Skip to main content

Autophagy in Preeclampsia

  • Chapter
  • First Online:
Preeclampsia

Abstract

Autophagy is an evolutionarily conserved process in eukaryotes by which cytoplasmic cargo sequestered inside double-membrane vesicles is delivered to the lysosome for degradation. Recently, there is increasing evidence that modulating autophagy accumulates during pregnancy. In early pregnancy, trophoblasts and the fetus experience hypoxic and low-nutrient conditions; nevertheless, extravillous trophoblasts (EVTs) invade the uterine myometrium up to one third of its depth and migrate along the lumina of spiral arterioles, replacing the maternal endothelial lining. An enhancement of autophagy induced by physiological hypoxia occurs during the invasion and vascular remodeling in EVTs. However, soluble endoglin, which is increased in sera in preeclamptic cases, suppresses EVT invasion or vascular remodeling by inhibiting autophagy in vivo. In addition, a substance selectively degraded by autophagy, p62/SQSTM1, accumulates in EVT cells in preeclamptic placental biopsy samples showing impaired autophagy in vivo. On the other hand, there are some reports about autophagy activation in preeclamptic placentas. Though changes in autophagy may affect the fates of mothers and babies, controversy remains for the evaluation of autophagy status in preeclampsia. In this chapter, we will introduce the role of autophagy in embryogenesis, implantation, and maintaining pregnancy and discuss the autophagy status in preeclampsia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. James JL, Stone PR, Chamley LW. The effects of oxygen concentration and gestational age on extravillous trophoblast outgrowth in a human first trimester villous explant model. Hum Reprod. 2006;21(10):2699–705. https://doi.org/10.1093/humrep/del212. del212 [pii].

    Article  PubMed  Google Scholar 

  2. Pringle KG, Kind KL, Sferruzzi-Perri AN, Thompson JG, Roberts CT. Beyond oxygen: complex regulation and activity of hypoxia inducible factors in pregnancy. Hum Reprod Update. 2010;16(4):415–31. https://doi.org/10.1093/humupd/dmp046.

    Article  PubMed  CAS  Google Scholar 

  3. Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature. 1996;379(6560):88–91. https://doi.org/10.1038/379088a0.

    Article  PubMed  CAS  Google Scholar 

  4. Levine B, Yuan J. Autophagy in cell death: an innocent convict? J Clin Invest. 2005;115(10):2679–88. https://doi.org/10.1172/JCI26390.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pouyssegur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 2006;441(7092):437–43. https://doi.org/10.1038/nature04871. nature04871 [pii].

    Article  PubMed  CAS  Google Scholar 

  6. Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med. 2013;19(8):983–97. https://doi.org/10.1038/nm.3232.

    Article  PubMed  CAS  Google Scholar 

  7. Vata PK, Chauhan NM, Nallathambi A, Hussein F. Assessment of prevalence of preeclampsia from Dilla region of Ethiopia. BMC Res Notes. 2015;8:816. https://doi.org/10.1186/s13104-015-1821-5.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147(4):728–41. https://doi.org/10.1016/j.cell.2011.10.026. S0092-8674(11)01276-1 [pii].

    Article  PubMed  CAS  Google Scholar 

  9. Boya P, Reggiori F, Codogno P. Emerging regulation and functions of autophagy. Nat Cell Biol. 2013;15(7):713–20. https://doi.org/10.1038/ncb2788. ncb2788 [pii].

    Article  PubMed  CAS  Google Scholar 

  10. Beau I, Mehrpour M, Codogno P. Autophagosomes and human diseases. Int J Biochem Cell Biol. 2011;43(4):460–4. https://doi.org/10.1016/j.biocel.2011.01.006. S1357-2725(11)00008-2 [pii].

    Article  PubMed  CAS  Google Scholar 

  11. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27–42. https://doi.org/10.1016/j.cell.2007.12.018. S0092-8674(07)01685-6 [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451(7182):1069–75. https://doi.org/10.1038/nature06639. nature06639 [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sarkar S. Chemical screening platforms for autophagy drug discovery to identify therapeutic candidates for Huntington’s disease and other neurodegenerative disorders. Drug Discov Today Technol. 2013;10(1):e137–44. https://doi.org/10.1016/j.ddtec.2012.09.010. S1740-6749(12)00070-4 [pii].

