Skip to main content

Semantic Interpretation of Tweets: A Contextual Knowledge-Based Approach for Tweet Analysis

  • Chapter
  • First Online:
Knowledge Computing and Its Applications

Abstract

Tweets are cryptic and often laced with insinuation. Hence, interpretation of tweets cannot be done in isolation. Human beings can interpret the tweets because they possess the requisite Contextual Knowledge. This knowledge enables them to understand the context of tweets and interpret the text. Emulating interpretation ability in machines requires the machine to acquire this contextual knowledge. Tweets pertaining to political and societal issues contain domain-specific terms. Interpretation of such tweets solely on the basis of sentiment orientation of words produces incorrect sentiment tags. Polarity of terms is based on the topic of reference. Thus, an understanding of the pertinent domain terms and their associated sentiment is essential to guide the sentiment mining process. A resource of relevant domain-specific contextual terms and associated sentiments can help to achieve an enhanced sentiment mining performance. With the objective of equipping the machine with the contextual knowledge to facilitate semantic interpretation, we tap the Web resources, process them and structure them as Contextual Knowledge Structures (CKS). We then leverage the CKS to enable a semantic interpretation of tweets. We construct a CKS-based training set to train the Naïve Bayes classifier and classify the tweets. We further transform the CKS into sentiment training set (STS) and use it for detecting sentiment polarity tags for tweets. CKS provide the necessary background knowledge pertaining to issues, events, and the related domain-specific terms, thus facilitating semantic sentiment mining. All our experiments are conducted in the context of political/public policy, trending topic, and event-related tweets with an objective of obtaining a pulse of the political climate in India. Our CKS-based classifier exhibits an accuracy of 94.23% in mapping the tweets to the political topic. The distance-based CKS-Sentiment mining algorithm exhibits a consistent performance with an accuracy of 70.90%. The relevance of this contribution is: (a) a novel method which leverages the Web content to derive an optimum training set for tweet analysis, (b) a high degree of Accuracy, Precision, and Recall in tweet classification and sentiment mining with a small CKS-based training set, (c) a topic-adaptive model which can adapt to any domain or topic and exhibit improved tweet analysis performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Pareto Analysis is a statistical technique in decision-making used for the selection of a limited number of task/features that produce significant overall effect. It uses the Pareto Principle (also known as the 80/20 rule) the idea that by doing 20% of the work you can generate 80% of the benefit of doing the entire job.

  2. 2.

    Chunking is the process of grouping various words which have Part-Of-Speech (POS) tags into phrases like Noun phrases, Verb phrases etc.

  3. 3.

    On February 9, 2016, students of Jawaharlal Nehru University (JNU) held a protest on their campus against the capital punishment meted out to the 2001 Indian Parliament attack convict Afzal Guru.

  4. 4.

    On 8 November 2016, the Government of India announced the demonetization of all ₹500 (US 7.80) and ₹1,000 (US 16) banknotes of the Mahatma Gandhi Series.

  5. 5.

    The Wu and Palmer [39] similarity metric is used to measure the depth of the given concepts in the Word Net taxonomy, the least common subsumer (LCS) depth and combines these figures into a similarity score.

  6. 6.

    SentiWordNet is a lexical resource for opinion mining. SentiWordNet assigns to each synset of WordNet three sentiment scores: positivity, negativity and objectivity. It gives scores in the range [0,1] for each of the sentiments i.e. positive_score + negative_score + objective_score = 1.

References

  1. Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1–2), 1–135.

    Article  Google Scholar 

  2. Ribeiro, F. N., Araújo, M., Gonçalves, P., Gonçalves, M. A., & Benevenuto, F. (2016). Sentibench-a benchmark comparison of state-of-the-practice sentiment analysis methods. EPJ Data Science, 5(1), 1–29.

    Article  Google Scholar 

  3. Zeng, D., Chen, H., Lusch, R., & Li, S. H. (2010). Social media analytics and intelligence. IEEE Intelligent Systems, 25(6), 13–16.

    Article  Google Scholar 

  4. Li, C., Sun, A., Weng, J., & He, Q. (2015). Tweet segmentation and its application to named entity recognition. IEEE Transactions on Knowledge and Data Engineering, 27(2), 558–570.

    Article  Google Scholar 

  5. Kaufmann, M., & Kalita, J. (2010, January). Syntactic normalization of twitter messages. In International Conference on Natural Language Processing, Kharagpur, India.

    Google Scholar 

  6. Volkova, S., Bachrach, Y., Armstrong, M., & Sharma, V. (2015, January). Inferring latent user properties from texts published in social media. In AAAI (pp. 4296–4297).

    Google Scholar 

  7. Burnap, P., Rana, O. F., Avis, N., Williams, M., Housley, W., Edwards, A., et al. (2015). Detecting tension in online communities with computational Twitter analysis. Technological Forecasting and Social Change95, 96–108.

    Google Scholar 

  8. Gomadam, K., Yeh, P. Z., Verma, K., & Miller, J. A. (2012, June). Data enrichment using web APIs. In 2012 IEEE First International Conference on Services Economics (SE) (pp. 46–53). IEEE.

    Google Scholar 

  9. Jadhav, A. S., Purohit, H., Kapanipathi, P., Anantharam, P., Ranabahu, A. H., Nguyen, V., et al. (2010). Twitris 2.0: Semantically empowered system for understanding perceptions from social data.

    Google Scholar 

  10. Villanueva, D., González-Carrasco, I., López-Cuadrado, J. L., & Lado, N. (2016). SMORE: Towards a semantic modeling for knowledge representation on social media. Science of Computer Programming, 121, 16–33.

    Article  Google Scholar 

  11. Chai, X., Deshpande, O., Garera, N., Gattani, A., Lam, W., Lamba, D. S., … et al. (2013). Social media analytics: The Kosmix story. IEEE Data Engineering Bulletin, 36(3), 4–12.

    Google Scholar 

  12. Vosoughi, S., Zhou, H., & Roy, D. (2016). Enhanced twitter sentiment classification using contextual information. arXiv preprint arXiv:1605.05195.

    Google Scholar 

  13. Theodotou, A., & Stassopoulou, A. (2015, November). A system for automatic classification of twitter messages into categories. In International and Interdisciplinary Conference on Modeling and Using Context (pp. 532–537). Cham: Springer.

    Google Scholar 

  14. Derczynski, L., Maynard, D., Rizzo, G., van Erp, M., Gorrell, G., Troncy, R., et al. (2015). Analysis of named entity recognition and linking for tweets. Information Processing & Management51(2), 32–49.

    Google Scholar 

  15. Liu, S., Cheng, X., Li, F., & Li, F. (2015). TASC: Topic-adaptive sentiment classification on dynamic tweets. IEEE Transactions on Knowledge and Data Engineering, 27(6), 1696–1709.

    Article  Google Scholar 

  16. Ritter, A., Clark, S., & Etzioni, O. (2011, July). Named entity recognition in tweets: An experimental study. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (pp. 1524–1534). Association for Computational Linguistics.

    Google Scholar 

  17. McDonald, G., Deveaud, R., McCreadie, R., Macdonald, C., & Ounis, I. (2015). Tweet enrichment for effective dimensions classification in online reputation management.

    Google Scholar 

  18. He, Y., Yang, C. S., Yu, L. C., Lai, K. R., & Liu, W. (2015, December). Sentiment classification of short texts based on semantic clustering. In 2015 International Conference on  Orange Technologies (ICOT) (pp. 54–57). IEEE.

    Google Scholar 

  19. Hatzivassiloglou, V., & Wiebe, J. M. (2000, July). Effects of adjective orientation and gradability on sentence subjectivity. In Proceedings of the 18th Conference on Computational linguistics—Volume 1 (pp. 299–305). Association for Computational Linguistics.

    Google Scholar 

  20. Hu, M., & Liu, B. (2004, August). Mining and summarizing customer reviews. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 168–177). ACM.

    Google Scholar 

  21. Taboada, M., & Grieve, J. (2004, March). Analyzing appraisal automatically. In Proceedings of AAAI Spring Symposium on Exploring Attitude and Affect in Text, Stanford University, CA (AAAI Technical Re# port SS# 04# 07) (pp. 158–161). AAAI Press.

    Google Scholar 

  22. Read, J., & Carroll, J. (2009, November). Weakly supervised techniques for domain-independent sentiment classification. In Proceedings of the 1st International CIKM Workshop on Topic-Sentiment Analysis for Mass Opinion (pp. 45–52). ACM.

    Google Scholar 

  23. Pang, B., Lee, L., & Vaithyanathan, S. (2002, July). Thumbs up? Sentiment classification using machine learning techniques. In Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing (Vol. 10, pp. 79–86). Association for Computational Linguistics.

    Google Scholar 

  24. Pang, B., & Lee, L. (2004, July). A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics (p. 271). Association for Computational Linguistics.

    Google Scholar 

  25. Boiy, E., Hens, P., Deschacht, K., & Moens, M. F. (2007, June). Automatic sentiment analysis in on-line text. In ELPUB (pp. 349–360).

    Google Scholar 

  26. Zhao, J., Liu, K., & Wang, G. (2008, October). Adding redundant features for CRFs-based sentence sentiment classification. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (pp. 117–126). Association for Computational Linguistics.

    Google Scholar 

  27. Narayanan, R., Liu, B., & Choudhary, A. (2009, August). Sentiment analysis of conditional sentences. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 1 (pp. 180–189). Association for Computational Linguistics.

    Google Scholar 

  28. Hassan, A., Abbasi, A., & Zeng, D. (2013, September). Twitter sentiment analysis: A bootstrap ensemble framework. In 2013 International Conference on Social Computing (SocialCom) (pp. 357–364). IEEE.

    Google Scholar 

  29. Khan, F. H., Bashir, S., & Qamar, U. (2014). TOM: Twitter opinion mining framework using hybrid classification scheme. Decision Support Systems, 57, 245–257.

    Article  Google Scholar 

  30. Abel, F., Celik, I., Houben, G. J., & Siehndel, P. (2011). Leveraging the semantics of tweets for adaptive faceted search on twitter. The Semantic Web–ISWC 2011, 1–17.

    Google Scholar 

  31. Simeon, C., & Hilderman, R. (2015, October). Evaluating the effectiveness of hashtags as predictors of the sentiment of tweets. In International Conference on Discovery Science (pp. 251–265). Cham: Springer.

    Google Scholar 

  32. Saif, H., He, Y., Fernandez, M., & Alani, H. (2016). Contextual semantics for sentiment analysis of Twitter. Information Processing and Management, 52(1), 5–19.

    Article  Google Scholar 

  33. Ghiassi, M., Skinner, J., & Zimbra, D. (2013). Twitter brand sentiment analysis: A hybrid system using n-gram analysis and dynamic artificial neural network. Expert Systems with Applications, 40(16), 6266–6282.

    Article  Google Scholar 

  34. Saif, H., He, Y., & Alani, H. (2012). Semantic sentiment analysis of twitter. The Semantic Web–ISWC 2012, 508–524.

    Google Scholar 

  35. Bahrainian, S. A., & Dengel, A. (2013, December). Sentiment analysis and summarization of twitter data. In 16th International Conference on  Computational Science and Engineering (CSE), 2013 IEEE (pp. 227–234). IEEE.

    Google Scholar 

  36. Kontopoulos, E., Berberidis, C., Dergiades, T., & Bassiliades, N. (2013). Ontology-based sentiment analysis of twitter posts. Expert Systems with Applications, 40(10), 4065–4074.

    Article  Google Scholar 

  37. Javed, N., & Muralidhara, B. L. (2015). Automating corpora generation with semantic cleaning and tagging of tweets for multi-dimensional social media analytics. International Journal of Computer Applications, 127(12), 11–16.

    Article  Google Scholar 

  38. Han, J., Pei, J., & Kamber, M. (2011). Data mining: Concepts and techniques. Amsterdam: Elsevier.

    Google Scholar 

  39. Wu, Z., & Palmer, M. (1994). Verbs semantics and lexical selection. In Proceedings of the 32nd annual meeting on Association for Computational Linguistics (pp. 133–138). Association for Computational Linguistics, (1994, June).

    Google Scholar 

  40. Liu, H. (2004). MontyLingua: An end-to-end natural language processor with common sense.

    Google Scholar 

  41. Pennebaker, J. W., Booth, R. J., Boyd, R. L., & Francis, M. E. (2015). Linguistic inquiry and word count: LIWC2015. Austin, TX: Pennebaker Conglomerates.

    Google Scholar 

  42. Hutto, C. J., & Gilbert, E. (2014, May). Vader: A parsimonious rule-based model for sentiment analysis of social media text. In Eighth International AAAI Conference on Weblogs and Social Media.

    Google Scholar 

  43. Nielsen, F. Å. (2011). A new ANEW: Evaluation of a word list for sentiment analysis in microblogs. arXiv preprint arXiv:1103.2903.

    Google Scholar 

  44. Go, A., Bhayani, R., & Huang, L. (2009). Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford, 1(2009), 12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazura Javed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Javed, N., B. L., M. (2018). Semantic Interpretation of Tweets: A Contextual Knowledge-Based Approach for Tweet Analysis. In: Margret Anouncia, S., Wiil, U. (eds) Knowledge Computing and Its Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-6680-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6680-1_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6679-5

  • Online ISBN: 978-981-10-6680-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics