Preeclampsia pp 141-155 | Cite as

Animal Models in Preeclampsia

  • Keiichi KumasawaEmail author
Part of the Comprehensive Gynecology and Obstetrics book series (CGO)


Preeclampsia is a pregnancy-specific disorder characterized by hypertension and excessive proteinuria after 20 weeks’ gestation. It is an important cause of maternal and fetal morbidity and mortality worldwide. The disease is almost exclusive to humans and termination of the pregnancy continues to be the only effective and fundamental treatment. The disorder is considered to be multifactorial, although most cases of preeclampsia are characterized by abnormal maternal uterine vascular remodeling by fetally derived placental trophoblast cells. In spite of many previous researches, mechanism of preeclampsia is not clearly and sufficiently elucidated. Recently “two-stage theory” is widely adopted as a pathology of preeclampsia. The first stage involves abnormal placentation characterized by poor trophoblast invasion, incomplete vascular remodeling of spiral arteries, and placental hypoxia. The second stage is manifested as the maternal syndrome of hypertension and proteinuria with systemic endothelial dysfunction. Each step is associated with various factors, and numerous animal models have been used to study those various aspects of preeclampsia. For first stage, many models were reported from the points of immune responses, abnormal trophoblast invasion, placental oxygen dysregulation, and inappropriate maternal vascular damage. For second stage, antiangiogenesis factors, such as soluble fms-like tyrosine kinase 1 (sFLT1) and soluble endoglin (sENG), were adopted for exploit of model mice. However, preeclampsia is almost exclusive to humans mainly because of morphology of placenta; the same pathology in human preeclampsia is difficult to mimic in model animals. Therefore, various types of animal models are required. Investigations into the pathophysiology and treatment of preeclampsia will need to continue, albeit at a frustratingly slow pace. There remains a pressing need for novel approaches for pathology and therapy; new models will be needed for this complex and devastating disorder.


Model animal Immune response Trophoblast invasion Anti-angiogenesis 


  1. 1.
    Stout C, Lemmon WB. Glomerular capillary endothelial swelling in a pregnant chimpanzee. Am J Obstet Gynecol. 1969;105:212–5.CrossRefPubMedGoogle Scholar
  2. 2.
    Van Wagenen G. Vital statistics from a breeding colony. Reproduction and pregnancy outcome in Macaca mulatta. J Med Primatol. 1972;1:2–28.PubMedGoogle Scholar
  3. 3.
    Nakashima A, Yamanaka-Tatematsu M, Fujita N, Koizumi K, Shima T, Yoshida T, Nikaido T, Okamoto A, Yoshimori T, Saito S. Impaired autophagy by soluble endoglin, under physiological hypoxia in early pregnant period, is involved in poor placentation in preeclampsia. Autophagy. 2013;9:303–16.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    McCarthy FP, Drewlo S, Kingdom J, Johns EJ, Walsh SK, Kenny LC. Peroxisome proliferator-activated receptor-gamma as a potential therapeutic target in the treatment of preeclampsia. Hypertension. 2011;58:280–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Gille JH, Moore DG, Sedgwick CJ. Placental infarction: a sign of pre-eclampsia in a patas monkey (Erythrocebus patas). Lab Anim Sci. 1977;27:119–21.PubMedGoogle Scholar
  6. 6.
    Palmer AE, London WT, Sly DL, Rice JM. Spontaneous preeclamptic toxemia of pregnancy in the patas monkey (Erythrocebus patas). Lab Anim Sci. 1979;29:102–6.PubMedGoogle Scholar
  7. 7.
    Mess A, Zaki N, Kadyrov M, Korr H, Kaufmann P. Caviomorph placentation as a model for trophoblast invasion. Placenta. 2007;28:1234–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Malassine A, Frendo JL, Evain-Brion D. A comparison of placental development and endocrine functions between the human and mouse model. Hum Reprod Update. 2003;9:531–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Georgiades P, Ferguson-Smith AC, Burton GJ. Comparative developmental anatomy of the murine and human definitive placentae. Placenta. 2002;23:3–19.CrossRefPubMedGoogle Scholar
  10. 10.
    Duckitt K, Harrington D. Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BMJ. 2005;330:565.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Trogstad L, Magnus P, Stoltenberg C. Pre-eclampsia: risk factors and causal models. Best Pract Res Clin Obstet Gynaecol. 2011;25:329–42.CrossRefPubMedGoogle Scholar
  12. 12.
    Basso O, Christensen K, Olsen J. Higher risk of pre-eclampsia after change of partner. An effect of longer interpregnancy intervals? Epidemiology. 2001;12:624–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Maitra U, Davis S, Reilly CM, Li L. Differential regulation of Foxp3 and IL-17 expression in CD4 T helper cells by IRAK-1. J Immunol. 2009;182(9):5763.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Robertson SA, Guerin LR, Bromfield JJ, Branson KM, Ahlstrom AC, Care AS. Seminal fluid drives expansion of the CD4+CD25+ T regulatory cell pool and induces tolerance to paternal alloantigens in mice. Biol Reprod. 2009;80:1036–45.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kupferminc MJ, Peaceman AM, Wigton TR, Rehnberg KA, Socol ML. Tumor necrosis factor-alpha is elevated in plasma and amniotic fluid of patients with severe preeclampsia. Am J Obstet Gynecol. 1994;170:1752–7; discussion 1757–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Vince GS, Starkey PM, Austgulen R, Kwiatkowski D, Redman CW. Interleukin-6, tumour necrosis factor and soluble tumour necrosis factor receptors in women with pre-eclampsia. Br J Obstet Gynaecol. 1995;102:20–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Makris A, Xu B, Yu B, Thornton C, Hennessy A. Placental deficiency of interleukin-10 (IL-10) in preeclampsia and its relationship to an IL10 promoter polymorphism. Placenta. 2006;27:445–51.CrossRefPubMedGoogle Scholar
  18. 18.
    Faas MM, Schuiling GA, Baller JF, Visscher CA, Bakker WW. A new animal model for human preeclampsia: ultra-low-dose endotoxin infusion in pregnant rats. Am J Obstet Gynecol. 1994;171:158–64.CrossRefPubMedGoogle Scholar
  19. 19.
    Saito S, Umekage H, Sakamoto Y, Sakai M, Tanebe K, Sasaki Y, Morikawa H. Increased T-helper-1-type immunity and decreased T-helper-2-type immunity in patients with preeclampsia. Am J Reprod Immunol. 1999;41:297–306.CrossRefPubMedGoogle Scholar
  20. 20.
    Hayakawa S, Fujikawa T, Fukuoka H, Chisima F, Karasaki-Suzuki M, Ohkoshi E, Ohi H, Kiyoshi Fujii T, Tochigi M, Satoh K, Shimizu T, Nishinarita S, Nemoto N, Sakurai I. Murine fetal resorption and experimental pre-eclampsia are induced by both excessive Th1 and Th2 activation. J Reprod Immunol. 2000;47:121–38.CrossRefPubMedGoogle Scholar
  21. 21.
    Benyo DF, Smarason A, Redman CW, Sims C, Conrad KP. Expression of inflammatory cytokines in placentas from women with preeclampsia. J Clin Endocrinol Metab. 2001;86:2505–12.PubMedGoogle Scholar
  22. 22.
    LaMarca BB, Bennett WA, Alexander BT, Cockrell K, Granger JP. Hypertension produced by reductions in uterine perfusion in the pregnant rat: role of tumor necrosis factor-alpha. Hypertension. 2005;46:1022–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Sunderland NS, Thomson SE, Heffernan SJ, Lim S, Thompson J, Ogle R, McKenzie P, Kirwan PJ, Makris A, Hennessy A. Tumor necrosis factor alpha induces a model of preeclampsia in pregnant baboons (Papio hamadryas). Cytokine. 2011;56:192–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Orshal JM, Khalil RA. Interleukin-6 impairs endothelium-dependent NO-cGMP-mediated relaxation and enhances contraction in systemic vessels of pregnant rats. Am J Physiol Regul Integr Comp Physiol. 2004;286:R1013–23.CrossRefPubMedGoogle Scholar
  25. 25.
