Skip to main content

Association of Matrix Metalloproteinases with CVD: Functional Aspects

  • Chapter
  • First Online:
Proteases in Human Diseases
  • 767 Accesses

Abstract

Matrix metalloproteinases (MMPs) are the members of the family of proteolytic enzymes that have an imperative role in several physiologic and pathologic processes. MMPs mediate changes in extracellular matrix and target growth factor-binding proteins, cell–cell adhesion molecules, and other structural extracellular matrix proteins besides others. Along with their tissue inhibitors, they play an apparent role, ranging from vascular remodeling to neogenesis; extracellular matrix degradation to plaque formation; and from plaque rupture to heart failure. Hence, MMPs regulate a plethora of biological processes and are regulated in vivo by their endogenous inhibitors, e.g., tissue inhibitors of metalloproteinases (TIMPs). Keeping in view the plenty of evidence available in the literature, MMPs can be envisaged as central players in cardiovascular disorders such as heart failure, atherosclerosis, platelet aggregation, stroke, cardiomyopathy, peripheral vascular disease, hypertensive heart disease, and aortic aneurysms. Thus, MMPs can be viewed as a most versatile potential targets for therapeutic intervention in such disorders. This chapter highlights the functional role of MMPs in various cardiovascular disease conditions.

Authors Veena Dhawan and Riyaz Ahmad Rather have equally contributed to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roger VL, Go AS, Lloyd-Jones DM et al (2011) Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation 123:e18–e209

    Article  PubMed  Google Scholar 

  2. Horwich TB, Fonarow GC (2010) Glucose, obesity, metabolic syndrome, and diabetes relevance to incidence of heart failure. J Am Coll Cardiol 55:283–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Newby AC (2005) Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev 85:1–31

    Article  CAS  PubMed  Google Scholar 

  4. Spinale FG (2002) Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res 90:520–530

    Article  CAS  PubMed  Google Scholar 

  5. Velagaleti RS, Gona P, Larson MG et al (2010) Multimarker approach for the prediction of heart failure incidence in the community. Circulation 122:1700–1706

    Article  PubMed  PubMed Central  Google Scholar 

  6. Galis ZS, Sukhova GK, Lark MW, Libby P (1994) Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94:2493–2503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cleutjens JP, Kandala JC, Guarda E et al (1995) Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol 27:1281–1292

    Article  CAS  PubMed  Google Scholar 

  8. Mark D, Sternlicht Zena W (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  Google Scholar 

  9. Borkakoti N (2000) Structural studies of matrix metalloproteinases. J Mol Med 78:261–268

    Article  CAS  PubMed  Google Scholar 

  10. Moore CS, Crocker SJ (2012) An alternate perspective on the roles of TIMPs and MMPs in pathology. Am J Pathol 180:12–16

    Article  CAS  PubMed  Google Scholar 

  11. Woessner JF (1991) Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 5:2145–2154

    CAS  PubMed  Google Scholar 

  12. Lindsey ML, Zamilpa R (2012) Temporal and spatial expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases following myocardial infarction. Cardiovasc Ther 30:31–41

    Article  CAS  PubMed  Google Scholar 

  13. Kleiner DE, Stetler-Stevenson WG (1994) Matrix metalloproteinases and metastasis. Cancer Chemother Pharmacol 43:S42–S51

    Article  Google Scholar 

  14. Lepage T, Gache C (1990) Early expression of a collagenase-like hatching enzyme gene in the sea urchin embryo. EMBO J 9:3003

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang T, Aoki T, Iwata K et al (2000) One-step sandwich enzyme immunoassay using monoclonal antibodies for detection of human enamelysin (MMP-20). Eur J Oral Sci 108:530–537

    Article  CAS  PubMed  Google Scholar 

  16. Overall CM, López-Otín C (2002) Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2:657–672

    Article  CAS  PubMed  Google Scholar 

  17. Hideaki N, Robert V, Gillian M (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573

    Article  CAS  Google Scholar 

  18. Murphy G, Nguyen Q, Cockett MI et al (1994) Assessment of the role of the fibronectin-like domain of gelatinase A by analysis of a deletion mutant. J Biol Chem 269:6632–6636

    CAS  PubMed  Google Scholar 

  19. Bode W, Gomis-Rüth FX, Stocker W (1993) Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’. FEBS Lett 331:134–140

    Article  CAS  PubMed  Google Scholar 

  20. Stöcker W, Grams F, Baumann U et al (1995) The metzincins—topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci 4:823–840

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jed F, Shahriar M (2006) Recent advances in MMP inhibitor design. Cancer Metastasis Rev 25:115–136

    Article  CAS  Google Scholar 

  22. Bertini I, Calderone V, Fragai M et al (2003) X-ray structures of binary and ternary enzyme-product-inhibitor complexes of matrix metalloproteinases. Angew Chem 115:2777–2780

    Article  Google Scholar 

  23. Streuli C (1999) Extracellular matrix remodelling and cellular differentiation. Curr Opin Cell Biol 11:634–640

    Article  CAS  PubMed  Google Scholar 

  24. Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3:a005058

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cox TR, Erler JT (2011) Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Models Mech 4:165–178

    Article  CAS  Google Scholar 

  26. Kar S, Subbaram S, Carrico PM, Melendez JA (2010) Redox-control of matrix metalloproteinase-1: a critical link between free radicals, matrix remodeling and degenerative disease. Respir Physiol Neurobiol 174:299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rajagopalan S, Meng XP, Ramasamy S et al (1996) Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest 98:2572–2579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Blanco-Colio LM, Martín-Ventura JL, Vivanco F et al (2006) Biology of atherosclerotic plaques: what we are learning from proteomic analysis. Cardiovasc Res 72:18–29

    Article  CAS  PubMed  Google Scholar 

  30. Döring Y, Noels H, Weber C (2012) The use of high-throughput technologies to investigate vascular inflammation and atherosclerosis. Arterioscler Thromb Vasc Biol 32:182–195

    Article  PubMed  CAS  Google Scholar 

  31. Orbe J, Fernandez L, Rodriguez JA et al (2003) Different expression of MMPs/TIMP-1 in human atherosclerotic lesions. Relation to plaque features and vascular bed. Atherosclerosis 170:269–276

    Article  CAS  PubMed  Google Scholar 

  32. Knox JB, Sukhova GK, Whittemore AD, Libby P (1997) Evidence for altered balance between matrix metalloproteinases and their inhibitors in human aortic diseases. Circulation 95:205–212

    Article  CAS  PubMed  Google Scholar 

  33. Luttun A, Lutgens E, Manderveld A et al (2004) Loss of matrix metalloproteinase-9 or matrix metalloproteinase-12 protects apolipoprotein E-deficient mice against atherosclerotic media destruction but differentially affects plaque growth. Circulation 109:1408–1414

    Article  CAS  PubMed  Google Scholar 

  34. Konstantino Y, Nguyen TT, Wolk R et al (2009) Potential implications of matrix metalloproteinase-9 in assessment and treatment of coronary artery disease. Biomarkers 14:118–129

    Article  CAS  PubMed  Google Scholar 

  35. Lee JK, Zaidi SH, Liu P et al (1998) A serine elastase inhibitor reduces inflammation and fibrosis and preserves cardiac function after experimentally-induced murine myocarditis. Nat Med 4:1383–1391

    Article  CAS  PubMed  Google Scholar 

  36. Tyagi SC, Campbell SE, Reddy HK et al (1996) Matrix metalloproteinase activity expression in infarcted, noninfarcted and dilated cardiomyopathic human hearts. Mol Cell Biochem 155:13–21

    Article  CAS  PubMed  Google Scholar 

  37. Tyagi SC, Ratajska A, Weber KT (1993) Myocardial matrix metalloproteinase(s): localization and activation. Mol Cell Biochem 126:49–59

    Article  CAS  PubMed  Google Scholar 

  38. Sun M, Dawood F, Wen WH et al (2004) Excessive tumor necrosis factor activation after infarction contributes to susceptibility of myocardial rupture and left ventricular dysfunction. Circulation 110:3221–3228

    Article  CAS  PubMed  Google Scholar 

  39. Kameda K, Matsunaga T, Abe N et al (2006) Increased pericardial fluid level of matrix metalloproteinase-9 activity in patients with acute myocardial infarction: possible role in the development of cardiac rupture. Circ J 70:673–678

    Article  CAS  PubMed  Google Scholar 

  40. Lalu MM, Pasini E, Schulze CJ et al (2005) Ischemia-reperfusion injury activates matrix metalloproteinases in the human heart. Eur Heart J 26:27–35

    Article  CAS  PubMed  Google Scholar 

  41. Sun M, Opavsky MA, Stewart DJ et al (2003) Temporal response and localization of integrins beta1 and beta 3 in the heart after myocardial infarction: regulation by cytokines. Circulation 107:1046–1052

    Article  CAS  PubMed  Google Scholar 

  42. Spinale FG, Coker ML, Krombach SR et al (1999) Matrix metalloproteinase inhibition during the development of congestive heart failure: effects on left ventricular dimensions and function. Circ Res 85:364–376

    Article  CAS  PubMed  Google Scholar 

  43. Peterson JT, Hallak H, Johnson L et al (2001) Matrix metalloproteinase inhibition attenuates left ventricular remodeling and dysfunction in a rat model of progressive heart failure. Circulation 103:2303–2309

    Article  CAS  PubMed  Google Scholar 

  44. Little WC, Applegate RJ (1993) Congestive heart failure: systolic and diastolic function. J Cardiothorac Vasc Anesth 7:2–5

    Article  CAS  PubMed  Google Scholar 

  45. Kato S, Spinale FG, Tanaka R et al (1995) Inhibition of collagen cross-linking: effects on fibrillar collagen and left ventricular diastolic function. Am J Physiol 269:H863–H868

    CAS  PubMed  Google Scholar 

  46. Woodiwiss AJ, Tsotetsi OJ, Sprott S et al (2001) Reduction in myocardial collagen cross-linking parallels left ventricular dilation in rat models of systolic chamber dysfunction. Circulation 103:155–160

    Article  CAS  PubMed  Google Scholar 

  47. Mujumdar VS, Tyagi SC (1999) Temporal regulation of extracellular matrix components in transition from compensatory hypertrophy to decompensatory heart failure. J Hypertens 17:261–270

    Article  CAS  PubMed  Google Scholar 

  48. Seccia TM, Bettini E, Vulpis V et al (1999) Extracellular matrix gene expression in the left ventricular tissue of spontaneously hypertensive rats. Blood Press 8:57–64

    Article  CAS  PubMed  Google Scholar 

  49. Li H, Simon H, Bocan TMA, Peterson JT (2000) MMP/TIMP expression in spontaneously hypertensive heart failure rats: the effect of ACE- and MMP-inhibition. Cardiovasc Res 46:298–306

    Article  CAS  PubMed  Google Scholar 

  50. Nagatomo Y, Carabello BA, Coker ML et al (2000) Differential effects of pressure or volume overload on myocardial MMP levels and inhibitory control. Am J Physiol 278:H151–H161

    CAS  Google Scholar 

  51. Harvey PA, Leinwand LA (2011) Cellular mechanisms of cardiomyopathy. J Cell Biol 194:355–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Elliott P, Andersson B, Arbustini E et al (2008) Classification of the cardiomyopathies: a position statement from the European society of cardiology working group on myocardial and pericardial diseases. Eur Heart J 29:270–276

    Article  PubMed  Google Scholar 

  53. Gunja-Smith Z, Morales AR, Romanelli R, Woessner JF Jr (1996) Remodeling of human myocardial collagen in idiopathic dilated cardiomyopathy. Role of metalloproteinases and pyridinoline cross-links. Am J Pathol 148:1639–1648

    CAS  PubMed  PubMed Central  Google Scholar 

  54. He KL, Dickstein M, Sabbah HN et al (2004) Mechanisms of heart failure with well preserved ejection fraction in dogs following limited coronary microembolization. Cardiovasc Res 64:72–83

    Article  CAS  PubMed  Google Scholar 

  55. Herman MP, Sukhova GK, Libby P et al (2001) Expression of neutrophil collagenase (matrix metalloproteinase-8) in human atheroma: a novel collagenolytic pathway suggested by transcriptional profiling. Circulation 104:1899–1904

    Article  CAS  PubMed  Google Scholar 

  56. Spinale FG, Coker ML, Heung LJ et al (2000) A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circulation 102:1944–1949

    Article  CAS  PubMed  Google Scholar 

  57. Rouet-Benzineb P, Buhler JM, Dreyfus P et al (1999) Altered balance between matrix gelatinases (MMP-2 and MMP-9) and their tissue inhibitors in human dilated cardiomyopathy: potential role of MMP-9 in myosin-heavy chain degradation. Eur J Heart Fail 1:337–352

    Article  CAS  PubMed  Google Scholar 

  58. Sawicki G, Leon H, Sawicka J et al (2005) Degradation of myosin light chain in isolated rat hearts subjected to ischemia-reperfusion injury: a new intracellular target for matrix metalloproteinase-2. Circulation 112:544–552

    Article  CAS  PubMed  Google Scholar 

  59. Wang W, Schulze CJ, Suarez-Pinzon WL et al (2002) Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation 106:1543–1549

    Article  CAS  PubMed  Google Scholar 

  60. Li YY, Feldman AM, Sun Y, McTiernan CF (1998) Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation 98:1728–1734

    Article  CAS  PubMed  Google Scholar 

  61. Li YY, Feng Y, McTiernan CF et al (2001) Down regulation of matrix metalloproteinases and reduction in collagen damage in the failing human heart after support with left ventricular assist devices. Circulation 104:1147–1152

    Article  CAS  PubMed  Google Scholar 

  62. George SJ (2000) Therapeutic potential of matrix metalloproteinase inhibitors in atherosclerosis. Expert Opin Investig Drugs 9:993–1007

    Article  CAS  PubMed  Google Scholar 

  63. Klotz S, Foronjy RF, Dickstein ML et al (2005) Mechanical unloading during left ventricular assist device support increases left ventricular collagen cross-linking and myocardial stiffness. Circulation 112:364–374

    Article  CAS  PubMed  Google Scholar 

  64. Felkin LE, Birks EJ, George R et al (2006) A quantitative gene expression profile of matrix metalloproteinases (MMPS) and their inhibitors (TIMPS) in the myocardium of patients with deteriorating heart failure requiring left ventricular assist device support. J Heart Lung Transplant 25:1413–1419

    Article  PubMed  Google Scholar 

  65. Fowkes FG, Rudan D, Rudan I et al (2013) Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet 382:1329–1340

    Article  PubMed  Google Scholar 

  66. Hobeika MJ (2007) Matrix metalloproteinases in peripheral vascular disease. J Vasc Surg 45:849–857

    Article  PubMed  Google Scholar 

  67. Sang QX (1998) Complex role of matrix metalloproteinases in angiogenesis. Cell Res 8:171–177

    Article  CAS  PubMed  Google Scholar 

  68. Jenkins GM, Crow MT, Bilato C et al (1998) Increased expression of membrane-type matrix metalloproteinase and preferential localization of matrix metalloproteinase-2 to the neointima of balloon-injured rat carotid arteries. Circulation 97:82–90

    Article  CAS  PubMed  Google Scholar 

  69. Zang J, Nie L, Razavian M et al (2008) Molecular imaging of activated matrix metalloproteinases in vascular remodeling. Circulation 118:1953–1960

    Article  CAS  Google Scholar 

  70. Lijnen HR, Soloway P, Collen D (1999) Tissue inhibitor of matrix metalloproteinase-1 impairs arterial neointima formation after vascular injury in mice. Circ Res 85:1186–1191

    Article  CAS  PubMed  Google Scholar 

  71. Cai WJ, Koltai S, Kocsis E et al (2003) Remodeling of the adventitia during coronary arteriogenesis. Am J Physiol Heart Circ Physiol 284:H31–H40

    Article  CAS  PubMed  Google Scholar 

  72. Guzman JR (2007) Clinical, cellular, and molecular aspects of arterial calcification. J Vasc Surg 45:A57–A63

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lehto S, Rönnemaa T, Pyörälä K et al (1996) Risk factors predicting lower extremity amputations in patients with NIDDM. Diabetes Care 19:607–612

    Article  CAS  PubMed  Google Scholar 

  74. Basalyga DM, Simionescu DT, Xiong W et al (2004) Elastin degradation and calcification in an abdominal aorta injury model. Circulation 110:3480–3487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Qin X, Corriere MA, Matrisian LM et al (2006) Matrix metalloproteinase inhibition attenuates aortic calcification. Arterioscler Thromb Vasc Biol 26:1510–1516

    Article  CAS  PubMed  Google Scholar 

  76. Goodall S, Crowther M, Hemingway DM et al (2001) Ubiquitous elevation of matrix metalloproteinase-2 expression in the vasculature of patients with abdominal aneurysms. Circulation 104:304–309

    Article  CAS  PubMed  Google Scholar 

  77. Urbonavicius S, Urbonaviciene G, Honorè B et al (2008) Potential circulating biomarkers for abdominal aortic aneurysm expansion and rupture—a systematic review. Eur J Vasc Endovasc Surg 36:273–280

    Article  CAS  PubMed  Google Scholar 

  78. Santos-Martínez MJ, Medina C, Jurasz P et al (2008) Role of metalloproteinases in platelet function. Thromb Res 121:535–542

    Article  PubMed  CAS  Google Scholar 

  79. Sawicki G, Salas E, Murat J et al (1997) Release of gelatinase A during platelet activation mediates aggregation. Nature 386:616–619

    Article  CAS  PubMed  Google Scholar 

  80. Falcinelli E, Guglielmini G, Torti M et al (2005) Intraplatelet signaling mechanisms of the priming effect of matrix metalloproteinase-2 on platelet aggregation. J Thromb Haemost 3:2526–2535

    Article  CAS  PubMed  Google Scholar 

  81. Galt SW, Lindemann S, Allen L et al (2002) Outside-in signals delivered by matrix metalloproteinase-1 regulate platelet function. Circ Res 90:1093–1099

    Article  CAS  PubMed  Google Scholar 

  82. Pitchford SC, Momi S, Baglioni S et al (2008) Allergen induces the migration of platelets to lung tissue in allergic asthma. Am J Respir Crit Care Med 177:604–612

    Article  CAS  PubMed  Google Scholar 

  83. Santilli F, Basili S, Ferroni P et al (2007) CD40/CD40L system and vascular disease. Intern Emerg Med 2:256–268

    Article  CAS  PubMed  Google Scholar 

  84. Furman MI, Krueger LA, Linden MD et al (2004) Release of soluble CD40L from platelets is regulated by glycoprotein IIb/IIIa and actin polymerization. J Am Coll Cardiol 43:2319–2325

    Article  CAS  PubMed  Google Scholar 

  85. Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4:399–415

    Article  CAS  PubMed  Google Scholar 

  86. Lo EH, Wang X, Cuzner ML (2002) Extracellular proteolysis in brain injury and inflammation: role for plasminogen activators and matrix metalloproteinases. J Neurosci Res 69:1–9

    Article  CAS  PubMed  Google Scholar 

  87. Rosenberg GA, Navratil M, Barone F, Feuerstein G (1996) Proteolytic cascade enzymes increase in focal cerebral ischemia in rat. J Cereb Blood Flow Metab 16:360–366

    Article  CAS  PubMed  Google Scholar 

  88. Clark AW, Krekoski CA, Bou S et al (1997) Increased gelatinase A (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia. Neurosci Lett 238:53–56

    Article  CAS  PubMed  Google Scholar 

  89. Anthony DC, Ferguson B, Matyzak MK et al (1997) Differential matrix metalloproteinase expression in cases of multiple sclerosis and stroke. Neuropathol Appl Neurobiol 23:406–415

    Article  CAS  PubMed  Google Scholar 

  90. Rosell A, Ortega-Aznar A, Alvarez-Sabin J et al (2006) Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke 37:1399–1406

    Article  CAS  PubMed  Google Scholar 

  91. Rosell A, Cuadrado E, Ortega-Aznar A et al (2008) MMP-9-positive neutrophil infiltration is associated to BBB breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke 39:1121–1126

    Article  CAS  PubMed  Google Scholar 

  92. Hamann GF, Burggraf D, Martens HK et al (2004) Mild to moderate hypothermia prevents microvascular basal lamina antigen loss in experimental focal cerebral ischemia. Stroke 35:764–769

    Article  PubMed  Google Scholar 

  93. Hamann GF, Liebetrau M, Martens H et al (2002) Microvascular basal lamina injury after experimental focal cerebral ischemia and reperfusion in the rat. J Cereb Blood Flow Metab 22:526–533

    Article  PubMed  Google Scholar 

  94. Sole S, Petegnief V, Gorina R et al (2004) Activation of matrix metalloproteinase-3 and agrin cleavage in cerebral ischemia/reperfusion. J Neuropathol Exp Neurolx 63:338–349

    Google Scholar 

  95. Gurney KJ, Estrada EY, Rosenberg GA (2006) Blood-brain barrier disruption by stromelysin-1 facilitates neutrophil infiltration in neuroinflammation. Neurobiol Dis 23:87–96

    Article  CAS  PubMed  Google Scholar 

  96. Maier CM, Hsieh L, Yu F et al (2004) Matrix metalloproteinase-9 and myeloperoxidase expression: quantitative analysis by antigen immunohistochemistry in a model of transient focal cerebral ischemia. Stroke 35:1169–1174

    Article  CAS  PubMed  Google Scholar 

  97. Harris AK, Ergul A, Kozak A et al (2005) Effect of neutrophil depletion on gelatinase expression, edema formation and hemorrhagic transformation after focal ischemic stroke. BMC Neurosci 6:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Berk BC, Fujiwara K, Lehoux S (2007) ECM remodeling in hypertensive heart disease. J Clin Invest 117:568–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lopez B, Gonzalez A, Querejeta R et al (2006) Alterations in the pattern of collagen deposition may contribute to the deterioration of systolic function in hypertensive patients with heart failure. J Am Coll Cardiol 48:89–96

    Article  CAS  PubMed  Google Scholar 

  100. Laviades C, Varo N, Fernández J et al (1998) Abnormalities of the extracellular degradation of collagen type I in essential hypertension. Circulation 98:535–540

    Article  CAS  PubMed  Google Scholar 

  101. Ahmed SH, Clark LL, Pennington WR et al (2006) Matrix metalloproteinases/tissue inhibitors of metalloproteinases: relationship between changes in proteolytic determinants of matrix composition and structural, functional, and clinical manifestations of hypertensive heart disease. Circulation 113:2089–2096

    Article  CAS  PubMed  Google Scholar 

  102. Iwanaga Y, Aoyama T, Kihara Y et al (2002) Excessive activation of matrix metalloproteinases coincides with left ventricular remodeling during transition from hypertrophy to heart failure in hypertensive rats. J Am Coll Cardiol 39:1384–1391

    Article  CAS  PubMed  Google Scholar 

  103. Heymans S, Lupu F, Terclavers S et al (2005) Loss or inhibition of uPA or MMP-9 attenuates LV remodeling and dysfunction after acute pressure overload in mice. Am J Pathol 166:15–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zavadzkas JA, Stroud RE, Bouges S et al (2004) Targeted overexpression of tissue inhibitor of matrix metalloproteinase-4 modifies post-myocardial infarction remodeling in mice. Circ Res 114:1435–1445

    Article  CAS  Google Scholar 

  105. Tian H, Huang ML, Liu KY et al (2012) Inhibiting matrix metalloproteinase by cell-based timp-3 gene transfer effectively treats acute and chronic ischemic cardiomyopathy. Cell Transplant 21:1039–1053

    Article  PubMed  Google Scholar 

  106. Cerisano G, Buonamici P, Valenti R et al (2014) Early short-term doxycycline therapy in patients with acute myocardial infarction and left ventricular dysfunction to prevent the ominous progression to adverse remodelling: the TIPTOP trial. Eur Heart J 35:184–191

    Article  CAS  PubMed  Google Scholar 

  107. Zhai X, Chi J, Tang W et al (2014) Yellow wine polyphenolic compounds inhibit matrix metalloproteinase-2, -9 expression and improve atherosclerotic plaque in LDL-receptor-knockout mice. Biochem Pharmacol 90:7–15

    Google Scholar 

  108. Sang QX, Jin Y, Newcomer RG et al (2004) Matrix metalloproteinase inhibitors as prospective agents for the prevention and treatment of cardiovascular and neoplastic diseases. Circulation 110:II180–II186

    Google Scholar 

  109. Høgh Kølbæk Kjær AS, Brinkmann CR, Dinarello CA et al (2015) The histone deacetylase inhibitor panobinostat lowers biomarkers of cardiovascular risk and inflammation in HIV patients. AIDS 29:1195–1200

    Article  PubMed  CAS  Google Scholar 

  110. Lin HB, Cadete VJ, Sra B et al (2014) Inhibition of MMP-2 expression with siRNA increases baseline cardiomyocyte contractility and protects against simulated ischemic reperfusion injury. Biomed Res Int 2014:810371

    PubMed  PubMed Central  Google Scholar 

  111. Wang WK, Wang B, Lu QH et al (2014) Inhibition of high-mobility group box 1 improves myocardial fibrosis and dysfunction in diabetic cardiomyopathy. Int J Cardiol 172:202–212

    Article  PubMed  Google Scholar 

  112. Purcell BP, Lobb D, Charati MB et al (2014) Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition. Nat Mater 13:653–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yokoyama Y, Grünebach F, Schmidt SM et al (2008) Matrilysin (MMP-7) is a novel broadly expressed tumor antigen recognized by antigen-specific T cells. Clin Cancer Res 14:5503–5511

    Article  CAS  PubMed  Google Scholar 

  114. Hao L, Du M, Lopez-Campistrous A, Fernandez-Patron C (2004) Agonist-induced activation of matrix metalloproteinase-7 promotes vasoconstriction through the epidermal growth factor-receptor pathway. Circ Res 94:68–76

    Article  CAS  PubMed  Google Scholar 

  115. Rodriguez JA, Orbe J, Martinez de Lizarrondo S et al (2008) Metalloproteinases and atherothrombosis: MMP-10 mediates vascular remodeling promoted by inflammatory stimuli. Front Biosci 13:2916–2921

    Article  CAS  PubMed  Google Scholar 

  116. Anglard P, Melot T, Guerin E et al (1995) Structure and promoter characterization of the human stromelysin-3 gene. J Biol Chem 270:20337–20344

    Article  CAS  PubMed  Google Scholar 

  117. Curci JA, Liao S, Huffman MD et al (1998) Expression and localization of macrophage elastase (matrix metalloproteinase-12) in abdominal aortic aneurysms. J Clin Invest 102:1900–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Johansson N, Ahonen M, Kähäri VM (2000) Matrix metalloproteinases in tumor invasion. Cell Mol Life Sci 57:5–15

    Article  CAS  PubMed  Google Scholar 

  119. Nagase H, Woessner JF (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494

    Article  CAS  PubMed  Google Scholar 

  120. Takino T, Sato H, Shinagawa A, Seiki M (1995) Identification of the second membrane-type matrix metalloproteinase (MT-MMP-2) gene from a human placenta cDNA library. MT-MMPs form a unique membrane-type subclass in the MMP family. J Biol Chem 270:23013–23020

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veena Dhawan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Dhawan, V., Rather, R.A. (2017). Association of Matrix Metalloproteinases with CVD: Functional Aspects. In: Chakraborti, S., Chakraborti, T., Dhalla, N. (eds) Proteases in Human Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-10-3162-5_23

Download citation

Publish with us

Policies and ethics