    Article  PubMed  Google Scholar 

  14. Schneider JL, Cuervo AM. Autophagy and human disease: emerging themes. Curr Opin Genet Dev. 2014;26:16–23. https://doi.org/10.1016/j.gde.2014.04.003. S0959-437X(14)00035-5 [pii].

    Article  PubMed  CAS  Google Scholar 

  15. Gawriluk TR, Ko C, Hong X, Christenson LK, Rucker EB 3rd. Beclin-1 deficiency in the murine ovary results in the reduction of progesterone production to promote preterm labor. Proc Natl Acad Sci U S A. 2014;111(40):E4194–203. https://doi.org/10.1073/pnas.1409323111. 1409323111 [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005;169(3):425–34. https://doi.org/10.1083/jcb.200412022. jcb.200412022 [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004;432(7020):1032–6. https://doi.org/10.1038/nature03029. nature03029 [pii].

    Article  PubMed  CAS  Google Scholar 

  18. Lee JE, Oh HA, Song H, Jun JH, Roh CR, Xie H, et al. Autophagy regulates embryonic survival during delayed implantation. Endocrinology. 2011;152(5):2067–75. https://doi.org/10.1210/en.2010-1456. en.2010-1456 [pii].

    Article  PubMed  CAS  Google Scholar 

  19. Tsukamoto S, Kuma A, Murakami M, Kishi C, Yamamoto A, Mizushima N. Autophagy is essential for preimplantation development of mouse embryos. Science. 2008;321(5885):117–20. https://doi.org/10.1126/science.1154822. 321/5885/117 [pii].

    Article  PubMed  CAS  Google Scholar 

  20. Aoki F, Worrad DM, Schultz RM. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol. 1997;181(2):296–307. https://doi.org/10.1006/dbio.1996.8466. S0012-1606(96)98466-3 [pii].

    Article  PubMed  CAS  Google Scholar 

  21. Piko L, Clegg KB. Quantitative changes in total RNA, total poly(A), and ribosomes in early mouse embryos. Dev Biol. 1982;89(2):362–78. 0012-1606(82)90325-6 [pii].

    Article  PubMed  CAS  Google Scholar 

  22. Schultz RM. Regulation of zygotic gene activation in the mouse. Bioessays. 1993;15(8):531–8. https://doi.org/10.1002/bies.950150806.

    Article  PubMed  CAS  Google Scholar 

  23. Longatti A, Tooze SA. Vesicular trafficking and autophagosome formation. Cell Death Differ. 2009;16(7):956–65. https://doi.org/10.1038/cdd.2009.39. cdd200939 [pii].

    Article  PubMed  CAS  Google Scholar 

  24. Cann GM, Guignabert C, Ying L, Deshpande N, Bekker JM, Wang L, et al. Developmental expression of LC3alpha and beta: absence of fibronectin or autophagy phenotype in LC3beta knockout mice. Dev Dyn. 2008;237(1):187–95. https://doi.org/10.1002/dvdy.21392.

    Article  PubMed  CAS  Google Scholar 

  25. Nakashima A, Yamanaka-Tatematsu M, Fujita N, Koizumi K, Shima T, Yoshida T, et al. Impaired autophagy by soluble endoglin, under physiological hypoxia in early pregnant period, is involved in poor placentation in preeclampsia. Autophagy. 2013;9(3):303–16. https://doi.org/10.4161/auto.22927.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Chen B, Longtine MS, Nelson DM. Hypoxia induces autophagy in primary human trophoblasts. Endocrinology. 2012;153(10):4946–54. https://doi.org/10.1210/en.2012-1472.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283(16):10892–903. https://doi.org/10.1074/jbc.M800102200. M800102200 [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Omi H, Okamoto A, Nikaido T, Urashima M, Kawaguchi R, Umehara N, et al. Establishment of an immortalized human extravillous trophoblast cell line by retroviral infection of E6/E7/hTERT and its transcriptional profile during hypoxia and reoxygenation. Int J Mol Med. 2009;23(2):229–36.

    PubMed  CAS  Google Scholar 

  29. Fujita N, Noda T, Yoshimori T. Atg4B(C74A) hampers autophagosome closure: a useful protein for inhibiting autophagy. Autophagy. 2009;5(1):88–9. 7183 [pii]

    Article  PubMed  CAS  Google Scholar 

  30. Yamanaka-Tatematsu M, Nakashima A, Fujita N, Shima T, Yoshimori T, Saito S. Autophagy induced by HIF1alpha overexpression supports trophoblast invasion by supplying cellular energy. PLoS One. 2013;8(10):e76605. https://doi.org/10.1371/journal.pone.0076605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Gao L, Qi HB, Kamana KC, Zhang XM, Zhang H, Baker PN. Excessive autophagy induces the failure of trophoblast invasion and vasculature: possible relevance to the pathogenesis of preeclampsia. J Hypertens. 2015;33(1):106–17. https://doi.org/10.1097/HJH.0000000000000366.

    Article  PubMed  CAS  Google Scholar 

  32. Kalkunte S, Boij R, Norris W, Friedman J, Lai Z, Kurtis J, et al. Sera from preeclampsia patients elicit symptoms of human disease in mice and provide a basis for an in vitro predictive assay. Am J Pathol. 2010;177(5):2387–98. https://doi.org/10.2353/ajpath.2010.100475. S0002-9440(10)60291-X [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ferreira JV, Fofo H, Bejarano E, Bento CF, Ramalho JS, Girao H, et al. STUB1/CHIP is required for HIF1A degradation by chaperone-mediated autophagy. Autophagy. 2013;9(9):1349–66. https://doi.org/10.4161/auto.25190. 25190 [pii].

    Article  PubMed  CAS  Google Scholar 

  34. Hung TH, Chen SF, Lo LM, Li MJ, Yeh YL, Hsieh TT. Increased autophagy in placentas of intrauterine growth-restricted pregnancies. PLoS One. 2012;7(7):e40957. https://doi.org/10.1371/journal.pone.0040957. PONE-D-12-09139 [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Oh SY, Choi SJ, Kim KH, Cho EY, Kim JH, Roh CR. Autophagy-related proteins, LC3 and Beclin-1, in placentas from pregnancies complicated by preeclampsia. Reprod Sci. 2008;15(9):912–20. https://doi.org/10.1177/1933719108319159. 15/9/912 [pii].

    Article  PubMed  CAS  Google Scholar 

  36. Saito S, Nakashima A. A review of the mechanism for poor placentation in early-onset preeclampsia: the role of autophagy in trophoblast invasion and vascular remodeling. J Reprod Immunol. 2014;101–102:80–8. https://doi.org/10.1016/j.jri.2013.06.002.

    Article  PubMed  CAS  Google Scholar 

  37. Bainbridge SA, Roberts JM, von Versen-Hoynck F, Koch J, Edmunds L, Hubel CA. Uric acid attenuates trophoblast invasion and integration into endothelial cell monolayers. Am J Physiol Cell Physiol. 2009;297(2):C440–50. https://doi.org/10.1152/ajpcell.00593.2008. 00593.2008 [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kanninen TT, Jayaram A, Jaffe Lifshitz S, Witkin SS. Altered autophagy induction by sera from pregnant women with pre-eclampsia: a case-control study. BJOG. 2014;121(8):958–64. https://doi.org/10.1111/1471-0528.12755.

    Article  PubMed  CAS  Google Scholar 

  39. Wolff KM, McMahon MJ, Kuller JA, Walmer DK, Meyer WR. Advanced maternal age and perinatal outcome: oocyte recipiency versus natural conception. Obstet Gynecol. 1997;89(4):519–23. https://doi.org/10.1016/S0029-7844(97)00051-3.

    Article  PubMed  CAS  Google Scholar 

  40. Wiggins DA, Main E. Outcomes of pregnancies achieved by donor egg in vitro fertilization—a comparison with standard in vitro fertilization pregnancies. Am J Obstet Gynecol. 2005;192(6):2002–6; discussion 6–8. https://doi.org/10.1016/j.ajog.2005.02.059.

    Article  PubMed  Google Scholar 

  41. Salha O, Sharma V, Dada T, Nugent D, Rutherford AJ, Tomlinson AJ, et al. The influence of donated gametes on the incidence of hypertensive disorders of pregnancy. Hum Reprod. 1999;14(9):2268–73.

    Article  PubMed  CAS  Google Scholar 

  42. Keegan DA, Krey LC, Chang HC, Noyes N. Increased risk of pregnancy-induced hypertension in young recipients of donated oocytes. Fertil Steril. 2007;87(4):776–81. https://doi.org/10.1016/j.fertnstert.2006.08.105.

