Skip to main content

Animal Models in Preeclampsia

  • Chapter
  • First Online:
Preeclampsia

Part of the book series: Comprehensive Gynecology and Obstetrics ((CGO))

Abstract

Preeclampsia is a pregnancy-specific disorder characterized by hypertension and excessive proteinuria after 20 weeks’ gestation. It is an important cause of maternal and fetal morbidity and mortality worldwide. The disease is almost exclusive to humans and termination of the pregnancy continues to be the only effective and fundamental treatment. The disorder is considered to be multifactorial, although most cases of preeclampsia are characterized by abnormal maternal uterine vascular remodeling by fetally derived placental trophoblast cells. In spite of many previous researches, mechanism of preeclampsia is not clearly and sufficiently elucidated. Recently “two-stage theory” is widely adopted as a pathology of preeclampsia. The first stage involves abnormal placentation characterized by poor trophoblast invasion, incomplete vascular remodeling of spiral arteries, and placental hypoxia. The second stage is manifested as the maternal syndrome of hypertension and proteinuria with systemic endothelial dysfunction. Each step is associated with various factors, and numerous animal models have been used to study those various aspects of preeclampsia. For first stage, many models were reported from the points of immune responses, abnormal trophoblast invasion, placental oxygen dysregulation, and inappropriate maternal vascular damage. For second stage, antiangiogenesis factors, such as soluble fms-like tyrosine kinase 1 (sFLT1) and soluble endoglin (sENG), were adopted for exploit of model mice. However, preeclampsia is almost exclusive to humans mainly because of morphology of placenta; the same pathology in human preeclampsia is difficult to mimic in model animals. Therefore, various types of animal models are required. Investigations into the pathophysiology and treatment of preeclampsia will need to continue, albeit at a frustratingly slow pace. There remains a pressing need for novel approaches for pathology and therapy; new models will be needed for this complex and devastating disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stout C, Lemmon WB. Glomerular capillary endothelial swelling in a pregnant chimpanzee. Am J Obstet Gynecol. 1969;105:212–5.

    Article  CAS  PubMed  Google Scholar 

  2. Van Wagenen G. Vital statistics from a breeding colony. Reproduction and pregnancy outcome in Macaca mulatta. J Med Primatol. 1972;1:2–28.

    PubMed  Google Scholar 

  3. Nakashima A, Yamanaka-Tatematsu M, Fujita N, Koizumi K, Shima T, Yoshida T, Nikaido T, Okamoto A, Yoshimori T, Saito S. Impaired autophagy by soluble endoglin, under physiological hypoxia in early pregnant period, is involved in poor placentation in preeclampsia. Autophagy. 2013;9:303–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McCarthy FP, Drewlo S, Kingdom J, Johns EJ, Walsh SK, Kenny LC. Peroxisome proliferator-activated receptor-gamma as a potential therapeutic target in the treatment of preeclampsia. Hypertension. 2011;58:280–6.

    Article  CAS  PubMed  Google Scholar 

  5. Gille JH, Moore DG, Sedgwick CJ. Placental infarction: a sign of pre-eclampsia in a patas monkey (Erythrocebus patas). Lab Anim Sci. 1977;27:119–21.

    CAS  PubMed  Google Scholar 

  6. Palmer AE, London WT, Sly DL, Rice JM. Spontaneous preeclamptic toxemia of pregnancy in the patas monkey (Erythrocebus patas). Lab Anim Sci. 1979;29:102–6.

    CAS  PubMed  Google Scholar 

  7. Mess A, Zaki N, Kadyrov M, Korr H, Kaufmann P. Caviomorph placentation as a model for trophoblast invasion. Placenta. 2007;28:1234–8.

    Article  CAS  PubMed  Google Scholar 

  8. Malassine A, Frendo JL, Evain-Brion D. A comparison of placental development and endocrine functions between the human and mouse model. Hum Reprod Update. 2003;9:531–9.

    Article  CAS  PubMed  Google Scholar 

  9. Georgiades P, Ferguson-Smith AC, Burton GJ. Comparative developmental anatomy of the murine and human definitive placentae. Placenta. 2002;23:3–19.

    Article  CAS  PubMed  Google Scholar 

  10. Duckitt K, Harrington D. Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BMJ. 2005;330:565.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Trogstad L, Magnus P, Stoltenberg C. Pre-eclampsia: risk factors and causal models. Best Pract Res Clin Obstet Gynaecol. 2011;25:329–42.

    Article  PubMed  Google Scholar 

  12. Basso O, Christensen K, Olsen J. Higher risk of pre-eclampsia after change of partner. An effect of longer interpregnancy intervals? Epidemiology. 2001;12:624–9.

    Article  CAS  PubMed  Google Scholar 

  13. Maitra U, Davis S, Reilly CM, Li L. Differential regulation of Foxp3 and IL-17 expression in CD4 T helper cells by IRAK-1. J Immunol. 2009;182(9):5763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Robertson SA, Guerin LR, Bromfield JJ, Branson KM, Ahlstrom AC, Care AS. Seminal fluid drives expansion of the CD4+CD25+ T regulatory cell pool and induces tolerance to paternal alloantigens in mice. Biol Reprod. 2009;80:1036–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kupferminc MJ, Peaceman AM, Wigton TR, Rehnberg KA, Socol ML. Tumor necrosis factor-alpha is elevated in plasma and amniotic fluid of patients with severe preeclampsia. Am J Obstet Gynecol. 1994;170:1752–7; discussion 1757–9.

    Article  CAS  PubMed  Google Scholar 

  16. Vince GS, Starkey PM, Austgulen R, Kwiatkowski D, Redman CW. Interleukin-6, tumour necrosis factor and soluble tumour necrosis factor receptors in women with pre-eclampsia. Br J Obstet Gynaecol. 1995;102:20–5.

    Article  CAS  PubMed  Google Scholar 

  17. Makris A, Xu B, Yu B, Thornton C, Hennessy A. Placental deficiency of interleukin-10 (IL-10) in preeclampsia and its relationship to an IL10 promoter polymorphism. Placenta. 2006;27:445–51.

    Article  CAS  PubMed  Google Scholar 

  18. Faas MM, Schuiling GA, Baller JF, Visscher CA, Bakker WW. A new animal model for human preeclampsia: ultra-low-dose endotoxin infusion in pregnant rats. Am J Obstet Gynecol. 1994;171:158–64.

    Article  CAS  PubMed  Google Scholar 

  19. Saito S, Umekage H, Sakamoto Y, Sakai M, Tanebe K, Sasaki Y, Morikawa H. Increased T-helper-1-type immunity and decreased T-helper-2-type immunity in patients with preeclampsia. Am J Reprod Immunol. 1999;41:297–306.

    Article  CAS  PubMed  Google Scholar 

  20. Hayakawa S, Fujikawa T, Fukuoka H, Chisima F, Karasaki-Suzuki M, Ohkoshi E, Ohi H, Kiyoshi Fujii T, Tochigi M, Satoh K, Shimizu T, Nishinarita S, Nemoto N, Sakurai I. Murine fetal resorption and experimental pre-eclampsia are induced by both excessive Th1 and Th2 activation. J Reprod Immunol. 2000;47:121–38.

    Article  CAS  PubMed  Google Scholar 

  21. Benyo DF, Smarason A, Redman CW, Sims C, Conrad KP. Expression of inflammatory cytokines in placentas from women with preeclampsia. J Clin Endocrinol Metab. 2001;86:2505–12.

    CAS  PubMed  Google Scholar 

  22. LaMarca BB, Bennett WA, Alexander BT, Cockrell K, Granger JP. Hypertension produced by reductions in uterine perfusion in the pregnant rat: role of tumor necrosis factor-alpha. Hypertension. 2005;46:1022–5.

    Article  CAS  PubMed  Google Scholar 

  23. Sunderland NS, Thomson SE, Heffernan SJ, Lim S, Thompson J, Ogle R, McKenzie P, Kirwan PJ, Makris A, Hennessy A. Tumor necrosis factor alpha induces a model of preeclampsia in pregnant baboons (Papio hamadryas). Cytokine. 2011;56:192–9.

    Article  CAS  PubMed  Google Scholar 

  24. Orshal JM, Khalil RA. Interleukin-6 impairs endothelium-dependent NO-cGMP-mediated relaxation and enhances contraction in systemic vessels of pregnant rats. Am J Physiol Regul Integr Comp Physiol. 2004;286:R1013–23.

    Article  CAS  PubMed  Google Scholar 

  25. Lai Z, Kalkunte S, Sharma S. A critical role of interleukin-10 in modulating hypoxia-induced preeclampsia-like disease in mice. Hypertension. 2011;57:505–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Orange S, Rasko JE, Thompson JF, Vaughan J, Olive E, Pedler M, Horvath JS, Hennessy A. Interleukin-10 regulates arterial pressure in early primate pregnancy. Cytokine. 2005;29:176–85.

    Article  CAS  PubMed  Google Scholar 

  27. Redman CW, Sargent IL. Immunology of pre-eclampsia. Am J Reprod Immunol. 2010;63:534–43.

    Article  CAS  PubMed  Google Scholar 

  28. Abou-Nassar K, Carrier M, Ramsay T, Rodger MA. The association between antiphospholipid antibodies and placenta mediated complications: a systematic review and meta-analysis. Thromb Res. 2011;128:77–85.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou CC, Zhang Y, Irani RA, Zhang H, Mi T, Popek EJ, Hicks MJ, Ramin SM, Kellems RE, Xia Y. Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice. Nat Med. 2008;14:855–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wenzel K, Rajakumar A, Haase H, Geusens N, Hubner N, Schulz H, Brewer J, Roberts L, Hubel CA, Herse F, Hering L, Qadri F, Lindschau C, Wallukat G, Pijnenborg R, Heidecke H, Riemekasten G, Luft FC, Muller DN, Lamarca B, Dechend R. Angiotensin II type 1 receptor antibodies and increased angiotensin II sensitivity in pregnant rats. Hypertension. 2011;58:77–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Verlohren S, Geusens N, Morton J, Verhaegen I, Hering L, Herse F, Dudenhausen JW, Muller DN, Luft FC, Cartwright JE, Davidge ST, Pijnenborg R, Dechend R. Inhibition of trophoblast-induced spiral artery remodeling reduces placental perfusion in rat pregnancy. Hypertension. 2010;56:304–10.

    Article  CAS  PubMed  Google Scholar 

  32. Doridot L, Passet B, Mehats C, Rigourd V, Barbaux S, Ducat A, Mondon F, Vilotte M, Castille J, Breuiller-Fouche M, Daniel N, le Provost F, Bauchet AL, Baudrie V, Hertig A, Buffat C, Simeoni U, Germain G, Vilotte JL, Vaiman D. Preeclampsia-like symptoms induced in mice by fetoplacental expression of STOX1 are reversed by aspirin treatment. Hypertension. 2013;61:662–8.

    Article  CAS  PubMed  Google Scholar 

  33. Ogden E, Hildebrand G, Page EW. Rise in blood pressure during ischaemia of the gravid uterus. Prac Soc Exper Biol Med. 1940;43:49e51.

    Google Scholar 

  34. Hodari AA. Chronic uterine ischemia and reversible experimental “toxemia of pregnancy”. Am J Obstet Gynecol. 1967;97:597–607.

    Article  CAS  PubMed  Google Scholar 

  35. Abitbol MM, Pirani CL, Ober WB, Driscoll SG, Cohen MW. Production of experimental toxemia in the pregnant dog. Obstet Gynecol. 1976;48:537–48.

    CAS  PubMed  Google Scholar 

  36. Losonczy G, Brown G, Venuto RC. Increased peripheral resistance during reduced uterine perfusion pressure hypertension in pregnant rabbits. Am J Med Sci. 1992;303:233–40.

    Article  CAS  PubMed  Google Scholar 

  37. Abitbol MM. A simplified technique to produce toxemia in the pregnant dog. Am J Obstet Gynecol. 1981;139:526–34.

    Article  CAS  PubMed  Google Scholar 

  38. Woods LL, Brooks VL. Role of the renin-angiotensin system in hypertension during reduced uteroplacental perfusion pressure. Am J Phys. 1989;257:R204–9.

    CAS  Google Scholar 

  39. Combs CA, Katz MA, Kitzmiller JL, Brescia RJ. Experimental preeclampsia produced by chronic constriction of the lower aorta: validation with longitudinal blood pressure measurements in conscious rhesus monkeys. Am J Obstet Gynecol. 1993;169:215–23.

    Article  CAS  PubMed  Google Scholar 

  40. Cavanagh D, Rao PS, Tsai CC, O’Connor TC. Experimental toxemia in the pregnant primate. Am J Obstet Gynecol. 1977;128:75–85.

    Article  CAS  PubMed  Google Scholar 

  41. Clark KE, Durnwald M, Austin JE. A model for studying chronic reduction in uterine blood flow in pregnant sheep. Am J Phys. 1982;242:H297–301.

    CAS  Google Scholar 

  42. Makris A, Thornton C, Thompson J, Thomson S, Martin R, Ogle R, Waugh R, McKenzie P, Kirwan P, Hennessy A. Uteroplacental ischemia results in proteinuric hypertension and elevated sFLT-1. Kidney Int. 2007;71:977–84.

    Article  CAS  PubMed  Google Scholar 

  43. Gadonski G, LaMarca BB, Sullivan E, Bennett W, Chandler D, Granger JP. Hypertension produced by reductions in uterine perfusion in the pregnant rat: role of interleukin 6. Hypertension. 2006;48:711–6.

    Article  CAS  PubMed  Google Scholar 

  44. Granger JP, LaMarca BB, Cockrell K, Sedeek M, Balzi C, Chandler D, Bennett W. Reduced uterine perfusion pressure (RUPP) model for studying cardiovascular-renal dysfunction in response to placental ischemia. Methods Mol Med. 2006;122:383–92.

    PubMed  Google Scholar 

  45. Balta O, Boztosun A, Deveci K, Gulturk S, Ekici F, Kaya A, Cetin A, Cetin M. Reduced uterine perfusion pressure model is not successful to mimic severe preeclampsia. Placenta. 2011;32:675–80.

    Article  CAS  PubMed  Google Scholar 

  46. George EM, Cockrell K, Aranay M, Csongradi E, Stec DE, Granger JP. Induction of heme oxygenase 1 attenuates placental ischemia-induced hypertension. Hypertension. 2011;57:941–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McCarthy FP, Kingdom JC, Kenny LC, Walsh SK. Animal models of preeclampsia; uses and limitations. Placenta. 2011;32:413–9.

    Article  CAS  PubMed  Google Scholar 

  48. Tal R, Shaish A, Barshack I, Polak-Charcon S, Afek A, Volkov A, Feldman B, Avivi C, Harats D. Effects of hypoxia-inducible factor-1alpha overexpression in pregnant mice: possible implications for preeclampsia and intrauterine growth restriction. Am J Pathol. 2010;177:2950–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Withington SL, Scott AN, Saunders DN, Lopes Floro K, Preis JI, Michalicek J, Maclean K, Sparrow DB, Barbera JP, Dunwoodie SL. Loss of Cited2 affects trophoblast formation and vascularization of the mouse placenta. Dev Biol. 2006;294:67–82.

    Article  CAS  PubMed  Google Scholar 

  50. Kanasaki K, Palmsten K, Sugimoto H, Ahmad S, Hamano Y, Xie L, Parry S, Augustin HG, Gattone VH, Folkman J, Strauss JF, Kalluri R. Deficiency in catechol-O-methyltransferase and 2-methoxyoestradiol is associated with pre-eclampsia. Nature. 2008;453:1117–21.

    Article  CAS  PubMed  Google Scholar 

  51. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, Libermann TA, Morgan JP, Sellke FW, Stillman IE, Epstein FH, Sukhatme VP, Karumanchi SA. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111:649–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fan X, Rai A, Kambham N, Sung JF, Singh N, Petitt M, Dhal S, Agrawal R, Sutton RE, Druzin ML, Gambhir SS, Ambati BK, Cross JC, Nayak NR. Endometrial VEGF induces placental sFLT1 and leads to pregnancy complications. J Clin Invest. 2014;124:4941–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Koga K, Osuga Y, Yoshino O, Hirota Y, Ruimeng X, Hirata T, Takeda S, Yano T, Tsutsumi O, Taketani Y. Elevated serum soluble vascular endothelial growth factor receptor 1 (sVEGFR-1) levels in women with preeclampsia. J Clin Endocrinol Metab. 2003;88:2348–51.

    Article  CAS  PubMed  Google Scholar 

  54. Kumasawa K, Ikawa M, Kidoya H, Hasuwa H, Saito-Fujita T, Morioka Y, Takakura N, Kimura T, Okabe M. Pravastatin induces placental growth factor (PGF) and ameliorates preeclampsia in a mouse model. Proc Natl Acad Sci U S A. 2011;108:1451–5.

    Article  CAS  PubMed  Google Scholar 

  55. Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, Bdolah Y, Lim KH, Yuan HT, Libermann TA, Stillman IE, Roberts D, D'Amore PA, Epstein FH, Sellke FW, Romero R, Sukhatme VP, Letarte M, Karumanchi SA. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med. 2006;12:642–9.

    Article  CAS  PubMed  Google Scholar 

  56. Takimoto E, Ishida J, Sugiyama F, Horiguchi H, Murakami K, Fukamizu A. Hypertension induced in pregnant mice by placental renin and maternal angiotensinogen. Science. 1996;274:995–8.

    Article  CAS  PubMed  Google Scholar 

  57. Falcao S, Stoyanova E, Cloutier G, Maurice RL, Gutkowska J, Lavoie JL. Mice overexpressing both human angiotensinogen and human renin as a model of superimposed preeclampsia on chronic hypertension. Hypertension. 2009;54:1401–7.

    Article  CAS  PubMed  Google Scholar 

  58. Brosnihan KB, Hering L, Dechend R, Chappell MC, Herse F. Increased angiotensin II in the mesometrial triangle of a transgenic rat model of preeclampsia. Hypertension. 2010;55:562–6.

    Article  CAS  PubMed  Google Scholar 

  59. Davisson RL, Hoffmann DS, Butz GM, Aldape G, Schlager G, Merrill DC, Sethi S, Weiss RM, Bates JN. Discovery of a spontaneous genetic mouse model of preeclampsia. Hypertension. 2002;39:337–42.

    Article  CAS  PubMed  Google Scholar 

  60. Dokras A, Hoffmann DS, Eastvold JS, Kienzle MF, Gruman LM, Kirby PA, Weiss RM, Davisson RL. Severe feto-placental abnormalities precede the onset of hypertension and proteinuria in a mouse model of preeclampsia. Biol Reprod. 2006;75:899–907.

    Article  CAS  PubMed  Google Scholar 

  61. Woods AK, Hoffmann DS, Weydert CJ, Butler SD, Zhou Y, Sharma RV, Davisson RL. Adenoviral delivery of VEGF121 early in pregnancy prevents spontaneous development of preeclampsia in BPH/5 mice. Hypertension. 2011;57:94–102.

    Article  CAS  PubMed  Google Scholar 

  62. Podjarny E, Bernheim J, Katz B, Green J, Mekler J, Bursztyn M. Chronic exogenous hyperinsulinemia in pregnancy: a rat model of pregnancy-induced hypertension. J Am Soc Nephrol. 1998;9:9–13.

    CAS  PubMed  Google Scholar 

  63. Bursztyn M, Podjarny E, Dahan R, Raz I, Bernheim J. Insulin-induced hypertension, L-arginine, and endothelial nitric oxide synthase in pregnant rats. Hypertens Pregnancy. 2003;22:267–74.

    Article  CAS  PubMed  Google Scholar 

  64. Takiuti NH, Kahhale S, Zugaib M. Stress in pregnancy: a new Wistar rat model for human preeclampsia. Am J Obstet Gynecol. 2002;186:544–50.

    Article  PubMed  Google Scholar 

  65. Kanayama N, She L, Maehara K, Kajiwara Y, Terao T. Induction of HELLP syndrome-like biochemical parameters by stimulation of the celiac ganglion in rats. J Hypertens. 1996;14:453–9.

    Article  CAS  PubMed  Google Scholar 

  66. Baijnath S, Murugesan S, Mackraj I, Gathiram P, Moodley J. The effects of sildenafil citrate on urinary podocin and nephrin mRNA expression in an L-NAME model of pre-eclampsia. Mol Cell Biochem. 2017;427:59–67.

    Article  CAS  PubMed  Google Scholar 

  67. Iriyama T, Wang W, Parchim NF, Song A, Blackwell SC, Sibai BM, Kellems RE, Xia Y. Hypoxia-independent upregulation of placental hypoxia inducible factor-1alpha gene expression contributes to the pathogenesis of preeclampsia. Hypertension. 2015;65:1307–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichi Kumasawa M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumasawa, K. (2018). Animal Models in Preeclampsia. In: Saito, S. (eds) Preeclampsia. Comprehensive Gynecology and Obstetrics. Springer, Singapore. https://doi.org/10.1007/978-981-10-5891-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5891-2_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5890-5

  • Online ISBN: 978-981-10-5891-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics