Skip to main content

Proteases in Neuropathophysiology

  • Chapter
  • First Online:
Proteases in Human Diseases
  • 780 Accesses

Abstract

Proteases in normal cells are important in performing essential biological processes in living systems. A balance between proteases and their inhibitors occurs for normal physiological functions and any disturbance of this balance usually leads to many diseases. The neuronal diseases are one of them. In this chapter, we will focus on the role of proteases and some protease inhibitors in various neurological disorders. Here, we would like to discuss about the role of different proteases (serine protease, cysteine protease, aspartic protease, matrix metallo protease, etc.) in neuropathology, like neuropathy, neuroinflammation, and also some neurological diseases, namely, Alzheimer’s disease and Parkinson’s disease. At the end of this chapter, we will also discuss about the involvement of serine proteases and their inhibitors in overall neurological disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5:785–799

    Article  CAS  PubMed  Google Scholar 

  2. Rani K, Rana R, Datt S (2012) Review on latest overview of proteases. Int J Curr Life Sci 2(1):12–18

    Google Scholar 

  3. Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597–635

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Craik CS, Page MJ, Madison EL (2011) Proteases as therapeutics. Biochem J 435:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ledesma MD, Da Silva JS, Crassaerts K, Delacourte A, De Strooper B et al (2000) Brain plasmin enhances APP α-cleavage and Aβ degradation and is reduced in Alzheimer’s disease brains. EMBO Rep 1:530–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. López-Otín C, Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J Biol Chem 283:30433–30437

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yong VW (2005) Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci 6:931–944

    Article  CAS  PubMed  Google Scholar 

  8. Hu J, Van den Steen PE, Sang Q-XA, Opdenakker G (2007) Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug Discov 6:480–498

    Article  CAS  PubMed  Google Scholar 

  9. Murphy G, Willenbrock F (1995) Tissue inhibitors of matrix metalloendopeptidases. Methods Enzymol 248:496

    Article  CAS  PubMed  Google Scholar 

  10. Rosenberg GA (2002) Matrix metalloproteinases in neuroinflammation. Glia 39:279–291

    Article  PubMed  Google Scholar 

  11. Murata Y, Rosell A, Scannevin RH, Rhodes KJ, Wang X et al (2008) Extension of the thrombolytic time window with minocycline in experimental stroke. Stroke 39:3372–3377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Komori K, Nonaka T, Okada A, Kinoh H, Hayashita-Kinoh H et al (2004) Absence of mechanical allodynia and Aβ-fiber sprouting after sciatic nerve injury in mice lacking membrane-type 5 matrix metalloproteinase. FEBS Lett 557:125–128

    Article  CAS  PubMed  Google Scholar 

  13. Clark AK, Yip PK, Grist J, Gentry C, Staniland AA et al (2007) Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci 104:10655–10660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chattopadhyay S, Myers RR, Janes J, Shubayev V (2007) Cytokine regulation of MMP-9 in peripheral glia: implications for pathological processes and pain in injured nerve. Brain Behav Immun 21:561–568

    Article  CAS  PubMed  Google Scholar 

  15. Ji R-R, Xu Z-Z, Wang X, Lo EH (2009) Matrix metalloprotease regulation of neuropathic pain. Trends Pharmacol Sci 30:336–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kawasaki Y, Xu Z-Z, Wang X, Park JY, Zhuang Z-Y et al (2008) Distinct roles of matrix metalloproteases in the early-and late-phase development of neuropathic pain. Nat Med 14:331–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schönbeck U, Mach F, Libby P (1998) Generation of biologically active IL-1β by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1β processing. J Immunol 161:3340–3346

    PubMed  Google Scholar 

  18. Wilczynski GM, Konopacki FA, Wilczek E, Lasiecka Z, Gorlewicz A et al (2008) Important role of matrix metalloproteinase 9 in epileptogenesis. J Cell Biol 180:1021–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rice A, Farquhar-Smith W, Nagy I (2002) Endocannabinoids and pain: spinal and peripheral analgesia in inflammation and neuropathy. Prostaglandins. Leukot Essent Fatty Acids (PLEFA) 66:243–256

    Article  CAS  Google Scholar 

  20. DomBourian MG, Turner NA, Gerovac TA, Vemuganti R, Miranpuri GS et al (2006) B1 and TRPV-1 receptor genes and their relationship to hyperalgesia following spinal cord injury. Spine 31:2778–2782

    Article  PubMed  Google Scholar 

  21. Robak E, Wierzbowska A, Chmiela M, Kulczycka L, Sysa-Jedrejowska A et al (2006) Circulating total and active metalloproteinase-9 and tissue inhibitor of metalloproteinases-1 in patients with systemic lupus erythomatosus. Mediat Inflamm

    Google Scholar 

  22. Richter F, Lehmenkühler A (2008) Cortical spreading depression (CSD). Der Schmerz 22:544–550

    Article  CAS  PubMed  Google Scholar 

  23. Dalkara T, Nozari A, Moskowitz MA (2010) Migraine aura pathophysiology: the role of blood vessels and microembolisation. Lancet Neurol 9:309–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bernecker C, Pailer S, Kieslinger P, Horejsi R, Möller R et al (2011) Increased matrix metalloproteinase activity is associated with migraine and migraine-related metabolic dysfunctions. Eur J Neurol 18:571–576

    Article  CAS  PubMed  Google Scholar 

  25. Fan K, Li D, Zhang Y, Han C, Liang J et al (2015) The induction of neuronal death by up-regulated microglial cathepsin H in LPS-induced neuroinflammation. J neuroinflamm 12:1

    Article  CAS  Google Scholar 

  26. Kopitar-Jerala N (2015) The role of stefin B in neuro-inflammation. Front Cell Neurosci 9

    Google Scholar 

  27. Jian C, Wenjuan H, Huaizhen R (2009) Protease-activated receptors in neuropathic pain: an important mediator between neuron and glia. J Med Coll PLA 24:244–249

    Article  Google Scholar 

  28. Shpacovitch V, Feld M, Hollenberg M, Luger T, Steinhoff M (2008) Role of protease-activated receptors in inflammatory responses, innate and adaptive immunity. J Leukoc Biol 83:1309–1322

    Article  CAS  PubMed  Google Scholar 

  29. Vicuña L, Strochlic DE, Latremoliere A, Bali KK, Simonetti M et al (2015) The serine protease inhibitor SerpinA3N attenuates neuropathic pain by inhibiting T cell-derived leukocyte elastase. Nat Med 21:518–523

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3:489–501

    Article  CAS  PubMed  Google Scholar 

  31. Strojnik T, Kos J, Židanik B, Golouh R, Lah T (1999) Cathepsin B immunohistochemical staining in tumor and endothelial cells is a new prognostic factor for survival in patients with brain tumors. Clin Cancer Res 5:559–567

    CAS  PubMed  Google Scholar 

  32. Abe T, Mori T, Kohno K, Sciki M, Hayakawa T et al (1994) Expression of 72 kDa type IV collagenase and invasion activity of human glioma cells. Clin Exp Metas 12:296–304

    Article  CAS  Google Scholar 

  33. Uhm JH, Dooley NP, Villemure J-G, Yong VW (1996) Glioma invasionin vitro: regulation by matrix metalloprotease-2 and protein kinase C. Clin Exp Metas 14:421–433

    Article  CAS  Google Scholar 

  34. Sawaya RE, Yamamoto M, Gokaslan ZL, Wang SW, Mohanam S et al (1996) Expression and localization of 72 kDa type IV collagenase (MMP-2) in human malignant gliomas in vivo. Clin Exp Metas 14:35–42

    Article  CAS  Google Scholar 

  35. Sivaparvathi M, McCutcheon I, Sawaya R, Nicolson GL, Rao JS (1996) Expression of cysteine protease inhibitors in human gliomas and meningiomas. Clin Exp Metas 14:344–350

    Article  CAS  Google Scholar 

  36. Alzheimer A (1907) About a peculiar disease of the cerebral cortex. Allgemeine Zeitschrift fur Psychiatrie und Psychish-Gerichtlich Medicin 64:146–148

    Google Scholar 

  37. Bernstein HG (2005) Proteases and Alzheimer’s disease: present knowledge and emerging concepts of therapy. In: Proteases in the brain. Springer, Berlin, pp 1–23

    Google Scholar 

  38. Fiorelli TN (2013) Proteolytic processing of the amyloid precursor protein during apoptosis and cell cycle: implications for Alzheimer’s disease

    Google Scholar 

  39. Hoyer S (2004) Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol 490:115–125

    Article  CAS  PubMed  Google Scholar 

  40. Schmidt B (2003) Aspartic proteases involved in Alzheimer’s disease. ChemBioChem 4:366–378

    Article  CAS  PubMed  Google Scholar 

  41. Vincent B (2004) ADAM proteases: protective role in Alzheimer’s and prion diseases? Curr Alzheimer Res 1:165–174

    Article  CAS  PubMed  Google Scholar 

  42. De Strooper B (2010) Proteases and proteolysis in Alzheimer disease: a multifactorial view on the disease process. Physiol Rev 90:465–494

    Article  PubMed  Google Scholar 

  43. Bernstein H, Bruszis S, Schmidt D, Wiederanders B, Dorn A (1988) Immunodetection of cathepsin D in neuritic plaques found in brains of patients with dementia of Alzheimer type. J Hirnforsch 30:613–618

    Google Scholar 

  44. Bernstein H-G, Kirschke H, Wiederanders B, Schmidt D, Rinne A (1990) Antigenic expression of cathepsin B in aged human brain. Brain Res Bull 24:543–549

    Article  CAS  PubMed  Google Scholar 

  45. Cataldo AM, Nixon RA (1990) Enzymatically active lysosomal proteases are associated with amyloid deposits in Alzheimer brain. Proc Natl Acad Sci 87:3861–3865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nakanishi H (2003) Neuronal and microglial cathepsins in aging and age-related diseases. Ageing Res Rev 2:367–381

    Article  CAS  PubMed  Google Scholar 

  47. Bendiske J, Bahr BA (2003) Lysosomal activation is a compensatory response against protein accumulation and associated synaptopathogenesis—an approach for slowing Alzheimer disease? J Neuropathol Exp Neurol 62:451–463

    Article  CAS  PubMed  Google Scholar 

  48. McNaught KSP, Olanow CW (2003) Proteolytic stress: a unifying concept for the etiopathogenesis of Parkinson’s disease. Ann Neurol 53:S73–S86

    Article  CAS  PubMed  Google Scholar 

  49. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A et al (1997) Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    Article  CAS  PubMed  Google Scholar 

  50. Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M et al (1998) AlaSOPro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat Genet 18:106–108

    Article  PubMed  Google Scholar 

  51. Gasser T (2001) Genetics of Parkinson’s disease. J Neurol 248:833–840

    Article  CAS  PubMed  Google Scholar 

  52. Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068

    Article  CAS  PubMed  Google Scholar 

  53. McNaught KSP, Olanow CW, Halliwell B, Isacson O, Jenner P (2001) Failure of the ubiquitin–proteasome system in Parkinson’s disease. Nat Rev Neurosci 2:589–594

    Article  CAS  PubMed  Google Scholar 

  54. Tanaka Y, Engelender S, Igarashi S, Rao RK, Wanner T et al (2001) Inducible expression of mutant α-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Hum Mol Genet 10:919–926

    Article  CAS  PubMed  Google Scholar 

  55. Lee M, Hyun DH, Jenner P, Halliwell B (2001) Effect of proteasome inhibition on cellular oxidative damage, antioxidant defences and nitric oxide production. J Neurochem 78:32–41

    Article  CAS  PubMed  Google Scholar 

  56. Tatton NA, Maclean-Fraser A, Tatton WG, Perl DP, Warren CO (1998) A fluorescent double-labeling method to detect and confirm apoptotic nuclei in parkinson’s disease. Ann Neurol 44:S142–S148

    Article  CAS  PubMed  Google Scholar 

  57. Crocker SJ, Smith PD, Jackson-Lewis V, Lamba WR, Hayley SP et al (2003) Inhibition of calpains prevents neuronal and behavioral deficits in an MPTP mouse model of Parkinson’s disease. J Neurosci 23:4081–4091

    CAS  PubMed  Google Scholar 

  58. Hodara R, Norris EH, Giasson BI, Mishizen-Eberz AJ, Lynch DR, Lee VMY, Ischiropoulos H (2004) Functional Consequences of α-Synuclein Tyrosine Nitration, Diminished binding to lipid vesicles and increased fibril formation. J Biol Chem 279(46):47746–47753

    Article  CAS  PubMed  Google Scholar 

  59. Surmeier D, Guzman J, Sanchez-Padilla J, Goldberg J (2010) Recent advances in Parkinson’s disease: basic research. Elsevier, Amsterdam, pp 59–77

    Google Scholar 

  60. Mishizen-Eberz AJ, Guttmann RP, Giasson BI, Day GA, Hodara R et al (2003) Distinct cleavage patterns of normal and pathologic forms of α-synuclein by calpain I in vitro. J Neurochem 86:836–847

    Article  CAS  PubMed  Google Scholar 

  61. Mouatt-Prigent A, Karlsson J, Agid Y, Hirsch E (1996) Increased M-calpain expression in the mesencephalon of patients with Parkinson’s disease but not in other neurodegenerative disorders involving the mesencephalon: a role in nerve cell death? Neuroscience 73:979–987

    Article  CAS  PubMed  Google Scholar 

  62. Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 28:57–87

    Article  CAS  PubMed  Google Scholar 

  63. Tao X, Tong L (2003) Crystal structure of human DJ-1, a protein associated with early onset Parkinson’s disease. J Biol Chem 278:31372–31379

    Article  CAS  PubMed  Google Scholar 

  64. Wilson MA, Collins JL, Hod Y, Ringe D, Petsko GA (2003) The 1.1-Å resolution crystal structure of DJ-1, the protein mutated in autosomal recessive early onset Parkinson’s disease. Proc Natl Acad Sci 100:9256–9261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Miller DW, Ahmad R, Hague S, Baptista MJ, Canet-Aviles R et al (2003) L166P mutant DJ-1, causative for recessive Parkinson’s disease, is degraded through the ubiquitin-proteasome system. J Biol Chem 278:36588–36595

    Article  CAS  PubMed  Google Scholar 

  66. Moore DJ, Zhang L, Dawson TM, Dawson VL (2003) A missense mutation (L166P) in DJ-1, linked to familial Parkinson’s disease, confers reduced protein stability and impairs homo-oligomerization. J Neurochem 87:1558–1567

    Article  CAS  PubMed  Google Scholar 

  67. Stone SR, Maraganore JM (1992) Hirudin interactions with thrombin. In: Thrombin, Springer, Berlin, pp 219–256

    Google Scholar 

  68. Abraham CR, Selkoe DJ, Potter H (1988) Immunochemical identification of the serine protease inhibitor α 1-antichymotrypsin in the brain amyloid deposits of Alzheimer’s disease. Cell 52:487–501

    Article  CAS  PubMed  Google Scholar 

  69. Cunningham DD, Long GL (1987) Proteases in biological control and biotechnology

    Google Scholar 

  70. Cuccioloni M, Mozzicafreddo M, Bonfili L, Cecarini V, Eleuteri AM et al (2009) Natural occurring polyphenols as template for drug design. Focus on serine proteases. Chem Biol Drug Des 74:1–15

    Article  CAS  PubMed  Google Scholar 

  71. Pittman R (1984) Neuron-target cell interactions may involve protease-inhibitor interactions, p 662

    Google Scholar 

  72. Kalderon N (1984) Schwann cell proliferation and localized proteolysis: expression of plasminogen-activator activity predominates in the proliferating cell populations. Proc Natl Acad Sci 81:7216–7220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Turgeon VL, Lloyd ED, Wang S, Festoff BW, Houenou LJ (1998) Thrombin perturbs neurite outgrowth and induces apoptotic cell death in enriched chick spinal motoneuron cultures through caspase activation. J Neurosci 18:6882–6891

    CAS  PubMed  Google Scholar 

  74. Blaber SI, Ciric B, Christophi GP, Bernett MJ, Blaber M et al (2004) Targeting kallikrein 6 proteolysis attenuates CNS inflammatory disease. FASEB J 18:920–922

    CAS  PubMed  Google Scholar 

  75. Diamandis EP, Yousef GM, Petraki C, Soosaipillai AR (2000) Human kallikrein 6 as a biomarker of Alzheimer’s disease. Clin Biochem 33:663–667

    Article  CAS  PubMed  Google Scholar 

  76. Scarisbrick IA, Linbo R, Vandell AG, Keegan M, Blaber SI et al (2008) Kallikreins are associated with secondary progressive multiple sclerosis and promote neurodegeneration. Biol Chem 389:739–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zarghooni M, Soosaipillai A, Grass L, Scorilas A, Mirazimi N et al (2002) Decreased concentration of human kallikrein 6 in brain extracts of Alzheimer’s disease patients. Clin Biochem 35:225–231

    Article  CAS  PubMed  Google Scholar 

  78. Uchida A, Oka Y, Aoyama M, Suzuki S, Yokoi T et al (2004) Expression of myelencephalon-specific protease in transient middle cerebral artery occlusion model of rat brain. Mol Brain Res 126:129–136

    Article  CAS  PubMed  Google Scholar 

  79. Scarisbrick I, Blaber S, Lucchinetti CF, Genain C, Blaber M et al (2002) Activity of a newly identified serine protease in CNS demyelination. Brain 125:1283–1296

    Article  CAS  PubMed  Google Scholar 

  80. Scarisbrick I, Blaber S, Tingling J, Rodriguez M, Blaber M et al (2006) Potential scope of action of tissue kallikreins in CNS immune-mediated disease. J Neurosci 178:167–176

    CAS  Google Scholar 

  81. Mitsui S, Okui A, Uemura H, Mizuno T, Yamada T et al (2002) Decreased cerebrospinal fluid levels of neurosin (KLK6), an aging-related protease, as a possible new risk factor for Alzheimer’s disease. Ann N Y Acad Sci 977:216–223

    Article  CAS  PubMed  Google Scholar 

  82. Selkoe DJ (1999) Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 399:A23–A31

    Article  CAS  PubMed  Google Scholar 

  83. Wu W, Jiang H, Wang M, Zhang D (2013) Meta-analysis of the association between urokinase-plasminogen activator gene rs2227564 polymorphism and Alzheimer’s disease. Am J Alzheimer Dis Other Dement 28:517–523

    Article  Google Scholar 

  84. Asahina M, Yoshiyama Y, Hattori T (2000) Expression of matrix metalloproteinase-9 and urinary-type plasminogen activator in Alzheimer’s disease brain. Clin Neuropathol 20:60–63

    Article  Google Scholar 

  85. Abraham CR, Potter H (1989) Alpha 1-antichymotrypsin in brain aging and disease. Prog Clin Biol Res 317:1037–1048

    CAS  PubMed  Google Scholar 

  86. Griffin JH, Fernández JA, Lyden PD, Zlokovic BV (2016) Activated protein C promotes neuroprotection: mechanisms and translation to the clinic. Thromb Res 141:S62–S64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Han MH, Hwang S-I, Roy DB, Lundgren DH, Price JV et al (2008) Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451:1076–1081

    Article  CAS  PubMed  Google Scholar 

  88. Steele FR, Chader GJ, Johnson LV, Tombran-Tink J (1993) Pigment epithelium-derived factor: neurotrophic activity and identification as a member of the serine protease inhibitor gene family. Proc Natl Acad Sci 90:1526–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Osterwalder T, Contartese J, Stoeckli E, Kuhn T, Sonderegger P (1996) Neuroserpin, an axonally secreted serine protease inhibitor. EMBO J 15:2944

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parames C. Sil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sarkar, A., Ghosh, S., Dutta, S., Sil, P.C. (2017). Proteases in Neuropathophysiology. In: Chakraborti, S., Chakraborti, T., Dhalla, N. (eds) Proteases in Human Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-10-3162-5_7

Download citation

Publish with us

Policies and ethics