    Article  PubMed  Google Scholar 

  43. Henne MB, Zhang M, Paroski S, Kelshikar B, Westphal LM. Comparison of obstetric outcomes in recipients of donor oocytes vs. women of advanced maternal age with autologous oocytes. J Reprod Med. 2007;52(7):585–90.

    PubMed  Google Scholar 

  44. Nakabayashi Y, Nakashima A, Yoshino O, Shima T, Shiozaki A, Adachi T, et al. Impairment of the accumulation of decidual T cells, NK cells, and monocytes, and the poor vascular remodeling of spiral arteries, were observed in oocyte donation cases, regardless of the presence or absence of preeclampsia. J Reprod Immunol. 2016;114:65–74. https://doi.org/10.1016/j.jri.2015.07.005.

    Article  PubMed  CAS  Google Scholar 

  45. Curtis S, Jones CJ, Garrod A, Hulme CH, Heazell AE. Identification of autophagic vacuoles and regulators of autophagy in villous trophoblast from normal term pregnancies and in fetal growth restriction. J Matern Fetal Neonatal Med. 2013;26(4):339–46. https://doi.org/10.3109/14767058.2012.733764.

    Article  PubMed  CAS  Google Scholar 

  46. Hung TH, Hsieh TT, Chen SF, Li MJ, Yeh YL. Autophagy in the human placenta throughout gestation. PLoS One. 2013;8(12):e83475. https://doi.org/10.1371/journal.pone.0083475. PONE-D-13-28637 [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Akaishi R, Yamada T, Nakabayashi K, Nishihara H, Furuta I, Kojima T, et al. Autophagy in the placenta of women with hypertensive disorders in pregnancy. Placenta. 2014;35(12):974–80. https://doi.org/10.1016/j.placenta.2014.10.009. S0143-4004(14)00821-2 [pii].

    Article  PubMed  CAS  Google Scholar 

  48. Melland-Smith M, Ermini L, Chauvin S, Craig-Barnes H, Tagliaferro A, Todros T, et al. Disruption of sphingolipid metabolism augments ceramide-induced autophagy in preeclampsia. Autophagy. 2015;11(4):653–69. https://doi.org/10.1080/15548627.2015.1034414.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Hiyama M, Kusakabe KT, Takeshita A, Sugi S, Kuniyoshi N, Imai H, et al. Nutrient starvation affects expression of LC3 family at the feto-maternal interface during murine placentation. J Vet Med Sci. 2015;77(3):305–11. https://doi.org/10.1292/jvms.14-0490.

    Article  PubMed  CAS  Google Scholar 

  50. Arikawa T, Simamura E, Shimada H, Nishi N, Tatsuno T, Ishigaki Y, et al. Expression pattern of Galectin 4 in rat placentation. Placenta. 2012;33(10):885–7. https://doi.org/10.1016/j.placenta.2012.07.013.

    Article  PubMed  CAS  Google Scholar 

  51. Arikawa T, Liao S, Shimada H, Inoue T, Sakata-Haga H, Nakamura T, et al. Galectin-4 expression is down-regulated in response to autophagy during differentiation of rat trophoblast cells. Sci Rep. 2016;6:32248. https://doi.org/10.1038/srep32248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Muralimanoharan S, Gao X, Weintraub S, Myatt L, Maloyan A. Sexual dimorphism in activation of placental autophagy in obese women with evidence for fetal programming from a placenta-specific mouse model. Autophagy. 2016;12(5):752–69. https://doi.org/10.1080/15548627.2016.1156822.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Yamada T, Carson AR, Caniggia I, Umebayashi K, Yoshimori T, Nakabayashi K, et al. Endothelial nitric-oxide synthase antisense (NOS3AS) gene encodes an autophagy-related protein (APG9-like2) highly expressed in trophoblast. J Biol Chem. 2005;280(18):18283–18290. M413957200 [pii]. https://doi.org/10.1074/jbc.M413957200.

    Article  PubMed  CAS  Google Scholar 

  54. Kanayama N, Takahashi K, Matsuura T, Sugimura M, Kobayashi T, Moniwa N, et al. Deficiency in p57Kip2 expression induces preeclampsia-like symptoms in mice. Mol Hum Reprod. 2002;8(12):1129–35.

    Article  PubMed  CAS  Google Scholar 

  55. Kojima T, Yamada T, Akaishi R, Furuta I, Saitoh T, Nakabayashi K, et al. Role of the Atg9a gene in intrauterine growth and survival of fetal mice. Reprod Biol. 2015;15(3):131–8. https://doi.org/10.1016/j.repbio.2015.05.001. S1642-431X(15)00043-1 [pii].

    Article  PubMed  Google Scholar 

  56. Soto C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci. 2003;4(1):49–60. https://doi.org/10.1038/nrn1007.

    Article  PubMed  CAS  Google Scholar 

  57. Cheng SB, Nakashima A, Sharma S. Understanding pre-eclampsia using Alzheimer’s etiology: an intriguing viewpoint. Am J Reprod Immunol. 2016;75(3):372–81. https://doi.org/10.1111/aji.12446.

    Article  PubMed  Google Scholar 

  58. Buhimschi IA, Nayeri UA, Zhao G, Shook LL, Pensalfini A, Funai EF, et al. Protein misfolding, congophilia, oligomerization, and defective amyloid processing in preeclampsia. Sci Transl Med. 2014;6(245):245ra92. https://doi.org/10.1126/scitranslmed.3008808. 6/245/245ra92 [pii].

    Article  PubMed  CAS  Google Scholar 

  59. Kalkunte SS, Neubeck S, Norris WE, Cheng SB, Kostadinov S, Vu Hoang D, et al. Transthyretin is dysregulated in preeclampsia, and its native form prevents the onset of disease in a preclinical mouse model. Am J Pathol. 2013;183(5):1425–36. https://doi.org/10.1016/j.ajpath.2013.07.022. S0002-9440(13)00543-9 [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. McCarthy FP, Adetoba A, Gill C, Bramham K, Bertolaccini M, Burton GJ, et al. Urinary congophilia in women with hypertensive disorders of pregnancy and preexisting proteinuria or hypertension. Am J Obstet Gynecol. 2016;215(4):464.e1–7. https://doi.org/10.1016/j.ajog.2016.04.041.

    Article  Google Scholar 

  61. Klionsky DJ, Cuervo AM, Seglen PO. Methods for monitoring autophagy from yeast to human. Autophagy. 2007;3(3):181–206.

    Article  PubMed  CAS  Google Scholar 

  62. Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010;140(3):313–26. https://doi.org/10.1016/j.cell.2010.01.028. S0092-8674(10)00063-2 [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O, et al. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol. 2011;193(2):275–84. https://doi.org/10.1083/jcb.201102031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007;131(6):1149–63. https://doi.org/10.1016/j.cell.2007.10.035.

    Article  PubMed  CAS  Google Scholar 

  65. Tanaka S, Hikita H, Tatsumi T, Sakamori R, Nozaki Y, Sakane S, et al. Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology. 2016;64(6):1994–2014. https://doi.org/10.1002/hep.28820.

    Article  PubMed  CAS  Google Scholar 

  66. Kroemer G. Autophagy: a druggable process that is deregulated in aging and human disease. J Clin Invest. 2015;125(1):1–4. https://doi.org/10.1172/JCI78652.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 2008;456(7219):264–8. https://doi.org/10.1038/nature07383. nature07383 [pii].

    Article  PubMed  CAS  Google Scholar 

  68. Madeo F, Zimmermann A, Maiuri MC, Kroemer G. Essential role for autophagy in life span extension. J Clin Invest. 2015;125(1):85–93. https://doi.org/10.1172/JCI73946.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Agrawal V, Jaiswal MK, Mallers T, Katara GK, Gilman-Sachs A, Beaman KD, et al. Altered autophagic flux enhances inflammatory responses during inflammation-induced preterm labor. Sci Rep. 2015;5:9410. https://doi.org/10.1038/srep09410. srep09410 [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Cao B, Macones C, Mysorekar IU. ATG16L1 governs placental infection risk and preterm birth in mice and women. JCI Insight. 2016;1(21):e86654. https://doi.org/10.1172/jci.insight.86654.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Saito M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakashima, A. et al. (2018). Autophagy in Preeclampsia. In: Saito, S. (eds) Preeclampsia. Comprehensive Gynecology and Obstetrics. Springer, Singapore. https://doi.org/10.1007/978-981-10-5891-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5891-2_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5890-5

  • Online ISBN: 978-981-10-5891-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics