Advertisement

Preeclampsia pp 125-140 | Cite as

Autophagy in Preeclampsia

  • Akitoshi Nakashima
  • Aiko Aoki
  • Tae Kusabiraki
  • Tomoko Shima
  • Osamu Yoshino
  • Shi-Bin Cheng
  • Surendra Sharma
  • Shigeru SaitoEmail author
Chapter
Part of the Comprehensive Gynecology and Obstetrics book series (CGO)

Abstract

Autophagy is an evolutionarily conserved process in eukaryotes by which cytoplasmic cargo sequestered inside double-membrane vesicles is delivered to the lysosome for degradation. Recently, there is increasing evidence that modulating autophagy accumulates during pregnancy. In early pregnancy, trophoblasts and the fetus experience hypoxic and low-nutrient conditions; nevertheless, extravillous trophoblasts (EVTs) invade the uterine myometrium up to one third of its depth and migrate along the lumina of spiral arterioles, replacing the maternal endothelial lining. An enhancement of autophagy induced by physiological hypoxia occurs during the invasion and vascular remodeling in EVTs. However, soluble endoglin, which is increased in sera in preeclamptic cases, suppresses EVT invasion or vascular remodeling by inhibiting autophagy in vivo. In addition, a substance selectively degraded by autophagy, p62/SQSTM1, accumulates in EVT cells in preeclamptic placental biopsy samples showing impaired autophagy in vivo. On the other hand, there are some reports about autophagy activation in preeclamptic placentas. Though changes in autophagy may affect the fates of mothers and babies, controversy remains for the evaluation of autophagy status in preeclampsia. In this chapter, we will introduce the role of autophagy in embryogenesis, implantation, and maintaining pregnancy and discuss the autophagy status in preeclampsia.

Keywords

Autophagy Extravillous trophoblasts Hypoxia p62 Soluble endoglin 

References

  1. 1.
    James JL, Stone PR, Chamley LW. The effects of oxygen concentration and gestational age on extravillous trophoblast outgrowth in a human first trimester villous explant model. Hum Reprod. 2006;21(10):2699–705.  https://doi.org/10.1093/humrep/del212. del212 [pii].CrossRefPubMedGoogle Scholar
  2. 2.
    Pringle KG, Kind KL, Sferruzzi-Perri AN, Thompson JG, Roberts CT. Beyond oxygen: complex regulation and activity of hypoxia inducible factors in pregnancy. Hum Reprod Update. 2010;16(4):415–31.  https://doi.org/10.1093/humupd/dmp046.CrossRefPubMedGoogle Scholar
  3. 3.
    Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature. 1996;379(6560):88–91.  https://doi.org/10.1038/379088a0.CrossRefPubMedGoogle Scholar
  4. 4.
    Levine B, Yuan J. Autophagy in cell death: an innocent convict? J Clin Invest. 2005;115(10):2679–88.  https://doi.org/10.1172/JCI26390.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Pouyssegur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 2006;441(7092):437–43.  https://doi.org/10.1038/nature04871. nature04871 [pii].CrossRefPubMedGoogle Scholar
  6. 6.
    Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med. 2013;19(8):983–97.  https://doi.org/10.1038/nm.3232.CrossRefPubMedGoogle Scholar
  7. 7.
    Vata PK, Chauhan NM, Nallathambi A, Hussein F. Assessment of prevalence of preeclampsia from Dilla region of Ethiopia. BMC Res Notes. 2015;8:816.  https://doi.org/10.1186/s13104-015-1821-5.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147(4):728–41.  https://doi.org/10.1016/j.cell.2011.10.026. S0092-8674(11)01276-1 [pii].CrossRefPubMedGoogle Scholar
  9. 9.
    Boya P, Reggiori F, Codogno P. Emerging regulation and functions of autophagy. Nat Cell Biol. 2013;15(7):713–20.  https://doi.org/10.1038/ncb2788. ncb2788 [pii].CrossRefPubMedGoogle Scholar
  10. 10.
    Beau I, Mehrpour M, Codogno P. Autophagosomes and human diseases. Int J Biochem Cell Biol. 2011;43(4):460–4.  https://doi.org/10.1016/j.biocel.2011.01.006. S1357-2725(11)00008-2 [pii].CrossRefPubMedGoogle Scholar
  11. 11.
    Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27–42.  https://doi.org/10.1016/j.cell.2007.12.018. S0092-8674(07)01685-6 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451(7182):1069–75.  https://doi.org/10.1038/nature06639. nature06639 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sarkar S. Chemical screening platforms for autophagy drug discovery to identify therapeutic candidates for Huntington’s disease and other neurodegenerative disorders. Drug Discov Today Technol. 2013;10(1):e137–44.  https://doi.org/10.1016/j.ddtec.2012.09.010. S1740-6749(12)00070-4 [pii].CrossRefPubMedGoogle Scholar
  14. 14.
    Schneider JL, Cuervo AM. Autophagy and human disease: emerging themes. Curr Opin Genet Dev. 2014;26:16–23.  https://doi.org/10.1016/j.gde.2014.04.003. S0959-437X(14)00035-5 [pii].CrossRefPubMedGoogle Scholar
  15. 15.
    Gawriluk TR, Ko C, Hong X, Christenson LK, Rucker EB 3rd. Beclin-1 deficiency in the murine ovary results in the reduction of progesterone production to promote preterm labor. Proc Natl Acad Sci U S A. 2014;111(40):E4194–203.  https://doi.org/10.1073/pnas.1409323111. 1409323111 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005;169(3):425–34.  https://doi.org/10.1083/jcb.200412022. jcb.200412022 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004;432(7020):1032–6.  https://doi.org/10.1038/nature03029. nature03029 [pii].CrossRefPubMedGoogle Scholar
  18. 18.
    Lee JE, Oh HA, Song H, Jun JH, Roh CR, Xie H, et al. Autophagy regulates embryonic survival during delayed implantation. Endocrinology. 2011;152(5):2067–75.  https://doi.org/10.1210/en.2010-1456. en.2010-1456 [pii].CrossRefPubMedGoogle Scholar
  19. 19.
    Tsukamoto S, Kuma A, Murakami M, Kishi C, Yamamoto A, Mizushima N. Autophagy is essential for preimplantation development of mouse embryos. Science. 2008;321(5885):117–20.  https://doi.org/10.1126/science.1154822. 321/5885/117 [pii].CrossRefPubMedGoogle Scholar
  20. 20.
    Aoki F, Worrad DM, Schultz RM. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol. 1997;181(2):296–307.  https://doi.org/10.1006/dbio.1996.8466. S0012-1606(96)98466-3 [pii].CrossRefPubMedGoogle Scholar
  21. 21.
    Piko L, Clegg KB. Quantitative changes in total RNA, total poly(A), and ribosomes in early mouse embryos. Dev Biol. 1982;89(2):362–78. 0012-1606(82)90325-6 [pii].CrossRefPubMedGoogle Scholar
  22. 22.
    Schultz RM. Regulation of zygotic gene activation in the mouse. Bioessays. 1993;15(8):531–8.  https://doi.org/10.1002/bies.950150806.CrossRefPubMedGoogle Scholar
  23. 23.
    Longatti A, Tooze SA. Vesicular trafficking and autophagosome formation. Cell Death Differ. 2009;16(7):956–65.  https://doi.org/10.1038/cdd.2009.39. cdd200939 [pii].CrossRefPubMedGoogle Scholar
  24. 24.
    Cann GM, Guignabert C, Ying L, Deshpande N, Bekker JM, Wang L, et al. Developmental expression of LC3alpha and beta: absence of fibronectin or autophagy phenotype in LC3beta knockout mice. Dev Dyn. 2008;237(1):187–95.  https://doi.org/10.1002/dvdy.21392.CrossRefPubMedGoogle Scholar
  25. 25.
    Nakashima A, Yamanaka-Tatematsu M, Fujita N, Koizumi K, Shima T, Yoshida T, et al. Impaired autophagy by soluble endoglin, under physiological hypoxia in early pregnant period, is involved in poor placentation in preeclampsia. Autophagy. 2013;9(3):303–16.  https://doi.org/10.4161/auto.22927.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chen B, Longtine MS, Nelson DM. Hypoxia induces autophagy in primary human trophoblasts. Endocrinology. 2012;153(10):4946–54.  https://doi.org/10.1210/en.2012-1472.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283(16):10892–903.  https://doi.org/10.1074/jbc.M800102200. M800102200 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Omi H, Okamoto A, Nikaido T, Urashima M, Kawaguchi R, Umehara N, et al. Establishment of an immortalized human extravillous trophoblast cell line by retroviral infection of E6/E7/hTERT and its transcriptional profile during hypoxia and reoxygenation. Int J Mol Med. 2009;23(2):229–36.PubMedGoogle Scholar
  29. 29.
    Fujita N, Noda T, Yoshimori T. Atg4B(C74A) hampers autophagosome closure: a useful protein for inhibiting autophagy. Autophagy. 2009;5(1):88–9. 7183 [pii]CrossRefPubMedGoogle Scholar
  30. 30.
    Yamanaka-Tatematsu M, Nakashima A, Fujita N, Shima T, Yoshimori T, Saito S. Autophagy induced by HIF1alpha overexpression supports trophoblast invasion by supplying cellular energy. PLoS One. 2013;8(10):e76605.  https://doi.org/10.1371/journal.pone.0076605.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gao L, Qi HB, Kamana KC, Zhang XM, Zhang H, Baker PN. Excessive autophagy induces the failure of trophoblast invasion and vasculature: possible relevance to the pathogenesis of preeclampsia. J Hypertens. 2015;33(1):106–17.  https://doi.org/10.1097/HJH.0000000000000366.CrossRefPubMedGoogle Scholar
  32. 32.
    Kalkunte S, Boij R, Norris W, Friedman J, Lai Z, Kurtis J, et al. Sera from preeclampsia patients elicit symptoms of human disease in mice and provide a basis for an in vitro predictive assay. Am J Pathol. 2010;177(5):2387–98.  https://doi.org/10.2353/ajpath.2010.100475. S0002-9440(10)60291-X [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ferreira JV, Fofo H, Bejarano E, Bento CF, Ramalho JS, Girao H, et al. STUB1/CHIP is required for HIF1A degradation by chaperone-mediated autophagy. Autophagy. 2013;9(9):1349–66.  https://doi.org/10.4161/auto.25190. 25190 [pii].CrossRefPubMedGoogle Scholar
  34. 34.
    Hung TH, Chen SF, Lo LM, Li MJ, Yeh YL, Hsieh TT. Increased autophagy in placentas of intrauterine growth-restricted pregnancies. PLoS One. 2012;7(7):e40957.  https://doi.org/10.1371/journal.pone.0040957. PONE-D-12-09139 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Oh SY, Choi SJ, Kim KH, Cho EY, Kim JH, Roh CR. Autophagy-related proteins, LC3 and Beclin-1, in placentas from pregnancies complicated by preeclampsia. Reprod Sci. 2008;15(9):912–20.  https://doi.org/10.1177/1933719108319159. 15/9/912 [pii].CrossRefPubMedGoogle Scholar
  36. 36.
    Saito S, Nakashima A. A review of the mechanism for poor placentation in early-onset preeclampsia: the role of autophagy in trophoblast invasion and vascular remodeling. J Reprod Immunol. 2014;101–102:80–8.  https://doi.org/10.1016/j.jri.2013.06.002.CrossRefPubMedGoogle Scholar
  37. 37.
    Bainbridge SA, Roberts JM, von Versen-Hoynck F, Koch J, Edmunds L, Hubel CA. Uric acid attenuates trophoblast invasion and integration into endothelial cell monolayers. Am J Physiol Cell Physiol. 2009;297(2):C440–50.  https://doi.org/10.1152/ajpcell.00593.2008. 00593.2008 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kanninen TT, Jayaram A, Jaffe Lifshitz S, Witkin SS. Altered autophagy induction by sera from pregnant women with pre-eclampsia: a case-control study. BJOG. 2014;121(8):958–64.  https://doi.org/10.1111/1471-0528.12755.CrossRefPubMedGoogle Scholar
  39. 39.
    Wolff KM, McMahon MJ, Kuller JA, Walmer DK, Meyer WR. Advanced maternal age and perinatal outcome: oocyte recipiency versus natural conception. Obstet Gynecol. 1997;89(4):519–23.  https://doi.org/10.1016/S0029-7844(97)00051-3.CrossRefPubMedGoogle Scholar
  40. 40.
    Wiggins DA, Main E. Outcomes of pregnancies achieved by donor egg in vitro fertilization—a comparison with standard in vitro fertilization pregnancies. Am J Obstet Gynecol. 2005;192(6):2002–6; discussion 6–8.  https://doi.org/10.1016/j.ajog.2005.02.059.CrossRefPubMedGoogle Scholar
  41. 41.
    Salha O, Sharma V, Dada T, Nugent D, Rutherford AJ, Tomlinson AJ, et al. The influence of donated gametes on the incidence of hypertensive disorders of pregnancy. Hum Reprod. 1999;14(9):2268–73.CrossRefPubMedGoogle Scholar
  42. 42.
    Keegan DA, Krey LC, Chang HC, Noyes N. Increased risk of pregnancy-induced hypertension in young recipients of donated oocytes. Fertil Steril. 2007;87(4):776–81.  https://doi.org/10.1016/j.fertnstert.2006.08.105.CrossRefPubMedGoogle Scholar
  43. 43.
    Henne MB, Zhang M, Paroski S, Kelshikar B, Westphal LM. Comparison of obstetric outcomes in recipients of donor oocytes vs. women of advanced maternal age with autologous oocytes. J Reprod Med. 2007;52(7):585–90.PubMedGoogle Scholar
  44. 44.
    Nakabayashi Y, Nakashima A, Yoshino O, Shima T, Shiozaki A, Adachi T, et al. Impairment of the accumulation of decidual T cells, NK cells, and monocytes, and the poor vascular remodeling of spiral arteries, were observed in oocyte donation cases, regardless of the presence or absence of preeclampsia. J Reprod Immunol. 2016;114:65–74.  https://doi.org/10.1016/j.jri.2015.07.005.CrossRefPubMedGoogle Scholar
  45. 45.
    Curtis S, Jones CJ, Garrod A, Hulme CH, Heazell AE. Identification of autophagic vacuoles and regulators of autophagy in villous trophoblast from normal term pregnancies and in fetal growth restriction. J Matern Fetal Neonatal Med. 2013;26(4):339–46.  https://doi.org/10.3109/14767058.2012.733764.CrossRefPubMedGoogle Scholar
  46. 46.
    Hung TH, Hsieh TT, Chen SF, Li MJ, Yeh YL. Autophagy in the human placenta throughout gestation. PLoS One. 2013;8(12):e83475.  https://doi.org/10.1371/journal.pone.0083475. PONE-D-13-28637 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Akaishi R, Yamada T, Nakabayashi K, Nishihara H, Furuta I, Kojima T, et al. Autophagy in the placenta of women with hypertensive disorders in pregnancy. Placenta. 2014;35(12):974–80.  https://doi.org/10.1016/j.placenta.2014.10.009. S0143-4004(14)00821-2 [pii].CrossRefPubMedGoogle Scholar
  48. 48.
    Melland-Smith M, Ermini L, Chauvin S, Craig-Barnes H, Tagliaferro A, Todros T, et al. Disruption of sphingolipid metabolism augments ceramide-induced autophagy in preeclampsia. Autophagy. 2015;11(4):653–69.  https://doi.org/10.1080/15548627.2015.1034414.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hiyama M, Kusakabe KT, Takeshita A, Sugi S, Kuniyoshi N, Imai H, et al. Nutrient starvation affects expression of LC3 family at the feto-maternal interface during murine placentation. J Vet Med Sci. 2015;77(3):305–11.  https://doi.org/10.1292/jvms.14-0490.CrossRefPubMedGoogle Scholar
  50. 50.
    Arikawa T, Simamura E, Shimada H, Nishi N, Tatsuno T, Ishigaki Y, et al. Expression pattern of Galectin 4 in rat placentation. Placenta. 2012;33(10):885–7.  https://doi.org/10.1016/j.placenta.2012.07.013.CrossRefPubMedGoogle Scholar
  51. 51.
    Arikawa T, Liao S, Shimada H, Inoue T, Sakata-Haga H, Nakamura T, et al. Galectin-4 expression is down-regulated in response to autophagy during differentiation of rat trophoblast cells. Sci Rep. 2016;6:32248.  https://doi.org/10.1038/srep32248.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Muralimanoharan S, Gao X, Weintraub S, Myatt L, Maloyan A. Sexual dimorphism in activation of placental autophagy in obese women with evidence for fetal programming from a placenta-specific mouse model. Autophagy. 2016;12(5):752–69.  https://doi.org/10.1080/15548627.2016.1156822.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Yamada T, Carson AR, Caniggia I, Umebayashi K, Yoshimori T, Nakabayashi K, et al. Endothelial nitric-oxide synthase antisense (NOS3AS) gene encodes an autophagy-related protein (APG9-like2) highly expressed in trophoblast. J Biol Chem. 2005;280(18):18283–18290. M413957200 [pii].  https://doi.org/10.1074/jbc.M413957200.CrossRefPubMedGoogle Scholar
  54. 54.
    Kanayama N, Takahashi K, Matsuura T, Sugimura M, Kobayashi T, Moniwa N, et al. Deficiency in p57Kip2 expression induces preeclampsia-like symptoms in mice. Mol Hum Reprod. 2002;8(12):1129–35.CrossRefPubMedGoogle Scholar
  55. 55.
    Kojima T, Yamada T, Akaishi R, Furuta I, Saitoh T, Nakabayashi K, et al. Role of the Atg9a gene in intrauterine growth and survival of fetal mice. Reprod Biol. 2015;15(3):131–8.  https://doi.org/10.1016/j.repbio.2015.05.001. S1642-431X(15)00043-1 [pii].CrossRefPubMedGoogle Scholar
  56. 56.
    Soto C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci. 2003;4(1):49–60.  https://doi.org/10.1038/nrn1007. CrossRefPubMedGoogle Scholar
  57. 57.
    Cheng SB, Nakashima A, Sharma S. Understanding pre-eclampsia using Alzheimer’s etiology: an intriguing viewpoint. Am J Reprod Immunol. 2016;75(3):372–81.  https://doi.org/10.1111/aji.12446.CrossRefPubMedGoogle Scholar
  58. 58.
    Buhimschi IA, Nayeri UA, Zhao G, Shook LL, Pensalfini A, Funai EF, et al. Protein misfolding, congophilia, oligomerization, and defective amyloid processing in preeclampsia. Sci Transl Med. 2014;6(245):245ra92.  https://doi.org/10.1126/scitranslmed.3008808. 6/245/245ra92 [pii].CrossRefPubMedGoogle Scholar
  59. 59.
    Kalkunte SS, Neubeck S, Norris WE, Cheng SB, Kostadinov S, Vu Hoang D, et al. Transthyretin is dysregulated in preeclampsia, and its native form prevents the onset of disease in a preclinical mouse model. Am J Pathol. 2013;183(5):1425–36.  https://doi.org/10.1016/j.ajpath.2013.07.022. S0002-9440(13)00543-9 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    McCarthy FP, Adetoba A, Gill C, Bramham K, Bertolaccini M, Burton GJ, et al. Urinary congophilia in women with hypertensive disorders of pregnancy and preexisting proteinuria or hypertension. Am J Obstet Gynecol. 2016;215(4):464.e1–7.  https://doi.org/10.1016/j.ajog.2016.04.041.CrossRefGoogle Scholar
  61. 61.
    Klionsky DJ, Cuervo AM, Seglen PO. Methods for monitoring autophagy from yeast to human. Autophagy. 2007;3(3):181–206.CrossRefPubMedGoogle Scholar
  62. 62.
    Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010;140(3):313–26.  https://doi.org/10.1016/j.cell.2010.01.028. S0092-8674(10)00063-2 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O, et al. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol. 2011;193(2):275–84.  https://doi.org/10.1083/jcb.201102031.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007;131(6):1149–63.  https://doi.org/10.1016/j.cell.2007.10.035.CrossRefPubMedGoogle Scholar
  65. 65.
    Tanaka S, Hikita H, Tatsumi T, Sakamori R, Nozaki Y, Sakane S, et al. Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology. 2016;64(6):1994–2014.  https://doi.org/10.1002/hep.28820.CrossRefPubMedGoogle Scholar
  66. 66.
    Kroemer G. Autophagy: a druggable process that is deregulated in aging and human disease. J Clin Invest. 2015;125(1):1–4.  https://doi.org/10.1172/JCI78652.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 2008;456(7219):264–8.  https://doi.org/10.1038/nature07383. nature07383 [pii].CrossRefPubMedGoogle Scholar
  68. 68.
    Madeo F, Zimmermann A, Maiuri MC, Kroemer G. Essential role for autophagy in life span extension. J Clin Invest. 2015;125(1):85–93.  https://doi.org/10.1172/JCI73946.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Agrawal V, Jaiswal MK, Mallers T, Katara GK, Gilman-Sachs A, Beaman KD, et al. Altered autophagic flux enhances inflammatory responses during inflammation-induced preterm labor. Sci Rep. 2015;5:9410.  https://doi.org/10.1038/srep09410. srep09410 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Cao B, Macones C, Mysorekar IU. ATG16L1 governs placental infection risk and preterm birth in mice and women. JCI Insight. 2016;1(21):e86654.  https://doi.org/10.1172/jci.insight.86654. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Akitoshi Nakashima
    • 1
  • Aiko Aoki
    • 1
  • Tae Kusabiraki
    • 1
  • Tomoko Shima
    • 1
  • Osamu Yoshino
    • 1
  • Shi-Bin Cheng
    • 2
  • Surendra Sharma
    • 2
  • Shigeru Saito
    • 1
    Email author
  1. 1.Faculty of Medicine, Department of Obstetrics and GynecologyUniversity of ToyamaToyamaJapan
  2. 2.Department of PediatricsWomen and Infants Hospital, Brown UniversityProvidenceUSA

Personalised recommendations