Skip to main content

Hypersonic Flow

  • Chapter
  • First Online:
Fundamentals of Modern Unsteady Aerodynamics
  • 2815 Accesses

Abstract

There exist various criteria to be satisfied by the free stream Mach number \( M_{\infty } \), which makes the flow to be classified hypersonic when it is very high supersonic. Depending on the value of the Mach number, we have hypersonic aerodynamics determined by a predominant parameter with which the flow physics does not change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JD (1989) Hypersonic and high temperature gas dynamics. McGraw-Hill, New York

    Google Scholar 

  • Anderson JD, Lewis MJ, Kotari AP, Corda S (1991) Hypersonic waveriders for planetary atmospheres. J Spacecraft 28(4):401–410

    Google Scholar 

  • Ashley H, Zartarian G (1956) Piston theory-a new aerodynamic tool for the aeroelastician. J Aeronaut Sci 23:1109–1118

    Google Scholar 

  • Aupoix B, Eldem C, Cousteix J (1987) Couche Limite Laminare Hypersonique Etude Parametriqeu de la Representation des Effects de Gaz Reel. In: Aerodynamics of hypersonic lifting vehicles, AGARD-CP-428, November 1987

    Google Scholar 

  • Bertin JJ (1994) Hypersonic aerothermodynamics. In: AIAA education series, Washington

    Google Scholar 

  • Bohachevski IO, Mates RE (1966) A direct method for calculation of the flow about an axisymmetric blunt body at angle of attack. AIAA J 4(5):776–782

    Google Scholar 

  • Bowcutt KG, Anderson JD, Capriotti D (1987) Numerical optimization of conical flow waveriders including detailed viscous effects. In: Aerodynamics of hypersonic lifting vehicles, AGARD-CP-428, November 1987

    Google Scholar 

  • Denbigh K (1978) The principles of chemical equilibrium. Cambridge University Press, Cambridge

    Google Scholar 

  • Edwards TA, Flores J (1990) Computational fluid dynamics nose-to-tail capability: hypersonic unsteady Navier-Stokes code validation. J Spacecraft 27(2):123–130

    Google Scholar 

  • Hall GJ, Eschenroeder AQ, Marrone PV (1962) Blunt-nose inviscid airflow with coupled nonequilibrium process. J Aerospace Sci 29(9):1038–1051

    Google Scholar 

  • Hayes WD, Probstein RF (1966) Hypersonic flow theory, vol I, 2nd edn. Academic Press, New York

    Google Scholar 

  • Hoffman JD (1992) Numerical methods for engineers and scientists. McGraw-Hill, New York

    Google Scholar 

  • Jones KD, Dougherty FC (1992) Numerical simulation of high-speed flows about waveriders with sharp leading edges. J Spacecraft Rockets 29(5):661–667

    Google Scholar 

  • Kutler P, Lomax H (1971) Shock capturing finite-difference approach to supersonic flows. J Spacecraft 8(12):1175–1182

    Google Scholar 

  • Kutler P, Warming RF, Lomax H (1973) Computation of space shuttle flow fields using noncenterd finite-difference schemes. AIAA J 11(2):196–204

    Google Scholar 

  • Lee JF, Sears FW, Turcotte DL (1973) Statistical thermodynamics. Addison-Wesley, Reading Mass.

    Google Scholar 

  • Lewis MJ, McRonald AD (1992) Design of hypersonic waveriders for aeroassisted interplanetory trajectories. J Spacecraft Rockets 29(5):653–660

    Google Scholar 

  • Lieppmann HW, Roshko A (1963) Elements of Gasdynamics, Wiley, New York

    Google Scholar 

  • Lighthill MJ (1953) Oscillating airfoils at high mach numbers. J Aeronaut Sci 20:402–406

    Google Scholar 

  • Marvin JG, Hortsman CG, Rubesin MW, Coakley TJ, Mussoy MI (1975) An experimental and numerical investigation of shock-wave induced turbulent boundary layer separation at hypersonic speeds. In: Flow separation, AGARD-CP-168, November 1975

    Google Scholar 

  • Maslen SH (1964) Inviscid hypersonic flow past smooth symmetric bodies. AIAA J 2(6):1055–1061

    Google Scholar 

  • Molina RC, Huot JP (1991) A one-point integration finite element solver for the fast solution of the compressible Euler, equations. Comput Methods Appl Mech Eng 95

    Google Scholar 

  • Neumann RD (1972) Special topics in hypersonic flow. In: Aerodynamic problems of hypersonic vehicles, AGARD-LS 42

    Google Scholar 

  • Nonweiler TRF (1959) Aerodynamic problems of manned space vehicles. J Royal Aeron Soc 63:521–528

    Google Scholar 

  • Oksuzoglu H, Gulcat U (1986) Compressible boundary layers, graduation thesis, Supervised by U. Gulcat. Faculty of aeronautics and astronautics, ITU, June 1986

    Google Scholar 

  • Pierce AG (1978) Unsteady hypersonic flows about thin lifting surfaces. Lecture Notes, Georgia Institute of Technology

    Google Scholar 

  • Rault DFG (1994) Aerodynamic characteristics of a hypersonic viscous optimized waverider at high altitudes. J Spacecraft Rockets 31(5):719–727

    Google Scholar 

  • Riedelbauch S, Wetzel W, Kordulla M, Oertel H Jr (1987) On the numerical simulation of the hypersonic flow in aerodynamics of hypersonic lifting vehicles, AGARD-CP 428, November 1987

    Google Scholar 

  • Schlichting H (1968) Boundary layer theory. Mc-Graw Hill, New York

    Google Scholar 

  • Shapiro AH (1953) The dynamics and thermodynamics of compressible fluid flow I. The Ronald Press Company, New York

    Google Scholar 

  • Talbot L, Koga T, Sharman PM (1958) Hypersonic viscous flow over slender cones, NACA TN 4327, September 1958

    Google Scholar 

  • Takashima N, Lewis MJ (1994) Navier-Stokes computations of a viscous optimized waverider. J Spacecraft Rockets 31(3):383–391

    Google Scholar 

  • Van Driest ER (1952) Investigation of laminar boundary layer in compressible fluids using the Crocco method, NACA TN 2579, January 1952

    Google Scholar 

  • Van Dyke MD (1954) A study of hypersonic small disturbance theory, NACA Report 1194

    Google Scholar 

  • Van Dyke MD (1958) The supersonic blunt body problem-review and extensions. J Aeron Sci 25(8):485–496

    Google Scholar 

  • Vincenti WG, Kruger CH Jr (1965) Introduction to physical gasdynamics. Wiley, New York

    Google Scholar 

  • White FM (1991) Viscous fluid flow. McGraw-Hill, New York

    Google Scholar 

  • Zienkiewicz OC, Taylor RL (2000) The finite element method, vol 3. In: Fluid mechanics. Butterworth-Heinemann, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ülgen Gülçat .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Gülçat, Ü. (2016). Hypersonic Flow. In: Fundamentals of Modern Unsteady Aerodynamics. Springer, Singapore. https://doi.org/10.1007/978-981-10-0018-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0018-8_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0016-4

  • Online ISBN: 978-981-10-0018-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics