Skip to main content

Partial Fractional Derivative (PFD) based Texture Analysis Model for Medical Image Segmentation

  • Chapter
  • First Online:
Knowledge Computing and Its Applications

Abstract

The early detection of diseases such as brain tumor and lung cancer is achieved through segmenting these images. As these images are typified to contain obscure structures, a precise segmentation method needs to be evolved. The principal idea is to devise an unsupervised segmentation technique for medical images involving a partial fractional derivative (PFD)-dependent texture extraction model and an unsupervised clustering algorithm. Basically, image segmentation process allocates different tags to diverse image regions. In this chapter, the process is considered to be texture-based segmentation by representing every tag with an exclusive texture label. The textural features are extorted using PFD-based model. The ISODATA clustering is suggested for segmentation through pixel-based classification. This process is experimented on different test cases such as images of lung cancer detection and brain tumor detection and is able to produce higher accuracy than existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang, T., & Kuo, C. C. (1993). Texture analysis and classification with tree-structured wavelet transform. IEEE Transactions on Image Processing, 2(4), 429–441.

    Article  Google Scholar 

  2. Chen, Y. T. (2017). Medical image segmentation using independent component analysis-based kernelized fuzzy-means clustering. Mathematical Problems in Engineering, 2017.

    Google Scholar 

  3. Chuang, E. R., & Sher, D. (1993). \({\chi^{2}}\) test for feature detection. Pattern Recognition, 26(11), 1673–1681.

    Google Scholar 

  4. Cimpoi, M., Maji, S., Kokkinos, I., & Vedaldi, A. (2015). Deep filter banks for texture recognition, description, and segmentation. International Journal of Computer Vision, 1–30.

    Google Scholar 

  5. Costa, E., Lorena, A., Carvalho, A. C. P. L. F., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. In Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop (pp. 1–6). Vancouver, Canada: AAAI.

    Google Scholar 

  6. Danesh, H., Kafieh, R., Rabbani, H., & Hajizadeh, F. (2014). Segmentation of choroidal boundary in enhanced depth imaging OCTs using a multiresolution texture based modeling in graph cuts. Computational and Mathematical Methods in Medicine, 2014. Article ID. 479268.

    Google Scholar 

  7. Hamouchene, I., & Aouat, S. (2016). A new approach for texture segmentation based on NBP method. Multimedia Tools and Applications, 1–20.

    Google Scholar 

  8. Haralick, R. M., & Shanmugam, K. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 6, 610–621.

    Article  Google Scholar 

  9. He, D. C., & Wang, L. (1990). Texture unit, texture spectrum, and texture analysis. IEEE Transactions on Geoscience and Remote Sensing, 28(4), 509–512.

    Article  Google Scholar 

  10. Hemalatha, S., & Anouncia, S. M. (2016). A computational model for texture analysis in images with fractional differential filter for texture detection. International Journal of Ambient Computing and Intelligence (IJACI), 7(2), 93–113.

    Article  Google Scholar 

  11. Hemalatha, S., & Anouncia, S. M. (2017). Unsupervised segmentation of remote sensing images using FD based texture analysis model and ISODATA. International Journal of Ambient Computing and Intelligence (IJACI), 8(3), 58–75.

    Article  Google Scholar 

  12. Iyer, M. (2014). Defect detection in pattern texture analysis. In Proceedings of the 2014 International Conference on Communications and Signal Processing (ICCSP) (pp. 172–175). Melmaruvathur, TN, India: IEEE.

    Google Scholar 

  13. Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM Computing Surveys, 31(3), 264–323.

    Article  Google Scholar 

  14. Karthikeyan, T., & Krishnamoorthy, R. (2012). Autoregressive model based on Bayesian approach for texture representation. ICTACT Journal on Image and Video Processing, 3(1), 485–491.

    Article  Google Scholar 

  15. Korchiyne, R., Sbihi, A., Farssi, S. M., Touahni, R., & Alaoui, M. T. (2012, May). Medical image texture segmentation using multifractal analysis. In 2012 International Conference on Multimedia Computing and Systems (ICMCS) (pp. 422–425). IEEE.

    Google Scholar 

  16. Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823–870.

    Article  Google Scholar 

  17. Memarsadeghi, N., Mount, D. M., Netanyahu, N. S., & Le Moigne, J. (2007). A fast implementation of the ISODATA clustering algorithm. International Journal of Computational Geometry & Applications, 17(01), 71–103.

    Article  MathSciNet  MATH  Google Scholar 

  18. Nabizadeh, N., & Kubat, M. (2015). Brain tumors detection and segmentation in MR images: Gabor wavelet vs. statistical features. Computers & Electrical Engineering, 45, 286–301.

