cancer therapy: an oncolytic virus with immune-mediated antitumor activity. World J Methodol 6(1):25–42

    PubMed  PubMed Central  Google Scholar 

  • Gromeier M, Lachmann S, Rosenfeld MR, Gutin PH, Wimmer E (2000) Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc Natl Acad Sci U S A 97(12):6803–6808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo ZS, Thorne SH, Bartlett DL (2008) Oncolytic virotherapy: molecular targets in tumor-selective replication and carrier cell-mediated delivery of oncolytic viruses. Biochim Biophys Acta 1785(2):217–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guse K, Cerullo V, Hemminki A (2011) Oncolytic vaccinia virus for the treatment of cancer. Expert Opin Biol Ther 11(5):595–608

    CAS  PubMed  Google Scholar 

  • Hales LM, Knowles NJ, Reddy PS, Xu L, Hay C, Hallenbeck PL (2008) Complete genome sequence analysis of Seneca Valley virus-001, a novel oncolytic picornavirus. J Gen Virol 89(Pt 5):1265–1275

    CAS  PubMed  Google Scholar 

  • Hastie E, Grdzelishvili VZ (2012) Vesicular stomatitis virus as a flexible platform for oncolytic virotherapy against cancer. J Gen Virol 93(12):2529–2545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH (1997) ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 3(6):639–645

    CAS  PubMed  Google Scholar 

  • Hemminki O, Diaconu I, Cerullo V, Pesonen SK, Kanerva A, Joensuu T, Kairemo K, Laasonen L, Partanen K, Kangasniemi L, Lieber A, Pesonen S, Hemminki A (2012) Ad3-hTERT-E1A, a fully serotype 3 oncolytic adenovirus, in patients with chemotherapy refractory cancer. Mol Ther J Am Soc Gen Ther 20(9):1721–1730

    Google Scholar 

  • Hernandez-Alcoceba R, Pihalja M, Qian D, Clarke MF (2002) New oncolytic adenoviruses with hypoxia- and estrogen receptor-regulated replication. Hum Gene Ther 13(14):1737–1750

    CAS  PubMed  Google Scholar 

  • Huang Z, Krishnamurthy S, Panda A, Samal SK (2003) Newcastle disease virus V protein is associated with viral pathogenesis and functions as an alpha interferon antagonist. J Virol 77(16):8676–8685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang TT, Parab S, Burnett R, Diago O, Ostertag D, Hofman FM, Espinoza FL, Martin B, Ibanez CE, Kasahara N, Gruber HE, Pertschuk D, Jolly DJ, Robbins JM (2015) Intravenous administration of retroviral replicating vector, Toca 511, demonstrates therapeutic efficacy in orthotopic immune-competent mouse glioma model. Hum Gen Ther 26(2):82–93

    CAS  Google Scholar 

  • Huebner RJ, Rowe WP, Schatten WE, Smith RR, Thomas LB (1956) Studies on the use of viruses in the treatment of carcinoma of the cervix. Cancer 9(6):1211–1217

    CAS  PubMed  Google Scholar 

  • Imani F, Jacobs BL (1988) Inhibitory activity for the interferon-induced protein kinase is associated with the reovirus serotype 1 sigma 3 protein. Proc Natl Acad Sci U S A 85(21):7887–7891

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson ES, Xing L, Cheng RH, Shafren DR (2004) Enhanced cellular receptor usage by a bioselected variant of coxsackievirus a21. J Virol 78(22):12603–12612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufman HL, Kim DW, DeRaffele G, Mitcham J, Coffin RS, Kim-Schulze S (2010) Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann Surg Oncol 17(3):717–730

    Google Scholar 

  • Kaufman HL, Kohlhapp FJ, Zloza A (2015) Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov 14(9):642–662

    CAS  PubMed  Google Scholar 

  • Kemball CC, Alirezaei M, Whitton JL (2010) Type B coxsackieviruses and their interactions with the innate and adaptive immune systems. Future Microbiol 5(9):1329–1347

    PubMed  PubMed Central  Google Scholar 

  • Koski A, Kangasniemi L, Escutenaire S, Pesonen S, Cerullo V, Diaconu I, Nokisalmi P, Raki M, Rajecki M, Guse K, Ranki T, Oksanen M, Holm SL, Haavisto E, Karioja-Kallio A, Laasonen L, Partanen K, Ugolini M, Helminen A, Karli E, Hannuksela P, Joensuu T, Kanerva A, Hemminki A (2010) Treatment of cancer patients with a serotype 5/3 chimeric oncolytic adenovirus expressing GMCSF. Mol Ther J Am Soc Gen Ther 17(10):1774–1784

    Google Scholar 

  • Krasnykh V, Dmitriev I, Navarro JG, Belousova N, Kashentseva E, Xiang J, Douglas JT, Curiel DT (2000) Advanced generation adenoviral vectors possess augmented gene transfer efficiency based upon coxsackie adenovirus receptor-independent cellular entry capacity. Cancer Res 60(24):6784–6787

    CAS  PubMed  Google Scholar 

  • Kuhn I, Harden P, Bauzon M, Chartier C, Nye J, Thorne S, Reid T, Ni S, Lieber A, Fisher K, Seymour L, Rubanyi GM, Harkins RN, Hermiston TW (2008) Directed evolution generates a novel oncolytic virus for the treatment of colon cancer. PLoS One 3(6):e2409

    PubMed  PubMed Central  Google Scholar 

  • Lal R, Harris D, Postel-Vinay S, de Bono J (2009) Reovirus: rationale and clinical trial update. Curr Opin Mol Ther 11(5):532–539

    CAS  PubMed  Google Scholar 

  • Laliberte JP, Weisberg AS, Moss B (2011) The membrane fusion step of vaccinia virus entry is cooperatively mediated by multiple viral proteins and host cell components. PLoS Pathog 7(12):e1002446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lanson NA Jr, Friedlander PL, Schwarzenberger P, Kolls JK, Wang G (2003) Replication of an adenoviral vector controlled by the human telomerase reverse transcriptase promoter causes tumor-selective tumor lysis. Cancer Res 63(22):7936–7941

    CAS  PubMed  Google Scholar 

  • Lichty BD, Power AT, Stojdl DF, Bell JC (2004) Vesicular stomatitis virus: re-inventing the bullet. Trends Mol Med 10(5):210–216

    CAS  PubMed  Google Scholar 

  • Lichty BD, Breitbach CJ, Stojdl DF, Bell JC (2014) Going viral with cancer immunotherapy. Nat Rev Cancer 14(8):559–567

    CAS  PubMed  Google Scholar 

  • Liu BL, Robinson M, Han ZQ, Branston RH, English C, Reay P, McGrath Y, Thomas SK, Thornton M, Bullock P, Love CA, Coffin RS (2003) ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther 10(4):292–303

    CAS  PubMed  Google Scholar 

  • Marcato P, Shmulevitz M, Pan D, Stoltz D, Lee PW (2007) Ras transformation mediates reovirus oncolysis by enhancing virus uncoating, particle infectivity, and apoptosis-dependent release. Mol Ther J Am Soc Gen Ther 15(8):1522–1530

    CAS  Google Scholar 

  • Masson D, Jarry A, Baury B, Blanchardie P, Laboisse C, Lustenberger P, Denis MG (2001) Overexpression of the CD155 gene in human colorectal carcinoma. Gut 49(2):236–240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathiot CC, Grimaud G, Garry P, Bouquety JC, Mada A, Daguisy AM, Georges AJ (1990) An outbreak of human Semliki Forest virus infections in Central African Republic. Am J Trop Med Hyg 42(4):386–393

    CAS  PubMed  Google Scholar 

  • McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A, Stivala F, Libra M, Basecke J, Evangelisti C, Martelli AM, Franklin RA (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773(8):1263–1284

    CAS  PubMed  Google Scholar 

  • Merrill MK, Bernhardt G, Sampson JH, Wikstrand CJ, Bigner DD, Gromeier M (2004) Poliovirus receptor CD155-targeted oncolysis of glioma. Neuro Oncol 6(3):208–217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Msaouel P, Dispenzieri A, Galanis E (2009) Clinical testing of engineered oncolytic measles virus strains in the treatment of cancer: an overview. Curr Opin Mol Ther 11(1):43–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Msaouel P, Opyrchal M, Domingo Musibay E, Galanis E (2013) Oncolytic measles virus strains as novel anticancer agents. Expert Opin Biol Ther 13(4):483–502

    CAS  PubMed  Google Scholar 

  • Muik A, Stubbert LJ, Jahedi RZ, Geibeta Y, Kimpel J, Dold C, Tober R, Volk A, Klein S, Dietrich U, Yadollahi B, Falls T, Miletic H, Stojdl D, Bell JC, von Laer D (2014) Re-engineering vesicular stomatitis virus to abrogate neurotoxicity, circumvent humoral immunity, and enhance oncolytic potency. Cancer Res 74(13):3567–3578

    CAS  PubMed  Google Scholar 

  • Newman W, Southam CM (1954) Virus treatment in advanced cancer; a pathological study of fifty-seven cases. Cancer 7(1):106–117

    CAS  PubMed  Google Scholar 

  • Norman KL, Hirasawa K, Yang AD, Shields MA, Lee PW (2004) Reovirus oncolysis: the Ras/RalGEF/p38 pathway dictates host cell permissiveness to reovirus infection. Proc Natl Acad Sci U S A 101(30):11099–11104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Obuchi M, Fernandez M, Barber GN (2003) Development of recombinant vesicular stomatitis viruses that exploit defects in host defense to augment specific oncolytic activity. J Virol 77(16):8843–8856

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Shea CC, Johnson L, Bagus B, Choi S, Nicholas C, Shen A, Boyle L, Pandey K, Soria C, Kunich J, Shen Y, Habets G, Ginzinger D, McCormick F (2004) Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell 6(6):611–623

    PubMed  Google Scholar 

  • Ozduman K, Wollmann G, Piepmeier JM, van den Pol AN (2008) Systemic vesicular stomatitis virus selectively destroys multifocal glioma and metastatic carcinoma in brain. J Neurosci Off J Soc Neurosci 28(8):1782–1793

    Google Scholar 

  • Park MS, Garcia-Sastre A, Cros JF, Basler CF, Palese P (2003) Newcastle disease virus V protein is a determinant of host range restriction. J Virol 77(17):9522–9532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pecora AL, Rizvi N, Cohen GI, Meropol NJ, Sterman D, Marshall JL, Goldberg S, Gross P, O'Neil JD, Groene WS, Roberts MS, Rabin H, Bamat MK, Lorence RM (2002) Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. J Clin Oncol Off J Am Soc Clin Oncol 20(9):2251–2266

    CAS  Google Scholar 

  • Pelletier J, Sonenberg N (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334(6170):320–325

    CAS  PubMed  Google Scholar 

  • Perez OD, Logg CR, Hiraoka K, Diago O, Burnett R, Inagaki A, Jolson D, Amundson K, Buckley T, Lohse D, Lin A, Burrascano C, Ibanez C, Kasahara N, Gruber HE, Jolly DJ (2012) Design and selection of Toca 511 for clinical use: modified retroviral replicating vector with improved stability and gene expression. Mol Ther J Am Soc Gen Ther 20(9):1689–1698

    CAS  Google Scholar 

  • Puhlmann J, Puehler F, Mumberg D, Boukamp P, Beier R (2010) Rac1 is required for oncolytic NDV replication in human cancer cells and establishes a link between tumorigenesis and sensitivity to oncolytic virus. Oncogene 29(15):2205–2216

    CAS  PubMed  Google Scholar 

  • Ramachandran M, Yu D, Dyczynski M, Baskaran S, Zhang L, Lulla A, Lulla V, Saul S, Nelander S, Dimberg A, Merits A, Leja-Jarblad J, Essand M (2017) Safe and effective treatment of experimental neuroblastoma and glioblastoma using systemically delivered triple microRNA-detargeted oncolytic Semliki Forest virus. Clin Cancer Res Off J Am Assoc Cancer Res 23(6):1519–1530

    CAS  Google Scholar 

  • Reddy PS, Burroughs KD, Hales LM, Ganesh S, Jones BH, Idamakanti N, Hay C, Li SS, Skele KL, Vasko AJ, Yang J, Watkins DN, Rudin CM, Hallenbeck PL (2007) Seneca Valley virus, a systemically deliverable oncolytic picornavirus, and the treatment of neuroendocrine cancers. J Natl Cancer Inst 99(21):1623–1633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts MS, Lorence RM, Groene WS, Bamat MK (2006) Naturally oncolytic viruses. Curr Opin Mol Ther 8(4):314–321

    PubMed  Google Scholar 

  • Rudin CM, Poirier JT, Senzer NN, Stephenson J Jr, Loesch D, Burroughs KD, Reddy PS, Hann CL, Hallenbeck PL (2011) Phase I clinical study of Seneca Valley Virus (SVV-001), a replication-competent picornavirus, in advanced solid tumors with neuroendocrine features. Clin Cancer Res Off J Am Assoc Cancer Res 17(4):888–895

    CAS  Google Scholar 

  • Russell SJ, Peng KW, Bell JC (2012) Oncolytic virotherapy. Nat Biotechnol 30(7):658–670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sabin AB (1959) Reoviruses. A new group of respiratory and enteric viruses formerly classified as ECHO type 10 is described. Science 130(3386):1387–1389

    CAS  PubMed  Google Scholar 

  • Sarkioja M, Pesonen S, Raki M, Hakkarainen T, Salo J, Ahonen MT, Kanerva A, Hemminki A (2008) Changing the adenovirus fiber for retaining gene delivery efficacy in the presence of neutralizing antibodies. Gen Ther 15(12):921–929

    CAS  Google Scholar 

  • Sauthoff H, Hu J, Maca C, Goldman M, Heitner S, Yee H, Pipiya T, Rom WN, Hay JG (2003) Intratumoral spread of wild-type adenovirus is limited after local injection of human xenograft tumors: virus persists and spreads systemically at late time points. Hum Gene Ther 14(5):425–433

    CAS  PubMed  Google Scholar 

  • Singh PK, Doley J, Kumar GR, Sahoo AP, Tiwari AK (2012) Oncolytic viruses & their specific targeting to tumour cells. Indian J Med Res 136(4):571–584

    PubMed  PubMed Central  Google Scholar 

  • Sinkovics J, Horvath J (1993) New developments in the virus therapy of cancer: a historical review. Intervirology 36(4):193–214

    CAS  PubMed  Google Scholar 

  • Southam CM, Hilleman MR, Werner JH (1956) Pathogenicity and oncolytic capacity of RI virus strain RI-67 in man. J Lab Clin Med 47(4):573–582

    CAS  PubMed  Google Scholar 

  • Stojdl DF, Lichty B, Knowles S, Marius R, Atkins H, Sonenberg N, Bell JC (2000) Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 6(7):821–825

    CAS  PubMed  Google Scholar 

  • Strong JE, Coffey MC, Tang D, Sabinin P, Lee PW (1998) The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J 17(12):3351–3362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tai CK, Kasahara N (2008) Replication-competent retrovirus vectors for cancer gene therapy. Front Biosci J Virtual Libr 13:3083–3095

    CAS  Google Scholar 

  • Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT (2012) PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 249(1):158–175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trinh HV, Lesage G, Chennamparampil V, Vollenweider B, Burckhardt CJ, Schauer S, Havenga M, Greber UF, Hemmi S (2012) Avidity binding of human adenovirus serotypes 3 and 7 to the membrane cofactor CD46 triggers infection. J Virol 86(3):1623–1637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tuve S, Wang H, Ware C, Liu Y, Gaggar A, Bernt K, Shayakhmetov D, Li Z, Strauss R, Stone D, Lieber A (2006) A new group B adenovirus receptor is expressed at high levels on human stem and tumor cells. J Virol 80(24):12109–12120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venkataraman S, Reddy SP, Loo J, Idamakanti N, Hallenbeck PL, Reddy VS (2008a) Crystallization and preliminary X-ray diffraction studies of Seneca Valley virus-001, a new member of the Picornaviridae family. Acta Crystallogr Sect F Struct Biol Cryst Commun 64(Pt 4):293–296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venkataraman S, Reddy SP, Loo J, Idamakanti N, Hallenbeck PL, Reddy VS (2008b) Structure of Seneca Valley Virus-001: an oncolytic picornavirus representing a new genus. Structure 16(10):1555–1561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vigil A, Park MS, Martinez O, Chua MA, Xiao S, Cros JF, Martinez-Sobrido L, Woo SL, Garcia-Sastre A (2007) Use of reverse genetics to enhance the oncolytic properties of Newcastle disease virus. Cancer Res 67(17):8285–8292

    CAS  PubMed  Google Scholar 

  • Vorburger SA, Pataer A, Swisher SG, Hunt KK (2004) Genetically targeted cancer therapy: tumor destruction by PKR activation. Am J Pharmacogenomics Genomics-Related Res Drug Dev Clin Pract 4(3):179–198

    Google Scholar 

  • Wang H, Li ZY, Liu Y, Persson J, Beyer I, Moller T, Koyuncu D, Drescher MR, Strauss R, Zhang XB, Wahl JK 3rd, Urban N, Drescher C, Hemminki A, Fender P, Lieber A (2011) Desmoglein 2 is a receptor for adenovirus serotypes 3, 7, 11 and 14. Nat Med 17(1):96–104

    PubMed  Google Scholar 

  • Wek RC (1994) eIF-2 kinases: regulators of general and gene-specific translation initiation. Trends Biochem Sci 19(11):491–496

    CAS  PubMed  Google Scholar 

  • Willems WR, Kaluza G, Boschek CB, Bauer H, Hager H, Schutz HJ, Feistner H (1979) Semliki forest virus: cause of a fatal case of human encephalitis. Science 203(4385):1127–1129

    CAS  PubMed  Google Scholar 

  • Woolhouse M, Scott F, Hudson Z, Howey R, Chase-Topping M (2012) Human viruses: discovery and emergence. Phil Trans R Soc Lond Ser B Biol Sci 367(1604):2864–2871

    Google Scholar 

  • Yanagi Y, Takeda M, Ohno S, Hashiguchi T (2009) Measles virus receptors. Curr Top Microbiol Immunol 329:13–30

    CAS  PubMed  Google Scholar 

  • Zamarin D, Palese P (2012) Oncolytic Newcastle disease virus for cancer therapy: old challenges and new directions. Future Microbiol 7(3):347–367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zamarin D, Martinez-Sobrido L, Kelly K, Mansour M, Sheng G, Vigil A, Garcia-Sastre A, Palese P, Fong Y (2009) Enhancement of oncolytic properties of recombinant newcastle disease virus through antagonism of cellular innate immune responses. Mol Ther J Am Soc Gen Ther 17(4):697–706

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil Kumar Sahu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahu, S.K., Kumar, M. (2018). Application of Oncolytic Virus as a Therapy of Cancer. In: Patra, J., Das, G., Shin, HS. (eds) Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7140-9_17

Download citation

Publish with us

Policies and ethics