    Lai Z, Kalkunte S, Sharma S. A critical role of interleukin-10 in modulating hypoxia-induced preeclampsia-like disease in mice. Hypertension. 2011;57:505–14.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Orange S, Rasko JE, Thompson JF, Vaughan J, Olive E, Pedler M, Horvath JS, Hennessy A. Interleukin-10 regulates arterial pressure in early primate pregnancy. Cytokine. 2005;29:176–85.CrossRefPubMedGoogle Scholar
  27. 27.
    Redman CW, Sargent IL. Immunology of pre-eclampsia. Am J Reprod Immunol. 2010;63:534–43.CrossRefPubMedGoogle Scholar
  28. 28.
    Abou-Nassar K, Carrier M, Ramsay T, Rodger MA. The association between antiphospholipid antibodies and placenta mediated complications: a systematic review and meta-analysis. Thromb Res. 2011;128:77–85.CrossRefPubMedGoogle Scholar
  29. 29.
    Zhou CC, Zhang Y, Irani RA, Zhang H, Mi T, Popek EJ, Hicks MJ, Ramin SM, Kellems RE, Xia Y. Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice. Nat Med. 2008;14:855–62.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wenzel K, Rajakumar A, Haase H, Geusens N, Hubner N, Schulz H, Brewer J, Roberts L, Hubel CA, Herse F, Hering L, Qadri F, Lindschau C, Wallukat G, Pijnenborg R, Heidecke H, Riemekasten G, Luft FC, Muller DN, Lamarca B, Dechend R. Angiotensin II type 1 receptor antibodies and increased angiotensin II sensitivity in pregnant rats. Hypertension. 2011;58:77–84.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Verlohren S, Geusens N, Morton J, Verhaegen I, Hering L, Herse F, Dudenhausen JW, Muller DN, Luft FC, Cartwright JE, Davidge ST, Pijnenborg R, Dechend R. Inhibition of trophoblast-induced spiral artery remodeling reduces placental perfusion in rat pregnancy. Hypertension. 2010;56:304–10.CrossRefPubMedGoogle Scholar
  32. 32.
    Doridot L, Passet B, Mehats C, Rigourd V, Barbaux S, Ducat A, Mondon F, Vilotte M, Castille J, Breuiller-Fouche M, Daniel N, le Provost F, Bauchet AL, Baudrie V, Hertig A, Buffat C, Simeoni U, Germain G, Vilotte JL, Vaiman D. Preeclampsia-like symptoms induced in mice by fetoplacental expression of STOX1 are reversed by aspirin treatment. Hypertension. 2013;61:662–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Ogden E, Hildebrand G, Page EW. Rise in blood pressure during ischaemia of the gravid uterus. Prac Soc Exper Biol Med. 1940;43:49e51.Google Scholar
  34. 34.
    Hodari AA. Chronic uterine ischemia and reversible experimental “toxemia of pregnancy”. Am J Obstet Gynecol. 1967;97:597–607.CrossRefPubMedGoogle Scholar
  35. 35.
    Abitbol MM, Pirani CL, Ober WB, Driscoll SG, Cohen MW. Production of experimental toxemia in the pregnant dog. Obstet Gynecol. 1976;48:537–48.PubMedGoogle Scholar
  36. 36.
    Losonczy G, Brown G, Venuto RC. Increased peripheral resistance during reduced uterine perfusion pressure hypertension in pregnant rabbits. Am J Med Sci. 1992;303:233–40.CrossRefPubMedGoogle Scholar
  37. 37.
    Abitbol MM. A simplified technique to produce toxemia in the pregnant dog. Am J Obstet Gynecol. 1981;139:526–34.CrossRefPubMedGoogle Scholar
  38. 38.
    Woods LL, Brooks VL. Role of the renin-angiotensin system in hypertension during reduced uteroplacental perfusion pressure. Am J Phys. 1989;257:R204–9.Google Scholar
  39. 39.
    Combs CA, Katz MA, Kitzmiller JL, Brescia RJ. Experimental preeclampsia produced by chronic constriction of the lower aorta: validation with longitudinal blood pressure measurements in conscious rhesus monkeys. Am J Obstet Gynecol. 1993;169:215–23.CrossRefPubMedGoogle Scholar
  40. 40.
    Cavanagh D, Rao PS, Tsai CC, O’Connor TC. Experimental toxemia in the pregnant primate. Am J Obstet Gynecol. 1977;128:75–85.CrossRefPubMedGoogle Scholar
  41. 41.
    Clark KE, Durnwald M, Austin JE. A model for studying chronic reduction in uterine blood flow in pregnant sheep. Am J Phys. 1982;242:H297–301.Google Scholar
  42. 42.
    Makris A, Thornton C, Thompson J, Thomson S, Martin R, Ogle R, Waugh R, McKenzie P, Kirwan P, Hennessy A. Uteroplacental ischemia results in proteinuric hypertension and elevated sFLT-1. Kidney Int. 2007;71:977–84.CrossRefPubMedGoogle Scholar
  43. 43.
    Gadonski G, LaMarca BB, Sullivan E, Bennett W, Chandler D, Granger JP. Hypertension produced by reductions in uterine perfusion in the pregnant rat: role of interleukin 6. Hypertension. 2006;48:711–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Granger JP, LaMarca BB, Cockrell K, Sedeek M, Balzi C, Chandler D, Bennett W. Reduced uterine perfusion pressure (RUPP) model for studying cardiovascular-renal dysfunction in response to placental ischemia. Methods Mol Med. 2006;122:383–92.PubMedGoogle Scholar
  45. 45.
    Balta O, Boztosun A, Deveci K, Gulturk S, Ekici F, Kaya A, Cetin A, Cetin M. Reduced uterine perfusion pressure model is not successful to mimic severe preeclampsia. Placenta. 2011;32:675–80.CrossRefPubMedGoogle Scholar
  46. 46.
    George EM, Cockrell K, Aranay M, Csongradi E, Stec DE, Granger JP. Induction of heme oxygenase 1 attenuates placental ischemia-induced hypertension. Hypertension. 2011;57:941–8.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    McCarthy FP, Kingdom JC, Kenny LC, Walsh SK. Animal models of preeclampsia; uses and limitations. Placenta. 2011;32:413–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Tal R, Shaish A, Barshack I, Polak-Charcon S, Afek A, Volkov A, Feldman B, Avivi C, Harats D. Effects of hypoxia-inducible factor-1alpha overexpression in pregnant mice: possible implications for preeclampsia and intrauterine growth restriction. Am J Pathol. 2010;177:2950–62.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Withington SL, Scott AN, Saunders DN, Lopes Floro K, Preis JI, Michalicek J, Maclean K, Sparrow DB, Barbera JP, Dunwoodie SL. Loss of Cited2 affects trophoblast formation and vascularization of the mouse placenta. Dev Biol. 2006;294:67–82.CrossRefPubMedGoogle Scholar
  50. 50.
    Kanasaki K, Palmsten K, Sugimoto H, Ahmad S, Hamano Y, Xie L, Parry S, Augustin HG, Gattone VH, Folkman J, Strauss JF, Kalluri R. Deficiency in catechol-O-methyltransferase and 2-methoxyoestradiol is associated with pre-eclampsia. Nature. 2008;453:1117–21.CrossRefPubMedGoogle Scholar
  51. 51.
    Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, Libermann TA, Morgan JP, Sellke FW, Stillman IE, Epstein FH, Sukhatme VP, Karumanchi SA. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111:649–58.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Fan X, Rai A, Kambham N, Sung JF, Singh N, Petitt M, Dhal S, Agrawal R, Sutton RE, Druzin ML, Gambhir SS, Ambati BK, Cross JC, Nayak NR. Endometrial VEGF induces placental sFLT1 and leads to pregnancy complications. J Clin Invest. 2014;124:4941–52.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Koga K, Osuga Y, Yoshino O, Hirota Y, Ruimeng X, Hirata T, Takeda S, Yano T, Tsutsumi O, Taketani Y. Elevated serum soluble vascular endothelial growth factor receptor 1 (sVEGFR-1) levels in women with preeclampsia. J Clin Endocrinol Metab. 2003;88:2348–51.CrossRefPubMedGoogle Scholar
  54. 54.
    Kumasawa K, Ikawa M, Kidoya H, Hasuwa H, Saito-Fujita T, Morioka Y, Takakura N, Kimura T, Okabe M. Pravastatin induces placental growth factor (PGF) and ameliorates preeclampsia in a mouse model. Proc Natl Acad Sci U S A. 2011;108:1451–5.CrossRefPubMedGoogle Scholar
  55. 55.
    Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, Bdolah Y, Lim KH, Yuan HT, Libermann TA, Stillman IE, Roberts D, D'Amore PA, Epstein FH, Sellke FW, Romero R, Sukhatme VP, Letarte M, Karumanchi SA. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med. 2006;12:642–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Takimoto E, Ishida J, Sugiyama F, Horiguchi H, Murakami K, Fukamizu A. Hypertension induced in pregnant mice by placental renin and maternal angiotensinogen. Science. 1996;274:995–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Falcao S, Stoyanova E, Cloutier G, Maurice RL, Gutkowska J, Lavoie JL. Mice overexpressing both human angiotensinogen and human renin as a model of superimposed preeclampsia on chronic hypertension. Hypertension. 2009;54:1401–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Brosnihan KB, Hering L, Dechend R, Chappell MC, Herse F. Increased angiotensin II in the mesometrial triangle of a transgenic rat model of preeclampsia. Hypertension. 2010;55:562–6.CrossRefPubMedGoogle Scholar
  59. 59.
    Davisson RL, Hoffmann DS, Butz GM, Aldape G, Schlager G, Merrill DC, Sethi S, Weiss RM, Bates JN. Discovery of a spontaneous genetic mouse model of preeclampsia. Hypertension. 2002;39:337–42.CrossRefPubMedGoogle Scholar
  60. 60.
    Dokras A, Hoffmann DS, Eastvold JS, Kienzle MF, Gruman LM, Kirby PA, Weiss RM, Davisson RL. Severe feto-placental abnormalities precede the onset of hypertension and proteinuria in a mouse model of preeclampsia. Biol Reprod. 2006;75:899–907.CrossRefPubMedGoogle Scholar
  61. 61.
    Woods AK, Hoffmann DS, Weydert CJ, Butler SD, Zhou Y, Sharma RV, Davisson RL. Adenoviral delivery of VEGF121 early in pregnancy prevents spontaneous development of preeclampsia in BPH/5 mice. Hypertension. 2011;57:94–102.CrossRefPubMedGoogle Scholar
  62. 62.
    Podjarny E, Bernheim J, Katz B, Green J, Mekler J, Bursztyn M. Chronic exogenous hyperinsulinemia in pregnancy: a rat model of pregnancy-induced hypertension. J Am Soc Nephrol. 1998;9:9–13.PubMedGoogle Scholar
  63. 63.
    Bursztyn M, Podjarny E, Dahan R, Raz I, Bernheim J. Insulin-induced hypertension, L-arginine, and endothelial nitric oxide synthase in pregnant rats. Hypertens Pregnancy. 2003;22:267–74.CrossRefPubMedGoogle Scholar
  64. 64.
    Takiuti NH, Kahhale S, Zugaib M. Stress in pregnancy: a new Wistar rat model for human preeclampsia. Am J Obstet Gynecol. 2002;186:544–50.CrossRefPubMedGoogle Scholar
  65. 65.
    Kanayama N, She L, Maehara K, Kajiwara Y, Terao T. Induction of HELLP syndrome-like biochemical parameters by stimulation of the celiac ganglion in rats. J Hypertens. 1996;14:453–9.CrossRefPubMedGoogle Scholar
  66. 66.
    Baijnath S, Murugesan S, Mackraj I, Gathiram P, Moodley J. The effects of sildenafil citrate on urinary podocin and nephrin mRNA expression in an L-NAME model of pre-eclampsia. Mol Cell Biochem. 2017;427:59–67.CrossRefPubMedGoogle Scholar
  67. 67.
    Iriyama T, Wang W, Parchim NF, Song A, Blackwell SC, Sibai BM, Kellems RE, Xia Y. Hypoxia-independent upregulation of placental hypoxia inducible factor-1alpha gene expression contributes to the pathogenesis of preeclampsia. Hypertension. 2015;65:1307–15.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Obstetrics and GynecologyOsaka UniversitySuitaJapan

Personalised recommendations