    Article  Google Scholar 

  19. Neel, M. C., & Joelson, M. (2011). Generalizing Grünwald-Letnikov’s formulas for fractional derivatives. In Proceedings of the 6th EUROMECH Nonlinear Dynamics Conference. Saint Petersburg, RUSSIA: IPACS Electronic Library.

    Google Scholar 

  20. Ojala, T., Valkealahti, K., Oja, E., & Pietikäinen, M. (2001). Texture discrimination with multidimensional distributions of signed gray-level differences. Pattern Recognition, 34(3), 727–739.

    Article  MATH  Google Scholar 

  21. Priestley, M. B., & Chao, M. T. (1972). Non-parametric function fitting. Journal of the Royal Statistical Society. Series B (Methodological), 385–392.

    Google Scholar 

  22. Pu, Y. F. (2010). Fractional differential mask: A fractional differential-based approach for multiscale texture enhancement. IEEE Transactions on Image Processing, 19(2), 491–511.

    Article  MathSciNet  MATH  Google Scholar 

  23. Roy, M., Ghosh, S., & Ghosh, A. (2014). A novel approach for change detection of remotely sensed images using semi-supervised multiple classifier system. Information Sciences, 269, 35–47.

    Article  Google Scholar 

  24. Sezgin, M. (2004). Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 13(1), 146–168.

    Article  Google Scholar 

  25. Sharma, N., Ray, A. K., Sharma, S., Shukla, K. K., Pradhan, S., & Aggarwal, L. M. (2008). Segmentation and classification of medical images using texture-primitive features: Application of BAM-type artificial neural network. Journal of Medical Physics, 33(3), 119.

    Article  Google Scholar 

  26. Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing and Management, 45(4), 427–437.

    Article  Google Scholar 

  27. Targhi, A. T., Hayman, E., & Olof Eklundh, J. (2006, May). Real-time texture detection using the LU-transform. In Proceeding of the Workshop on Computation Intensive Methods for Computer Vision in Conjunction with ECCV (Vol. 713). Graz, Austria: Springer-Verlag Berlin Heidelberg.

    Google Scholar 

  28. The National Library of Medicine. (2010). MedPix, Online. Accessed December 15, 2016. Also available as https://medpix.nlm.nih.gov/home.

  29. Tirandaz, Z., & Akbarizadeh, G. (2016). A two-phase algorithm based on kurtosis curvelet energy and unsupervised spectral regression for segmentation of SAR images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(3), 1244–1264.

    Article  Google Scholar 

  30. Tsai, F., Chou, M. J., & Wang, H. H. (2005). Texture analysis of high resolution satellite imagery for mapping invasive plants. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (Vol. 4, pp. 3024–3027). Seoul: IEEE.

    Google Scholar 

  31. Vese, L. A., & Osher, S. J. (2003). Modeling textures with total variation minimization and oscillating patterns in image processing. Journal of Scientific Computing, 19(1–3), 553–572.

    Article  MathSciNet  MATH  Google Scholar 

  32. Xie, X. (2008). A review of recent advances in surface defect detection using texture analysis techniques. ELCVIA Electronic Letters on Computer Vision and Image Analysis, 7(3).

    Google Scholar 

  33. Yoshimura, M. (1997, July). Edge detection of texture image using genetic algorithms. In I. SICE’97 (Ed.), Proceedings of the 36th SICE Annual Conference (pp. 1261–1266). Tokushima, Japan: IEEE.

    Google Scholar 

  34. Yu, H., Yang, W., Xia, G. S., & Liu, G. (2016). A color-texture-structure descriptor for high-resolution satellite image classification. Remote Sensing, 8(3), 259.

    Article  Google Scholar 

  35. Yuan, J., Wang, D., & Cheriyadat, A. M. (2015). Factorization-based texture segmentation. IEEE Transactions on Image Processing, 24(11), 3488–3497.

    Article  MathSciNet  Google Scholar 

  36. Yue, J., Li, Z., Liu, L., & Fu, Z. (2011). Content-based image retrieval using color and texture fused features. Mathematical and Computer Modelling, 54(3), 1121–1127.

    Article  Google Scholar 

  37. Zhang, D. W. (2000). Content-based image retrieval using Gabor texture features. In Proceeding of the IEEE Pacific-Rim Conference on Multimedia (pp. 392–395). Shanghai, China: IEEE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hemalatha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hemalatha, S., Margret Anouncia, S. (2018). Partial Fractional Derivative (PFD) based Texture Analysis Model for Medical Image Segmentation. In: Margret Anouncia, S., Wiil, U. (eds) Knowledge Computing and Its Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-6680-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6680-1_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6679-5

  • Online ISBN: 978-981-10-6680-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics