Skip to main content

Hybrid Applications of Solution Scattering to Aid Structural Biology

  • Chapter
  • First Online:
Biological Small Angle Scattering: Techniques, Strategies and Tips

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1009))

Abstract

Biomolecular applications of solution X-ray and neutron scattering (SAXS and SANS, respectively) started in late 1960s – early 1970s but were relatively limited in their ability to provide a detailed structural picture and lagged behind what became the two primary methods of experimental structural biology − X-ray crystallography and NMR. However, improvements in both data analysis and instrumentation led to an explosive growth in the number of studies that used small-angle scattering (SAS) for investigation of macromolecular structure, often in combination with other biophysical techniques. Such hybrid applications are nowadays quickly becoming a norm whenever scattering data are used for two reasons. First, it is generally accepted that SAS data on their own cannot lead to a uniquely defined high-resolution structural model, creating a need for supplementing them with information from complementary techniques. Second, solution scattering data are frequently applied in situations when a method such NMR or X-ray crystallography cannot provide a satisfactory structural picture, which makes these additional restraints highly desirable. Maturation of the hybrid bio-SAS approaches brings to light new questions including completeness of the conformational space sampling, model validation, and data compatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bax A (2003) Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Sci 12:1–16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berlin K, Gumerov NA, Fushman D, Duraiswami R (2014) Hierarchical O(N) computation of small-angle scattering profiles and their associated derivatives. J Appl Crystallogr 47:755–761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bernado P, Mylonas E, Petoukhov MV, Blackledge M, Svergun DI (2007) Structural characterization of flexible proteins using small-angle scattering. J Amer Chem Soc 129:5656–5664

    Article  CAS  Google Scholar 

  • Brunger AT, Adams PD, Clore GM, Delano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system (CNS), a new software suite for macromolecular structure determination. Acta Crystallogr D54:905–921

    CAS  Google Scholar 

  • Brunner-Popela J, Glatter O (1997) Small-angle scattering of interacting particles. I. Basic principles of a global evaluation method. J Appl Crystallogr 30:431–442

    Article  CAS  Google Scholar 

  • Chacon P, Moran F, Diaz JF, Pantos E, Andreu JM (1998) Low-resolution structures of proteins in solution retrieved from X-ray scattering with a genetic algorithm. Biophys J 74:2760–2775

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen PC, Hub JS (2014) Validating solution ensembles from molecular dynamics simulation by wide-angle X-ray scattering data. Biophys J 107:435–447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Comoletti D, Grishaev A, Whitten A, Tsigelny I, Taylor P, Trewhella J (2007) Synaptic arrangement of the neuroligin/beta-neurexin complex revealed by X-ray and neutron scattering. Structure 15:693–705

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Curtis JE, Raghunandan S, Nanda H, Krueger S (2012) SASSIE: a program to study disordered biological molecules and macromolecular ensembles using experimental scattering restraints. Comput Phys Commun 183:382–389

    Article  CAS  Google Scholar 

  • Durchschlag H (1975) X-ray small-angle studies of pyruvate-dehydrogenase core complex from Escherichia-coli K-12.2. Biophys Struct Mechanism 1:153–188

    Article  CAS  Google Scholar 

  • Fedorov BA, Denesyuk AI (1978) Sperm whale myoglobin structure in solution differs from its structure in crystal by a shift of hairpin GH. FEBS Lett 88:114–117

    Article  PubMed  CAS  Google Scholar 

  • Grishaev A (2012) Sample preparation, data collection and preliminary data analysis in biomolecular solution X-ray scattering. Curr Protocols Protein Sci 17(14):1–18

    Google Scholar 

  • Grishaev A, Wu J, Trewhella Bax A (2005) Refinement of multi-domain protein structures by combination of solution small angle X-ray scattering and NMR data. J Amer Chem Soc 127:16621–16628

    Article  CAS  Google Scholar 

  • Grishaev A, Ying J, Canny M, Pardi A, Bax A (2008) Solution structure of tRNA-Val from joint refinement against dual alignment residual dipolar couplings and SAXS data. J Biomol NMR 42:99–109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grishaev A, Guo L, Irving T, Bax A (2010) Improved fitting of solution X-ray scattering data to macromolecular structures and structural ensembles by explicit water modeling. J Amer Chem Soc 132:15484–15486

    Article  CAS  Google Scholar 

  • Grishaev A, Anthis N, Clore GM (2012) Contrast-matched small angle X-ray scattering from a heavy atom-labeled protein in structure determination: application to a lead-substituted calmodulin-peptide complex. J Amer Chem Soc 134:14686–14689

    Article  CAS  Google Scholar 

  • Heidorn DB, Trewhella J (1988) Comparison of the crystal and solution structures of calmodulin and troponin C. Biochemistry 27:909–905

    Article  PubMed  CAS  Google Scholar 

  • Hickman A, Ewis H, Li X, Knapp J, Laver T, Doss AL, Tolun G, Steven A, Grishaev A, Bax A, Atkinson P, Craig N, Dyda F (2014) Structural basis of hAT transposon end recognition by Hermes, an octameric transposase from Musca domestica. Cell 158:353–367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jacques DA, Trewhella J (2010) Small-angle scattering for structural biology – expanding the frontier while avoiding the pitfalls. Protein Sci 19:642–657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johansen D, Trewhella J, Goldenberg DP (2011) Fractal dimensions of an intrinsically disordered protein: small-angle X-ray scattering and computational study of the bacteriophage lambda N protein. Protein Sci 20:1955–1970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karaka E, Bonvin AMJJ (2013) On usefulness of ion-mobility mass spectrometry and SAXS data in scoring docking decoys. Acta Cryst D69:683–694

    Google Scholar 

  • Koefinger J, Hummer G (2013) Atomic-resolution structural information from scattering experiments on macromolecules in solution. Phys Rev E 87:052712

    Article  CAS  Google Scholar 

  • Lipfert J, Columbus L, Chu VB, Doniach S (2007) Analysis of small-angle X-ray scattering data of protein–detergent complexes by singular value decomposition. J Appl Crystallogr 40:s235–s239

    Article  CAS  Google Scholar 

  • Losonczi JA, Andrec M, Fischer MWF, Prestegard JH (1999) Order matrix analysis of residual dipolar couplings using singular value decomposition. J Magn Reson 138:334–342

    Article  PubMed  CAS  Google Scholar 

  • Lu K, Jacob J, Thiyagarajan P, Conticello VP, Lynn DG (2003) Exploiting amyloid fibril lamination for nanotube self-assembly. J Amer Chem Soc 125:6391–6393

    Article  CAS  Google Scholar 

  • Marsh JA, Baker JMR, Tollinger M, Forman-Kay JD (2008) Calculation of residual dipolar couplings from disordered state ensembles using local alignment. J Amer Chem Soc 130:7804–7805

    Article  CAS  Google Scholar 

  • Mattinen ML, Paakkonen K, Ikonen T, Craven J, Drakenberg T, Serimaa R, Waltho J, Annila A (2002) Quaternary structure built from subunits combining NMR and small-angle X-ray scattering data. Biophys J 83:1177–1183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mittag T, Marsh JA, Grishaev A, Orlicky S, Lin H, Sicheri F, Kay LE, Tyers M, Forman-Kay JD (2010) Structure/function implications in an intrinsically disordered protein and its dynamic complex. Structure 18:494–506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ozenne V, Bauer F, Salmon L, Huang JR, Jensen MR, Segard S, Celine BP, Charavay C, Blackledge M (2012) Flexible-meccano: a tool for the generation of explicit ensemble descriptions of intrinsically disordered proteins and their associated experimental observables. Bioinformatics 28:1463–1470

    Article  PubMed  CAS  Google Scholar 

  • Park S, Bardhan JP, Roux B, Makowski L (2009) Simulated X-ray scattering of protein solution using explicit solvent models. J Chem Phys 130:134114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parsons L, Grishaev A, Bax A (2008) The periplasmic domain of TolR forms a large hydrophobic groove and may contact TolQ through its C-terminus: NMR solution structure and its comparison to SAXS data. Biochemistry 47:3131–3142

    Article  PubMed  CAS  Google Scholar 

  • Petoukhov MV, Svergun DI (2005) Global rigid body modeling of macromolecular complexes against small-angle scattering data. Biophys J 89:1237–1250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pons C, D’Abramo M, Svergun DI, Orozco M, Bernado P, Fernandez-Recio J (2010) Structural characterization of protein-protein complexes by integrating computational docking with small-angle scattering data. J Mol Biol 403:217–230

    Article  PubMed  CAS  Google Scholar 

  • Putnam CD, Hammel M, Hura GM, Tainer JA (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 40:191–285

    Article  PubMed  CAS  Google Scholar 

  • Rossi P, Shi L, Liu GH, Barbieri CM, Lee HW, Grant TD, Luft JR, Xiao R, Actorn TB, Snell EH, Montelione GT, Baker D, Lange OF, Sgourakis NG (2015) A hybrid NMR/SAXS-based approach for discriminating oligomeric protein interfaces using Rosetta. Protein Struct Func Bioinform 83:309–317

    Article  CAS  Google Scholar 

  • Russel D, Lasker K, Webb B, Velazques-Muriel J, Tjioe E, Schneidman-Duhovny D, Peterson B, Sali A (2012) Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies. PLoS Biol 10:e1001244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schneidman-Duhovny D, Hammel M, Sali A (2010) FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucl Acids Res 38:W540–W544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schneidman-Duhovny D, Hammel M, Sali A (2011) Macromolecular docking restrained by a small-angle X-ray scattering profile. J Struct Biol 173:461–471

    Article  PubMed  CAS  Google Scholar 

  • Schwieters CD, Kuszewski J, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:66–74

    Article  Google Scholar 

  • Schwieters C, Suh JY, Grishaev A, Takayama Y, Clore GM (2010) Solution conformation of the 128 kDa enzyme I dimer from Escherichia Coli and its 146kDa complex with HPr using residual dipolar couplings and small angle x-ray scattering. J Amer Chem Soc 132:13026–13045

    Article  CAS  Google Scholar 

  • Sunnerhagen M, Olah GA, Stenflo J, Forsen S, Drakenberg T, Trewhella J (1996) The relative orientation of Gla and EGF domains in coagulation factor X is altered by Ca2+ binding to the first EGF domain. A combined NMR small angle X-ray scattering study. Biochemistry 35:11547–11559

    Article  PubMed  CAS  Google Scholar 

  • Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr 25:495–503

    Article  CAS  Google Scholar 

  • Svergun DI (1999) Restoring low resolution structure of biological macromolecules in solution using simulated annealing. Biophys J 76:2879–2886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Svergun DI, Koch MHJ (2003) Small-angle studies of biological macromolecules in solution. Rep Progr Phys 66:1735–1782

    Article  CAS  Google Scholar 

  • Svergun DI, Barberato C, Koch MHJ (1995) CRYSOL – a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr 28:768–773

    Article  CAS  Google Scholar 

  • Svergun DI, Richard S, Koch MHJ, Sayers Z, Kuprin S, Zaccai G (1998) Protein hydration in solution: experimental observation by x-ray and neutron scattering. Proc Natl Acad Sci U S A 95:2267–2272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vendittii V, Schwieters CD, Grishaev A, Clore GM (2015) Dynamic equilibrium between closed and partially closed states of the bacterial enzyme I unveiled by solution NMR and X-ray scattering. Proc Natl Acad Sci U S A 37:11565–11570

    Article  CAS  Google Scholar 

  • Whitten AE, Trewhella J (2009) Small-angle scattering and neutron contrast variation for studying bio-molecular complexes. Micro and nano technologies in bioanalysis: methods and protocols book series. Methods Mol Biol 544:307–323

    Article  PubMed  CAS  Google Scholar 

  • Zuo X, Tiede DM (2004) Resolving conflicting crystallographic and NMR models for DNA with solution X-ray diffraction. J Amer Chem Soc 127:16–17

    Article  CAS  Google Scholar 

  • Zuo X, Wang J, Foster TR, Schwieters CD, Tiede DM, Butcher SE, Wang YX (2008) Global molecular structure and interfaces: refining an RNA:RNA complex structure using solution X-ray scattering data. J Amer Chem Soc 130:3292–3293

    Article  CAS  Google Scholar 

  • Zweckstetter M, Hummer G, Bax A (2004) Prediction of charge-induced molecular alignment of biomolecules dissolved in dilute liquid-crystalline phases. Biophys J 86:3444–3460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Grishaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grishaev, A.V. (2017). Hybrid Applications of Solution Scattering to Aid Structural Biology. In: Chaudhuri, B., Muñoz, I., Qian, S., Urban, V. (eds) Biological Small Angle Scattering: Techniques, Strategies and Tips. Advances in Experimental Medicine and Biology, vol 1009. Springer, Singapore. https://doi.org/10.1007/978-981-10-6038-0_13

Download citation

Publish with us

Policies and ethics