Skip to main content

Proteases in Wound Healing and Immunity

  • Chapter
  • First Online:
Proteases in Human Diseases

Abstract

Proteases play a pivotal role in wound management. They are present in acute and chronic wound in different proportions. Balance between protease and their inhibitors are crucial for healing of wound because irregularity can lead to excessive extracellular matrix (ECM) degradation and deposition leading to impaired healing. Recent advancements in wound care established several means to control the level of proteases, such as MMP modulators including protease-modulating dressing, signaling molecules, peptides, and microRNA. Besides wound healing, proteases also play a significant role in immunity. They activate immune cells by proteolysis. Function of proteases in the areas of wound healing and immunity can be targeted as an alternative therapeutic approach for treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hutchinson J (1992) The wound programme. Centre for Medical Education: Dundee

    Google Scholar 

  2. Leaper DJ, Harding KG (1998) Wounds: biology and management. Oxford University Press, Oxford

    Google Scholar 

  3. Enoch S, Price P (2004) Cellular, molecular and biochemical differences in the pathophysiology of healing between acute wounds, chronic wounds and wounds in the aged. World wide Wounds

    Google Scholar 

  4. Cooper P (2005) A review of different wound types and their principles of management in Wound Healing: a systematic approach to advanced wound healing and management. Cromwell Press, Wiltshire

    Google Scholar 

  5. Lazarus GS, Cooper DM, Knighton DR, Margolis DJ, Pecoraro RE, Rodeheaver G, Robson MC (1994) Definitions and guidelines for assessment of wounds and evaluation of healing. Arch Dermatol 130:489–493

    Article  CAS  PubMed  Google Scholar 

  6. Bischoff M, Kinzl L, Schmelz A (1999) The complicated wound. Unfallchirurg 102:797–804

    Article  CAS  PubMed  Google Scholar 

  7. Robson MC, Steed DL, Franz MG (2001) Wound healing: biologic features and approaches to maximize healing trajectories. Curr Probl Surg 38:72–140

    Article  CAS  PubMed  Google Scholar 

  8. Szycher M, Lee SJ (1992) Modern wound dressings: a systematic approach to wound healing. J Biomater Appl 7:142–213

    Article  CAS  PubMed  Google Scholar 

  9. Vanwijck R (2001) Surgical biology of wound healing. Bull Mem Acad R Med Belg 115:175–184

    Google Scholar 

  10. Moreo Kathleen (2005) Understanding and overcoming the challenges of effective case management for patients with chronic wounds. The Case Manager 16:62–63

    Article  PubMed  Google Scholar 

  11. Glat PM, Longaker MT (1997) Wound healing. In: Aston SJ, Beasley RW, Thorne CH (eds) Grabb and Smith’s Plastic Surgery, 5th edn. Lippincott-Raven, Philadelphia, pp 3–12

    Google Scholar 

  12. Hunt TK, Hopf H, Hussain Z (2000) Physiology of wound healing. Adv Skin Wound Care 13:6–11

    CAS  PubMed  Google Scholar 

  13. Attinger CE, Janis JE, Steinberg J, Schwartz J, Al-Attar A, Couch K (2006) Clinical approach to wounds: debridement and wound bed preparation including the use of dressings and wound-healing adjuvants. Plast Reconstr Surg 117:72S–109S

    Article  CAS  PubMed  Google Scholar 

  14. Broughton G, Janis JE, Attinger CE (2006) Wound healing: an overview. Plast Reconstr Surg 117:1e-S–32e-S

    Article  CAS  Google Scholar 

  15. Myers BA (2008) Wound management principles and practice, 2nd edn. Pearson, Upper Saddle River, NJ

    Google Scholar 

  16. You HJ, Han S (2014) Cell therapy for wound healing. J Korean Med Sci 29:311–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maxson S, Lopez EA, Yoo D, Danilkovitch-Miagkova A, Leroux MA (2012) Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl Med 1:142–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321

    Article  CAS  PubMed  Google Scholar 

  19. Grose R, Werner S (2004) Wound-healing studies in transgenic and knockout mice. Mol Biotechnol 28:147–166

    Article  CAS  PubMed  Google Scholar 

  20. Martin P, Leibovich SJ (2005) Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol 15:599–607

    Article  CAS  PubMed  Google Scholar 

  21. Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83:835–870

    CAS  PubMed  Google Scholar 

  22. Robson MC (2003) Cytokine manipulation of the wound. Clin Plast Surg 30:57–65

    Article  PubMed  Google Scholar 

  23. Gabbiani G (2003) The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 200:500–503

    Article  CAS  PubMed  Google Scholar 

  24. Scott N, Estes M (1999) Relative distribution and crosslinking of collagen distinguish fetal from adult sheep wound repair. J Pediatr Surg 34:218–223

    Article  Google Scholar 

  25. Beanes SR, Dang C, Soo C, Ting K (2004) Skin repair and scar formation: the central role of TGF-beta. Expert Rev Mol Med 5:1–11

    Google Scholar 

  26. Armstrong DG, Jude EB (2002) The role of matrix metalloproteinases in wound healing. J Am Podiatr Med Assoc 92:12–18

    Article  PubMed  Google Scholar 

  27. Edwards JV, Howley P, Cohen IK (2004) In vitro inhibition of human neutrophil elastase by oleic acid albumin formulations from derivatized cotton wound dressings. Int J Pharm 284:1–12

    Article  CAS  PubMed  Google Scholar 

  28. Ovington L (2003) Bacterial toxins and wound healing. Ostomy Wound Manag 49:8–12

    Google Scholar 

  29. Edwards R, Harding KG (2004) Bacteria and wound healing. Curr Opin Infect Dis 17:91–96

    Article  PubMed  Google Scholar 

  30. Eming SA, Krieg T, Davidson JM (2007) Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 127:514–525

    Article  CAS  PubMed  Google Scholar 

  31. Wolcott RD, Rhoads DD, Dowd SE (2008) Biofilms and chronic wound inflammation. J Wound Care 17:333–341

    Article  CAS  PubMed  Google Scholar 

  32. Ben-Porath I, Weinberg RA (2005) The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 37:961–976

    Article  CAS  PubMed  Google Scholar 

  33. Mast BA, Schultz GS (1996) Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Repair Regen 4:411–420

    Article  CAS  PubMed  Google Scholar 

  34. Lauer G, Sollberg S, Cole M, Flamme I, Stürzebecher J, Mann K, Krieg T, Eming SA (2000) Expression and proteolysis of vascular endothelial growth factor is increased in chronic wounds. J Invest Dermatol 115:12–18

    Article  CAS  PubMed  Google Scholar 

  35. Hartley S (1960) Proteolytic enzymes. Annu Rev Biochem 29:45–72

    Article  CAS  PubMed  Google Scholar 

  36. Menon AS, Goldberg AL (1987) Protein substrates activate the ATP-dependent protease La by promoting nucleotide binding and release of bound ADP. J Biol Chem 262:14929–14934

    CAS  PubMed  Google Scholar 

  37. Rawlings ND, Barrett AJ (1994) Families of serine peptidases. Methods Enzymol 244:19–61

    Article  CAS  PubMed  Google Scholar 

  38. Caley MP, Martins VL, O’Toole EA (2015) Metalloproteinases and Wound Healing. Adv Wound Care (New Rochelle) 4:225–234

    Article  Google Scholar 

  39. Rogers AA, Burnett S, Moore JC, Shakespeare PG, Chen WY (1995) Involvement of proteolytic enzymes—plasminogen activators and matrix metalloproteinases— in the pathophysiology of pressure ulcers. Wound Repair Regen 3:273–283

    Article  CAS  PubMed  Google Scholar 

  40. Weckroth M, Vaheri A, Lauharanta J, Sorsa T, Konttinen YT (1996) Matrix metalloproteinases, gelatinase and collagenase, in chronic leg ulcers. J Invest Dermatol 106:1119–1124

    Article  CAS  PubMed  Google Scholar 

  41. Yager DR, Nwomeh BC (1999) The proteolytic environment of chronic wounds. Wound Repair Regen 7:433–441

    Article  CAS  PubMed  Google Scholar 

  42. Trengove NJ, Stacey MC, MacAuley S (1999) Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Repair Regen 7:442–452

    Article  CAS  PubMed  Google Scholar 

  43. Lobmann R, Zemlin C, Motzkau M, Reschke K, Lehnert H (2006) Expression of matrix metalloproteinases and growth factors in diabetic foot wounds treated with a protease absorbent dressing. J Diabetes Complicat 20:329–335

    Article  PubMed  Google Scholar 

  44. McCarty SM, Percival SL (2013) Proteases and delayed wound healing. Adv Wound Care (New Rochelle) 2:438–447

    Article  Google Scholar 

  45. Baker EA, Leaper DJ (2000) Proteinases, their inhibitors and cytokine profiles in acute wound fluid. Wound Repair Regen 8:392–398

    Article  CAS  PubMed  Google Scholar 

  46. Yager DR, Zhang LY, Liang HX, Diegelmann RF, Cohen IK (1996) Wound fluids from human pressure ulcers contain elevated matrix metalloproteinase levels and activity compared to surgical wound fluids. J Invest Dermatol 107:743–748

    Article  CAS  PubMed  Google Scholar 

  47. Overall CM, López-Otín C (2002) Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2:657–672

    Article  CAS  PubMed  Google Scholar 

  48. Bennett NT, Schultz GS (1993) Growth factors and wound healing: Part II. Role in normal and chronic wound healing. Am J Surg 166:74–81

    Article  CAS  PubMed  Google Scholar 

  49. Rawlings ND, Barrett AJ, Bateman A (2010) MEROPS: the peptidase database. Nucleic Acids Res 38:D227–D233

    Article  CAS  PubMed  Google Scholar 

  50. Beidler SK, Douillet CD, Berndt DF, Keagy BA, Rich PB, Marston WA (2008) Multiplexed analysis of matrix metalloproteinases in leg ulcer tissue of patients with chronic venous insufficiency before and after compression therapy. Wound Repair Regen 16:642–648

    Article  PubMed  Google Scholar 

  51. Iuonut AMM, Dindelegan GC, Ciuce C (2011) Proteases as biomarkers in wound healing. TMJ 61:1–2

    Google Scholar 

  52. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Edwards DR, Handsley MM, Pennington CJ (2008) The ADAM metalloproteinases. Mol Aspects Med 29:258–289

    Article  CAS  PubMed  Google Scholar 

  54. Verma RP, Hansch C (2007) Matrix metalloproteinases (MMPs): chemical-biological functions and (Q) SARs. Bioorg Med Chem 15:2223–2268

    Article  CAS  PubMed  Google Scholar 

  55. Woessner JR (1994) The family of matrix metalloproteinases. Ann N Y Acad Sci 732:11–21

    Article  CAS  PubMed  Google Scholar 

  56. McCarty SM, Cochrane CA, Clegg PD, Percival SL (2012) The role of endogenous and exogenous enzymes in chronic wounds: a focus on the implications of aberrant levels of both host and bacterial proteases in wound healing. Wound Repair Regen 20:125–136

    Article  PubMed  Google Scholar 

  57. Gill SE, Parks WC (2008) Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol 40:1334–1347

    Article  CAS  PubMed  Google Scholar 

  58. Inoue M, Kratz G, Haegerstrand A, Ståhle-Bäckdahl M (1995) Collagenase expression is rapidly induced in wound-edge keratinocytes after acute injury in human skin, persists during healing, and stops at re-epithelialization. J Invest Dermatol 104:479–483

    Article  CAS  PubMed  Google Scholar 

  59. Dunsmore SE, Saarialho-Kere UK, Roby JD, Wilson CL, Matrisian LM, Welgus HG, Parks WC (1998) Matrilysin expression and function in airway epithelium. J Clin Invest 102:1321–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pilcher BK, Wang M, Qin XJ, Parks WC, Senior RM, Welgus HG (1999) Role of matrix metalloproteinases and their inhibition in cutaneous wound healing and allergic contact hypersensitivity. Ann N Y Acad Sci 878:12–24

    Article  CAS  PubMed  Google Scholar 

  61. Saarialho-Kere U, Kerkela E, Jahkola T, Suomela S, Keski-Oja J, Lohi J (2002) Epilysin (MMP-28) expression is associated with cell proliferation during epithelial repair. J Invest Dermatol 119:14–21

    Article  CAS  PubMed  Google Scholar 

  62. Corry DB, Rishi K, Kanellis J, Kiss A, Song Lz LZ, XuJ Feng L, Werb Z, Kheradmand F (2002) Decreased allergic lung inflammatory cell egression and increased susceptibility to asphyxiation in MMP2-deficiency. Nat Immunol 3:347–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Corry DB, Kiss A, Song LZ, Song L, Xu J, Lee SH, Werb Z, Kheradmand F (2004) Overlapping and independent contributions of MMP2 and MMP9 to lung allergic inflammatory cell egression through decreased CC chemokines. FASEB J 18:995–997

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Salmela MT, Pender SL, Karjalainen-Lindsberg ML, Puolakkainen P, Macdonald TT, Saarialho-Kere U (2004) Collagenase-1 (MMP-1), matrilysin-1 (MMP-7) and stromelysin-2 (MMP-10) are expressed by migrating enterocytes during intestinal wound healing. Scand J Gastroenterol 39:1095–1104

    Article  CAS  PubMed  Google Scholar 

  65. Warner RL, Bhagavathula N, Nerusu KC, Lateef H, Younkin E, Johnson KJ, Varani J (2004) Matrix metalloproteinases in acute inflammation: induction of MMP-3 and MMP-9 in fibroblasts and epithelial cells following exposure to pro-inflammatory mediators in vitro. Exp Mol Pathol 76:189–195

    Article  CAS  PubMed  Google Scholar 

  66. Parks WC, Wilson CL, López-Boado YS (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immuno 4:617–629

    Article  CAS  Google Scholar 

  67. Kawaguchi M, Hearing VJ (2011) The roles of ADAMs family proteinases in skin diseases. Enzyme Res. 482498

    Google Scholar 

  68. Ala-aho R, Kähäri VM (2005) Collagenases in cancer. Biochimie 87:273–286

    Article  CAS  PubMed  Google Scholar 

  69. Ravanti L1, Kähäri VM (2000) Matrix metalloproteinases in wound repair (review). Int J Mol Med 6:391–407

    Google Scholar 

  70. Danielsen PL, Holst AV, Maltesen HR, Bassi MR, Holst PJ, Heinemeier KM, Olsen J, Danielsen CC, Poulsen SS, Jorgensen LN, Agren MS (2011) Matrix metalloproteinase-8 overexpression prevents proper tissue repair. Surgery 150:897–906

    Google Scholar 

  71. Klein T, Bischoff R (2011) Physiology and pathophysiology of matrix metalloproteases. Amino Acids 41:271–290

    Article  CAS  PubMed  Google Scholar 

  72. Salo T, Mäkelä M, Kylmäniemi M, Autio-Harmainen H, Larjava H (1994) Expression of matrix metalloproteinase-2 and -9 during early human wound healing. Lab Invest 70:176–182

    CAS  PubMed  Google Scholar 

  73. Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V (1997) Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277:225–228

    Article  CAS  PubMed  Google Scholar 

  74. Lechapt-Zalcman E, Prulière-Escabasse V, Advenier D, Galiacy S, Charrière-Bertrand C, Coste A, Harf A, d’Ortho MP, Escudier E (2006) Transforming growth factor-beta1 increases airway wound repair via MMP-2 upregulation: a new pathway for epithelial wound repair. Am J Physiol Lung Cell Mol Physiol 290:1277–1282

    Article  CAS  Google Scholar 

  75. Buisson AC, Zahm JM, Polette M, Pierrot D, Bellon G, Puchelle E, Birembaut P, Tournier JM (1996) MMP9 is involved in the in vitro wound repair of human respiratory epithelium. J Cell Physiol 166:413–426

    Article  CAS  PubMed  Google Scholar 

  76. Mohan R, Chintala SK, Jung JC, Villar WV, McCabe F, Russo LA, Lee Y, McCarthy BE, Wollenberg KR, Jester JV, Wang M, Welgus HG, Shipley JM, Senior RM, Fini ME (2002) Matrix metalloproteinase gelatinase B (MMP-9) coordinates and effects epithelial regeneration. J Biol Chem 277:2065–2072

    Article  CAS  PubMed  Google Scholar 

  77. Kyriakides TR, Wulsin D, Skokos EA, Fleckman P, Pirrone A, Shipley JM, Senior RM, Bornstein P (2009) Mice that lack matrix metalloproteinase-9 display delayed wound healing associated with delayed re-epithelization and disordered collagen fibrillogenesis. Matrix Biol 28:65–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kobayashi T, Kim H, Liu X, Sugiura H, Kohyama T, Fang Q, Wen FQ, Abe S, Wang X, Atkinson JJ, Shipley JM, Senior RM, Rennard SI (2014) Matrix metalloproteinase-9 activates TGF-β and stimulates fibroblast contraction of collagen gels. Am J Physiol Lung Cell Mol Physiol 306:L1006–L1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mulholland B, Tuft SJ, Khaw PT (2005) Matrix metalloproteinase distribution during early corneal wound healing. Eye (Lond) 19:584–588

    Article  CAS  Google Scholar 

  80. Betsuyaku T, Fukuda Y, Parks WC, Shipley JM, Senior RM (2000) Gelatinase B is required for alveolar bronchiolization after intratracheal bleomycin. Am J Pathol 157:525–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Heljasvaara R, Nyberg P, Luostarinen J, Parikka M, Heikkilä P, Rehn M, Sorsa T, Salo T, Pihlajaniemi T (2005) Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases. Exp Cell Res 307:292–304

    Article  CAS  PubMed  Google Scholar 

  82. Murphy G, Cockett MI, Ward RV, Docherty AJ (1991) Matrix metalloproteinase degradation of elastin, type IV collagen and proteoglycan. A quantitative comparison of the activities of 95 kDa and 72 kDa gelatinases, stromelysins-1 and -2 and punctuated metalloproteinase (PUMP). Biochem J 277:277–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen P, McGuire JK, Hackman RC, Kim KH, Black RA, Poindexter K, Yan W, Liu P, Chen AJ, Parks WC, Madtes DK (2008) Tissue inhibitor of metalloproteinase-1 moderates airway re-epithelialization by regulating matrilysin activity. Am J Pathol 172:1256–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. McGuire JK, Li Q, Parks WC (2003) Matrilysin (matrix metalloproteinase-7) mediates E-cadherin ectodomain shedding in injured lung epithelium. Am J Pathol 162:1831–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Uría JA, López-Otín C (2000) Matrilysin-2, a new matrix metalloproteinase expressed in human tumors and showing the minimal domain organization required for secretion, latency, and activity. Cancer Res 60:4645–4751

    Google Scholar 

  86. Marchenko GN, Ratnikov BI, Rozanov DV, Godzik A, Deryugina EI, Strongin AY (2001) Characterization of matrix metalloproteinase-26, a novel metalloproteinase widely expressed in cancer cells of epithelial origin. Biochem J 356:705–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lohi J, Wilson CL, Roby JD, Parks WC (2001) Epilysin, a novel human matrix metalloproteinase (MMP-28) expressed in testis and keratinocytes and in response to injury. J Biol Chem 276:10134–10144

    Article  CAS  PubMed  Google Scholar 

  88. Chakraborti S, Mandal M, Mandal A, Chakraborti T (2003) Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 253:269–285

    Article  CAS  PubMed  Google Scholar 

  89. Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA, Goldberg GI (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase: Isolation of the activated form of the membrane metalloprotease. J Biol Chem 270:5331–5338

    Article  CAS  PubMed  Google Scholar 

  90. Itoh Y (2006) MT1-MMP: a key regulator of cell migration in tissue. IUBMB Life 58:589–596

    Article  CAS  PubMed  Google Scholar 

  91. Joo CK, Seomun Y (2008) Matrix metalloproteinase (MMP) and TGFβ1-stimulated cell migration in skin and cornea wound healing. Cell Adh Migr 2:252–253

    Article  PubMed  PubMed Central  Google Scholar 

  92. Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477:267–283

    Article  CAS  PubMed  Google Scholar 

  93. Vaalamo M, Leivo T, Saarialho-Kere U (1999) Differential expression of tissue inhibitors of metalloproteinases (TIMP-1, -2, -3, and -4) in normal and aberrant wound healing. Human Pathol 30:795–802

    Article  CAS  Google Scholar 

  94. Wilgus TA, Roy S, McDaniel JC (2013) Neutrophils and wound repair: positive actions and negative reactions. Adv Wound Care (New Rochelle) 2:379–388

    Article  PubMed Central  Google Scholar 

  95. Enoch S, Price P (2004) Cellular, molecular and biochemical differences in the pathophysiology of healing between acute wounds, chronic wounds and wounds in the aged. World Wide Wounds 13:1–17

    Google Scholar 

  96. Young T (2012) Using a protease test to inform wound care treatments decisions. Wounds UK 8:74–80

    Google Scholar 

  97. Vin F, Teot L, Meaume S (2002) The healing properties of PROMOGRAN in venous leg ulcers. J Wound Care 11:335–341

    Article  CAS  PubMed  Google Scholar 

  98. Veves A, Sheenan P, Pham HT (2002) A randomized, controlled trial of Promogran (a collagen/oxidised regenerated cellulose dressing) vs standard treatment in the management of diabetic foot ulcers. Arch Surg 137:822–827

    Article  CAS  PubMed  Google Scholar 

  99. Gottrup F, Cullen BM, Karlsmark T, Bischoff-Mikkelsen M, Nisbet L, Gibson MC (2013) Randomized controlled trial on collagen/oxidized regenerated cellulose/silver treatment. Wound Repair Regen 21:216–225

    Article  PubMed  Google Scholar 

  100. Smeets R, Ulrich D, Unglaub F, Wöltje M, Pallua N (2008) Effect of oxidized regenerated cellulose/collagen matrix on proteases in wound exudate of patients with chronic venous ulceration. Int Wound J 5:195–203

    Article  PubMed  Google Scholar 

  101. Mustoe TA, O’Shaughnessy K, Kloeters O (2006) Chronic wound pathogenesis and current treatment strategies: a unifying hypothesis. Plast Reconstr Surg 117:35S–41S

    Article  CAS  PubMed  Google Scholar 

  102. Yan L, Borregaard N, Kjeldsen L, Moses MA (2001) The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL) modulation of MMP-9 activity by NGAL. J Biol Chem 276:37258–37265

    Article  CAS  PubMed  Google Scholar 

  103. Koppel AC, Kiss A, Hindes A, Burns CJ, Marmer BL, Goldberg G, Blumenberg M, Efimova T (2014) Delayed skin wound repair in proline-rich protein tyrosine kinase 2 knockout mice. Am J Physiol Cell Physiol 306:C899–C909

    Article  CAS  PubMed  Google Scholar 

  104. Chan YC, Roy S, Huang Y, Khanna S, Sen CK (2012) The microRNA miR-199a-5p down-regulation switches on wound angiogenesis by de repressing the v-ets erythroblastosis virus E26 oncogene homolog 1-matrix metalloproteinase-1 pathway. J Biol Chem 287:41032–41043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chakraborty PD, Bhattacharyya D (2005) In vitro growth inhibition of microbes by human placental extract. Curr Sci 88:782–786

    CAS  Google Scholar 

  106. Chakraborty PD, Bhattacharyya D (2005) Isolation of fibronectin type III like peptide from human placental extract used as wound healer. J Chromatogr B 818:67–73

    Article  CAS  Google Scholar 

  107. Chakraborty PD, Bhattacharyya D, Pal S, Ali N (2006) In vitro induction of nitric oxide by mouse peritoneal macrophages treated with human placental extract. Int Immunopharmacol 6:100–107

    Article  CAS  PubMed  Google Scholar 

  108. Chakraborty PD, Bhattacharyya D (2012) Aqueous extract of human placenta as a therapeutic agent in Recent Advances in Research on the Human Placenta. In Tech Publishers, Rijeka, Croatia, pp, 77–92

    Google Scholar 

  109. Chakraborty PD, De D, Bandyopadhyay S, Bhattacharyya D (2009) Human aqueous placental extract as a wound healer. J Wound Care 18:462–467

    Article  CAS  PubMed  Google Scholar 

  110. De D, Chakraborty PD, Bhattacharyya D (2010) Regulation of trypsin activity by peptide fraction of an aqueous extract of human placenta used as wound healer. J Cell Physiol 226:2033–2040

    Article  CAS  Google Scholar 

  111. De D, Chakraborty PD, Mitra J, Sharma K, Mandal S, Das A, Chakrabarti S, Bhattacharyya D (2013) Ubiquitin-like protein from human placental extract exhibits collagenase activity. PLoS ONE 8:e59585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bird PI, Trapani JA, Villadangos JA (2009) Endolysosomal proteases and their inhibitors in immunity. Nat Rev Immunol 9:871–882

    Article  CAS  PubMed  Google Scholar 

  113. Sim RB, Tsiftsoglou SA (2004) Proteases of the complement system. Biochem Soc Trans 32:21–27

    Article  CAS  PubMed  Google Scholar 

  114. Pavan R, Jain S, Shraddha Kumar A (2012) Properties and therapeutic application of bromelain: a review. Biotechnol Res Int. 2012:976203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Antoniak S, Mackman N (2014) Multiple roles of the coagulation protease cascade during virus infection. Blood 123:2605–2613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sharma K, Mukherjee C, Roy S, De D, Bhattacharyya D (2014) Human placental extract mediated inhibition of proteinase K: implications of heparin and glycoproteins in wound physiology. J cell physiol 229:1212–1223

    Article  CAS  PubMed  Google Scholar 

  117. Singh N, Bhattacharyya D (2017) Cholesterol and Its Derivatives Reversibly Inhibit Proteinase K. J Cell Physiol 232:596–609

    Google Scholar 

Download references

Acknowledgements

NS was supported by DST-INSPIRE fellowship, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasish Bhattacharyya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Singh, N., Bhattacharyya, D. (2017). Proteases in Wound Healing and Immunity. In: Chakraborti, S., Chakraborti, T., Dhalla, N. (eds) Proteases in Human Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-10-3162-5_8

Download citation

Publish with us

Policies and ethics