Skip to main content

Kinesin-8 Members and Their Potential as Biomarker or Therapeutic Target

  • Chapter
  • First Online:
Kinesins and Cancer
  • 1033 Accesses

Abstract

The kinesin-8 family is unique among kinesins in that its members have the ability both to walk along microtubules and to specifically influence the dynamics of microtubule plus-ends. This capacity is used to regulate microtubule length and dynamic behavior. Kif18A is the most studied member of the human kinesin-8 family. Its mRNA – and in some cases the protein – has been found elevated in several cancers and this correlates with poor prognosis. However, there is little evidence to date that these high levels actively promote tumorigenesis. Because Kif18A abundance is higher in mitotic cells, the increased abundance may reflect a higher percentage of proliferative cells. Reduction of Kinesin-8 delays cells in mitosis and perturbs microtubule dynamics. Inhibitors of Kinesin-8 may therefore influence the proliferative capacity or may impair the migratory potential of cancer cells. These ideas remain to be tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, Goldstein LS, Goodson HV, Hirokawa N, Howard J, Malmberg RL, McIntosh JR, Miki H, Mitchison TJ, Okada Y, Reddy AS, Saxton WM, Schliwa M, Scholey JM, Vale RD, Walczak CE, Wordeman L (2004) A standardized kinesin nomenclature. J Cell Biol 167(1):19–22. doi:10.1083/jcb.200408113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Miki H, Okada Y, Hirokawa N (2005) Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol 15(9):467–476. doi:10.1016/j.tcb.2005.07.006

    Article  CAS  PubMed  Google Scholar 

  3. Su X, Ohi R, Pellman D (2012) Move in for the kill: motile microtubule regulators. Trends Cell Biol 22(11):567–575. doi:10.1016/j.tcb.2012.08.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Mayr MI, Storch M, Howard J, Mayer TU (2011) A non-motor microtubule binding site is essential for the high processivity and mitotic function of kinesin-8 Kif18A. PLoS One 6(11):e27471. doi:10.1371/journal.pone.0027471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Stumpff J, Du Y, English CA, Maliga Z, Wagenbach M, Asbury CL, Wordeman L, Ohi R (2011) A tethering mechanism controls the processivity and kinetochore-microtubule plus-end enrichment of the kinesin-8 Kif18A. Mol Cell 43(5):764–775. doi:10.1016/j.molcel.2011.07.022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Su X, Qiu W, Gupta ML Jr, Pereira-Leal JB, Reck-Peterson SL, Pellman D (2011) Mechanisms underlying the dual-mode regulation of microtubule dynamics by Kip3/kinesin-8. Mol Cell 43(5):751–763. doi:10.1016/j.molcel.2011.06.027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Varga V, Helenius J, Tanaka K, Hyman AA, Tanaka TU, Howard J (2006) Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nat Cell Biol 8(9):957–962. doi:10.1038/ncb1462

    Article  CAS  PubMed  Google Scholar 

  8. Gardner MK, Odde DJ, Bloom K (2008) Kinesin-8 molecular motors: putting the brakes on chromosome oscillations. Trends Cell Biol 18(7):307–310. doi:10.1016/j.tcb.2008.05.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Niwa S, Nakajima K, Miki H, Minato Y, Wang D, Hirokawa N (2012) KIF19A is a microtubule-depolymerizing kinesin for ciliary length control. Dev Cell 23(6):1167–1175. doi:10.1016/j.devcel.2012.10.016

    Article  CAS  PubMed  Google Scholar 

  10. Su X, Arellano-Santoyo H, Portran D, Gaillard J, Vantard M, Thery M, Pellman D (2013) Microtubule-sliding activity of a kinesin-8 promotes spindle assembly and spindle-length control. Nat Cell Biol 15(8):948–957. doi:10.1038/ncb2801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Bormuth V, Nitzsche B, Ruhnow F, Mitra A, Storch M, Rammner B, Howard J, Diez S (2012) The highly processive kinesin-8, Kip3, switches microtubule protofilaments with a bias toward the left. Biophys J 103(1):L4–L6. doi:10.1016/j.bpj.2012.05.024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Severin F, Habermann B, Huffaker T, Hyman T (2001) Stu2 promotes mitotic spindle elongation in anaphase. J Cell Biol 153(2):435–442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Ems-McClung SC, Walczak CE (2010) Kinesin-13s in mitosis: key players in the spatial and temporal organization of spindle microtubules. Semin Cell Dev Biol 21(3):276–282. doi:10.1016/j.semcdb.2010.01.016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Gupta ML Jr, Carvalho P, Roof DM, Pellman D (2006) Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle. Nat Cell Biol 8(9):913–923. doi:10.1038/ncb1457

    Article  CAS  PubMed  Google Scholar 

  15. Mayr MI, Hummer S, Bormann J, Gruner T, Adio S, Woehlke G, Mayer TU (2007) The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Curr Biol 17(6):488–498. doi:10.1016/j.cub.2007.02.036

    Article  CAS  PubMed  Google Scholar 

  16. Grissom PM, Fiedler T, Grishchuk EL, Nicastro D, West RR, McIntosh JR (2009) Kinesin-8 from fission yeast: a heterodimeric, plus-end-directed motor that can couple microtubule depolymerization to cargo movement. Mol Biol Cell 20(3):963–972. doi:10.1091/mbc.E08-09-0979

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Peters C, Brejc K, Belmont L, Bodey AJ, Lee Y, Yu M, Guo J, Sakowicz R, Hartman J, Moores CA (2010) Insight into the molecular mechanism of the multitasking kinesin-8 motor. EMBO J 29(20):3437–3447. doi:10.1038/emboj.2010.220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Du Y, English CA, Ohi R (2010) The kinesin-8 Kif18A dampens microtubule plus-end dynamics. Curr Biol 20(4):374–380. doi:10.1016/j.cub.2009.12.049

    Article  CAS  PubMed  Google Scholar 

  19. Erent M, Drummond DR, Cross RA (2012) S. pombe kinesins-8 promote both nucleation and catastrophe of microtubules. PLoS One 7(2):e30738. doi:10.1371/journal.pone.0030738

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Varga V, Leduc C, Bormuth V, Diez S, Howard J (2009) Kinesin-8 motors act cooperatively to mediate length-dependent microtubule depolymerization. Cell 138(6):1174–1183. doi:10.1016/j.cell.2009.07.032

    Article  CAS  PubMed  Google Scholar 

  21. Gardner MK, Zanic M, Gell C, Bormuth V, Howard J (2011) Depolymerizing kinesins Kip3 and MCAK shape cellular microtubule architecture by differential control of catastrophe. Cell 147(5):1092–1103. doi:10.1016/j.cell.2011.10.037

    Article  CAS  PubMed  Google Scholar 

  22. Lee YM, Kim E, Park M, Moon E, Ahn SM, Kim W, Hwang KB, Kim YK, Choi W, Kim W (2010) Cell cycle-regulated expression and subcellular localization of a kinesin-8 member human KIF18B. Gene 466(1–2):16–25. doi:10.1016/j.gene.2010.06.007

    CAS  PubMed  Google Scholar 

  23. Liu XS, Zhao XD, Wang X, Yao YX, Zhang LL, Shu RZ, Ren WH, Huang Y, Huang L, Gu MM, Kuang Y, Wang L, Lu SY, Chi J, Fen JS, Wang YF, Fei J, Dai W, Wang ZG (2010) Germinal cell aplasia in Kif18a mutant male mice due to impaired chromosome congression and dysregulated BubR1 and CENP-E. Genes Cancer 1(1):26–39. doi:10.1177/1947601909358184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Luboshits G, Benayahu D (2005) MS-KIF18A, new kinesin; structure and cellular expression. Gene 351:19–28. doi:10.1016/j.gene.2005.02.009

    Article  CAS  PubMed  Google Scholar 

  25. Flicek P, Amode MR, Barrell D, Beal K, Billis K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fitzgerald S, Gil L, Giron CG, Gordon L, Hourlier T, Hunt S, Johnson N, Juettemann T, Kahari AK, Keenan S, Kulesha E, Martin FJ, Maurel T, McLaren WM, Murphy DN, Nag R, Overduin B, Pignatelli M, Pritchard B, Pritchard E, Riat HS, Ruffier M, Sheppard D, Taylor K, Thormann A, Trevanion SJ, Vullo A, Wilder SP, Wilson M, Zadissa A, Aken BL, Birney E, Cunningham F, Harrow J, Herrero J, Hubbard TJ, Kinsella R, Muffato M, Parker A, Spudich G, Yates A, Zerbino DR, Searle SM (2014) Ensembl 2014. Nucleic Acids Res 42(1):D749–D755. doi:10.1093/nar/gkt1196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Stumpff J, von Dassow G, Wagenbach M, Asbury C, Wordeman L (2008) The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Dev Cell 14(2):252–262. doi:10.1016/j.devcel.2007.11.014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Weaver LN, Walczak C (2011) Kinesin-8s hang on by a tail. Bioarchitecture 1(5):236–239. doi:10.4161/bioa.18427

    Article  PubMed Central  PubMed  Google Scholar 

  28. Jannasch A, Bormuth V, Storch M, Howard J, Schaffer E (2013) Kinesin-8 is a low-force motor protein with a weakly bound slip state. Biophys J 104(11):2456–2464. doi:10.1016/j.bpj.2013.02.040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Weaver LN, Ems-McClung SC, Stout JR, LeBlanc C, Shaw SL, Gardner MK, Walczak CE (2011) Kif18A uses a microtubule binding site in the tail for plus-end localization and spindle length regulation. Curr Biol 21(17):1500–1506. doi:10.1016/j.cub.2011.08.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Stout JR, Yount AL, Powers JA, Leblanc C, Ems-McClung SC, Walczak CE (2011) Kif18B interacts with EB1 and controls astral microtubule length during mitosis. Mol Biol Cell 22(17):3070–3080. doi:10.1091/mbc.E11-04-0363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Tanenbaum ME, Macurek L, van der Vaart B, Galli M, Akhmanova A, Medema RH (2011) A complex of Kif18b and MCAK promotes microtubule depolymerization and is negatively regulated by Aurora kinases. Curr Biol 21(16):1356–1365. doi:10.1016/j.cub.2011.07.017

    Article  CAS  PubMed  Google Scholar 

  32. Zhu C, Zhao J, Bibikova M, Leverson JD, Bossy-Wetzel E, Fan JB, Abraham RT, Jiang W (2005) Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol Biol Cell 16(7):3187–3199. doi:10.1091/mbc.E05-02-0167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Sedgwick GG, Hayward DG, Di Fiore B, Pardo M, Yu L, Pines J, Nilsson J (2013) Mechanisms controlling the temporal degradation of Nek2A and Kif18A by the APC/C-Cdc20 complex. EMBO J 32(2):303–314. doi:10.1038/emboj.2012.335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Singh SA, Winter D, Kirchner M, Chauhan R, Ahmed S, Ozlu N, Tzur A, Steen JA, Steen H (2014) Co-regulation proteomics reveals substrates and mechanisms of APC/C-dependent degradation. EMBO J 33(4):385–399. doi:10.1002/embj.201385876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Masuda N, Shimodaira T, Shiu SJ, Tokai-Nishizumi N, Yamamoto T, Ohsugi M (2011) Microtubule stabilization triggers the plus-end accumulation of Kif18A/kinesin-8. Cell Struct Funct 36(2):261–267

    Article  CAS  PubMed  Google Scholar 

  36. Jaqaman K, King EM, Amaro AC, Winter JR, Dorn JF, Elliott HL, McHedlishvili N, McClelland SE, Porter IM, Posch M, Toso A, Danuser G, McAinsh AD, Meraldi P, Swedlow JR (2010) Kinetochore alignment within the metaphase plate is regulated by centromere stiffness and microtubule depolymerases. J Cell Biol 188(5):665–679. doi:10.1083/jcb.200909005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Nagahara M, Nishida N, Iwatsuki M, Ishimaru S, Mimori K, Tanaka F, Nakagawa T, Sato T, Sugihara K, Hoon DS, Mori M (2011) Kinesin 18A expression: clinical relevance to colorectal cancer progression. Int J Cancer 129(11):2543–2552. doi:10.1002/ijc.25916

    Article  CAS  PubMed  Google Scholar 

  38. Zhang C, Zhu C, Chen H, Li L, Guo L, Jiang W, Lu SH (2010) Kif18A is involved in human breast carcinogenesis. Carcinogenesis 31(9):1676–1684. doi:10.1093/carcin/bgq134

    Article  CAS  PubMed  Google Scholar 

  39. Kim JJ, Park YM, Baik KH, Choi HY, Yang GS, Koh I, Hwang JA, Lee J, Lee YS, Rhee H, Kwon TS, Han BG, Heath KE, Inoue H, Yoo HW, Park K, Lee JK (2012) Exome sequencing and subsequent association studies identify five amino acid-altering variants influencing human height. Hum Genet 131(3):471–478. doi:10.1007/s00439-011-1096-4

    Article  CAS  PubMed  Google Scholar 

  40. FANTOM Consortium and the RIKEN PMI and CLST (DGT) (2014) A promoter-level mammalian expression atlas. Nature 507(7493):462–470. doi:10.1038/nature13182

    Article  CAS  Google Scholar 

  41. Tanenbaum ME, Macurek L, Janssen A, Geers EF, Alvarez-Fernandez M, Medema RH (2009) Kif15 cooperates with eg5 to promote bipolar spindle assembly. Curr Biol 19(20):1703–1711. doi:10.1016/j.cub.2009.08.027

    Article  CAS  PubMed  Google Scholar 

  42. Miki H, Setou M, Kaneshiro K, Hirokawa N (2001) All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci U S A 98(13):7004–7011. doi:10.1073/pnas.111145398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M, Kampf C, Wester K, Hober S, Wernerus H, Bjorling L, Ponten F (2010) Towards a knowledge-based human protein atlas. Nat Biotechnol 28(12):1248–1250. doi:10.1038/nbt1210-1248

    Article  CAS  PubMed  Google Scholar 

  44. Wickstead B, Gull K (2006) A “holistic” kinesin phylogeny reveals new kinesin families and predicts protein functions. Mol Biol Cell 17(4):1734–1743. doi:10.1091/mbc.E05-11-1090

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Garcia MA, Koonrugsa N, Toda T (2002) Two kinesin-like Kin I family proteins in fission yeast regulate the establishment of metaphase and the onset of anaphase A. Curr Biol 12(8):610–621

    Article  CAS  PubMed  Google Scholar 

  46. Li Y, Chang EC (2003) Schizosaccharomyces pombe Ras1 effector, Scd1, interacts with Klp5 and Klp6 kinesins to mediate cytokinesis. Genetics 165(2):477–488

    PubMed Central  CAS  PubMed  Google Scholar 

  47. DeZwaan TM, Ellingson E, Pellman D, Roof DM (1997) Kinesin-related KIP3 of Saccharomyces cerevisiae is required for a distinct step in nuclear migration. J Cell Biol 138(5):1023–1040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Goshima G, Vale RD (2003) The roles of microtubule-based motor proteins in mitosis: comprehensive RNAi analysis in the Drosophila S2 cell line. J Cell Biol 162(6):1003–1016. doi:10.1083/jcb.200303022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Goshima G, Vale RD (2005) Cell cycle-dependent dynamics and regulation of mitotic kinesins in Drosophila S2 cells. Mol Biol Cell 16(8):3896–3907. doi:10.1091/mbc.E05-02-0118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Miller RK, Heller KK, Frisen L, Wallack DL, Loayza D, Gammie AE, Rose MD (1998) The kinesin-related proteins, Kip2p and Kip3p, function differently in nuclear migration in yeast. Mol Biol Cell 9(8):2051–2068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Savoian MS, Gatt MK, Riparbelli MG, Callaini G, Glover DM (2004) Drosophila Klp67A is required for proper chromosome congression and segregation during meiosis I. J Cell Sci 117(Pt 16):3669–3677. doi:10.1242/jcs.01213

    Article  CAS  PubMed  Google Scholar 

  52. Tytell JD, Sorger PK (2006) Analysis of kinesin motor function at budding yeast kinetochores. J Cell Biol 172(6):861–874. doi:10.1083/jcb.200509101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. West RR, Malmstrom T, McIntosh JR (2002) Kinesins klp5(+) and klp6(+) are required for normal chromosome movement in mitosis. J Cell Sci 115(Pt 5):931–940

    CAS  PubMed  Google Scholar 

  54. West RR, Malmstrom T, Troxell CL, McIntosh JR (2001) Two related kinesins, klp5+ and klp6+, foster microtubule disassembly and are required for meiosis in fission yeast. Mol Biol Cell 12(12):3919–3932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Gandhi R, Bonaccorsi S, Wentworth D, Doxsey S, Gatti M, Pereira A (2004) The Drosophila kinesin-like protein KLP67A is essential for mitotic and male meiotic spindle assembly. Mol Biol Cell 15(1):121–131. doi:10.1091/mbc.E03-05-0342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Wargacki MM, Tay JC, Muller EG, Asbury CL, Davis TN (2010) Kip3, the yeast kinesin-8, is required for clustering of kinetochores at metaphase. Cell Cycle 9(13):2581–2588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Gardner MK, Bouck DC, Paliulis LV, Meehl JB, O’Toole ET, Haase J, Soubry A, Joglekar AP, Winey M, Salmon ED, Bloom K, Odde DJ (2008) Chromosome congression by Kinesin-5 motor-mediated disassembly of longer kinetochore microtubules. Cell 135(5):894–906. doi:10.1016/j.cell.2008.09.046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Straight AF, Sedat JW, Murray AW (1998) Time-lapse microscopy reveals unique roles for kinesins during anaphase in budding yeast. J Cell Biol 143(3):687–694

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Syrovatkina V, Fu C, Tran PT (2013) Antagonistic spindle motors and MAPs regulate metaphase spindle length and chromosome segregation. Curr Biol 23(23):2423–2429. doi:10.1016/j.cub.2013.10.023

    Article  CAS  PubMed  Google Scholar 

  60. Cottingham FR, Hoyt MA (1997) Mitotic spindle positioning in Saccharomyces cerevisiae is accomplished by antagonistically acting microtubule motor proteins. J Cell Biol 138(5):1041–1053

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Rischitor PE, Konzack S, Fischer R (2004) The Kip3-like kinesin KipB moves along microtubules and determines spindle position during synchronized mitoses in Aspergillus nidulans hyphae. Eukaryot Cell 3(3):632–645. doi:10.1128/EC.3.3.632-645.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Desai A, Verma S, Mitchison TJ, Walczak CE (1999) Kin I kinesins are microtubule-destabilizing enzymes. Cell 96(1):69–78

    Article  CAS  PubMed  Google Scholar 

  63. Gandhi SR, Gierlinski M, Mino A, Tanaka K, Kitamura E, Clayton L, Tanaka TU (2011) Kinetochore-dependent microtubule rescue ensures their efficient and sustained interactions in early mitosis. Dev Cell 21(5):920–933. doi:10.1016/j.devcel.2011.09.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Unsworth A, Masuda H, Dhut S, Toda T (2008) Fission yeast kinesin-8 Klp5 and Klp6 are interdependent for mitotic nuclear retention and required for proper microtubule dynamics. Mol Biol Cell 19(12):5104–5115. doi:10.1091/mbc.E08-02-0224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Tischer C, Brunner D, Dogterom M (2009) Force- and kinesin-8-dependent effects in the spatial regulation of fission yeast microtubule dynamics. Mol Syst Biol 5:250. doi:10.1038/msb.2009.5

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Stumpff J, Wagenbach M, Franck A, Asbury CL, Wordeman L (2012) Kif18A and chromokinesins confine centromere movements via microtubule growth suppression and spatial control of kinetochore tension. Dev Cell 22(5):1017–1029. doi:10.1016/j.devcel.2012.02.013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Bakhoum SF, Genovese G, Compton DA (2009) Deviant kinetochore microtubule dynamics underlie chromosomal instability. Curr Biol 19(22):1937–1942. doi:10.1016/j.cub.2009.09.055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Bakhoum SF, Thompson SL, Manning AL, Compton DA (2009) Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nat Cell Biol 11(1):27–35. doi:10.1038/ncb1809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Silkworth WT, Nardi IK, Scholl LM, Cimini D (2009) Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS One 4(8):e6564. doi:10.1371/journal.pone.0006564

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Ganem NJ, Godinho SA, Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460(7252):278–282. doi:10.1038/nature08136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Huang Y, Yao Y, Xu HZ, Wang ZG, Lu L, Dai W (2009) Defects in chromosome congression and mitotic progression in KIF18A-deficient cells are partly mediated through impaired functions of CENP-E. Cell Cycle 8(16):2643–2649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Schaar BT, Chan GK, Maddox P, Salmon ED, Yen TJ (1997) CENP-E function at kinetochores is essential for chromosome alignment. J Cell Biol 139(6):1373–1382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Wood KW, Sakowicz R, Goldstein LS, Cleveland DW (1997) CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 91(3):357–366

    Article  CAS  PubMed  Google Scholar 

  74. Meraldi P, Draviam VM, Sorger PK (2004) Timing and checkpoints in the regulation of mitotic progression. Dev Cell 7(1):45–60. doi:10.1016/j.devcel.2004.06.006

    Article  CAS  PubMed  Google Scholar 

  75. Manning AL, Bakhoum SF, Maffini S, Correia-Melo C, Maiato H, Compton DA (2010) CLASP1, astrin and Kif2b form a molecular switch that regulates kinetochore-microtubule dynamics to promote mitotic progression and fidelity. EMBO J 29(20):3531–3543. doi:10.1038/emboj.2010.230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Ye F, Tan L, Yang Q, Xia Y, Deng LW, Murata-Hori M, Liou YC (2011) HURP regulates chromosome congression by modulating kinesin Kif18A function. Curr Biol 21(18):1584–1591. doi:10.1016/j.cub.2011.08.024

    Article  CAS  PubMed  Google Scholar 

  77. Rizk RS, Discipio KA, Proudfoot KG, Gupta ML Jr (2014) The kinesin-8 Kip3 scales anaphase spindle length by suppression of midzone microtubule polymerization. J Cell Biol 204(6):965–975. doi:10.1083/jcb.201312039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Meadows JC, Shepperd LA, Vanoosthuyse V, Lancaster TC, Sochaj AM, Buttrick GJ, Hardwick KG, Millar JB (2011) Spindle checkpoint silencing requires association of PP1 to both Spc7 and kinesin-8 motors. Dev Cell 20(6):739–750. doi:10.1016/j.devcel.2011.05.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Colland F, Jacq X, Trouplin V, Mougin C, Groizeleau C, Hamburger A, Meil A, Wojcik J, Legrain P, Gauthier JM (2004) Functional proteomics mapping of a human signaling pathway. Genome Res 14(7):1324–1332. doi:10.1101/gr.2334104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Zheng F, Li T, Cheung M, Syrovatkina V, Fu C (2014) Mcp1p tracks microtubule plus ends to destabilize microtubules at cell tips. FEBS Lett. doi:10.1016/j.febslet.2014.01.055

    Google Scholar 

  81. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 339(6127):1546–1558. doi:10.1126/science.1235122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Zhu H, Xu W, Zhang H, Liu J, Xu H, Lu S, Dang S, Kuang Y, Jin X, Wang Z (2013) Targeted deletion of Kif18a protects from colitis-associated colorectal (CAC) tumors in mice through impairing Akt phosphorylation. Biochem Biophys Res Commun 438(1):97–102. doi:10.1016/j.bbrc.2013.07.032

    Article  CAS  PubMed  Google Scholar 

  83. Honore S, Pasquier E, Braguer D (2005) Understanding microtubule dynamics for improved cancer therapy. Cell Mol Life Sci 62(24):3039–3056. doi:10.1007/s00018-005-5330-x

    Article  CAS  PubMed  Google Scholar 

  84. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536. doi:10.1038/415530a

    Article  Google Scholar 

  85. Damasco C, Lembo A, Somma MP, Gatti M, Di Cunto F, Provero P (2011) A signature inferred from Drosophila mitotic genes predicts survival of breast cancer patients. PLoS One 6(2):e14737. doi:10.1371/journal.pone.0014737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Rucksaken R, Khoontawad J, Roytrakul S, Pinlaor P, Hiraku Y, Wongkham C, Pairojkul C, Boonmars T, Pinlaor S (2012) Proteomic analysis to identify plasma orosomucoid 2 and kinesin 18A as potential biomarkers of cholangiocarcinoma. Cancer Biomark 12(2):81–95. doi:10.3233/CBM-130296

    CAS  PubMed  Google Scholar 

  87. Tooker BC, Newman LS, Bowler RP, Karjalainen A, Oksa P, Vainio H, Pukkala E, Brandt-Rauf PW (2011) Proteomic detection of cancer in asbestosis patients using SELDI-TOF discovered serum protein biomarkers. Biomarkers 16(2):181–191. doi:10.3109/1354750X.2010.543289

    Article  CAS  PubMed  Google Scholar 

  88. Brindley SM, Tooker BC, Pass HI, Newman LS (2012) Attempted validation of surface enhanced laser desorption ionization-time of flight derived kinesin biomarkers in malignant mesothelioma. J Data Min Genomics Proteomics S1:1–6. doi:10.4172/2153-0602.S1-002

    Google Scholar 

  89. Shichijo S, Ito M, Azuma K, Komatsu N, Maeda Y, Ishihara Y, Nakamura T, Harada M, Itoh K (2005) A unique gene having homology with the kinesin family member 18A encodes a tumour-associated antigen recognised by cytotoxic T lymphocytes from HLA-A2+ colon cancer patients. Eur J Cancer 41(9):1323–1330. doi:10.1016/j.ejca.2005.02.025

    Article  CAS  PubMed  Google Scholar 

  90. Shackney SE, Smith CA, Miller BW, Burholt DR, Murtha K, Giles HR, Ketterer DM, Pollice AA (1989) Model for the genetic evolution of human solid tumors. Cancer Res 49(12):3344–3354

    CAS  PubMed  Google Scholar 

  91. Storchova Z, Pellman D (2004) From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol 5(1):45–54. doi:10.1038/nrm1276

    Article  CAS  PubMed  Google Scholar 

  92. Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D (2005) Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437(7061):1043–1047. doi:10.1038/nature04217

    Article  CAS  PubMed  Google Scholar 

  93. Lv L, Zhang T, Yi Q, Huang Y, Wang Z, Hou H, Zhang H, Zheng W, Hao Q, Guo Z, Cooke HJ, Shi Q (2012) Tetraploid cells from cytokinesis failure induce aneuploidy and spontaneous transformation of mouse ovarian surface epithelial cells. Cell Cycle 11(15):2864–2875. doi:10.4161/cc.21196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Rath O, Kozielski F (2012) Kinesins and cancer. Nat Rev Cancer 12(8):527–539. doi:10.1038/nrc3310

    Article  CAS  PubMed  Google Scholar 

  95. Catarinella M, Gruner T, Strittmatter T, Marx A, Mayer TU (2009) BTB-1: a small molecule inhibitor of the mitotic motor protein Kif18A. Angew Chem Int Ed Engl 48(48):9072–9076. doi:10.1002/anie.200904510

    Article  CAS  PubMed  Google Scholar 

  96. Tcherniuk S, van Lis R, Kozielski F, Skoufias DA (2010) Mutations in the human kinesin Eg5 that confer resistance to monastrol and S-trityl-L-cysteine in tumor derived cell lines. Biochem Pharmacol 79(6):864–872. doi:10.1016/j.bcp.2009.11.001

    Article  CAS  PubMed  Google Scholar 

  97. Girdler F, Sessa F, Patercoli S, Villa F, Musacchio A, Taylor S (2008) Molecular basis of drug resistance in aurora kinases. Chem Biol 15(6):552–562. doi:10.1016/j.chembiol.2008.04.013

    Article  CAS  PubMed  Google Scholar 

  98. Weiss WA, Taylor SS, Shokat KM (2007) Recognizing and exploiting differences between RNAi and small-molecule inhibitors. Nat Chem Biol 3(12):739–744. doi:10.1038/nchembio1207-739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Mitchison TJ (2012) The proliferation rate paradox in antimitotic chemotherapy. Mol Biol Cell 23(1):1–6. doi:10.1091/mbc.E10-04-0335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Salmela AL, Kallio MJ (2013) Mitosis as an anti-cancer drug target. Chromosoma 122(5):431–449. doi:10.1007/s00412-013-0419-8

    Article  CAS  PubMed  Google Scholar 

  101. Komlodi-Pasztor E, Sackett D, Wilkerson J, Fojo T (2011) Mitosis is not a key target of microtubule agents in patient tumors. Nat Rev Clin Oncol 8(4):244–250. doi:10.1038/nrclinonc.2010.228

    Article  CAS  PubMed  Google Scholar 

  102. Purcell JW, Davis J, Reddy M, Martin S, Samayoa K, Vo H, Thomsen K, Bean P, Kuo WL, Ziyad S, Billig J, Feiler HS, Gray JW, Wood KW, Cases S (2010) Activity of the kinesin spindle protein inhibitor ispinesib (SB-715992) in models of breast cancer. Clin Cancer Res 16(2):566–576. doi:10.1158/1078-0432.CCR-09-1498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Chan KS, Koh CG, Li HY (2012) Mitosis-targeted anti-cancer therapies: where they stand. Cell Death Dis 3:e411. doi:10.1038/cddis.2012.148

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  104. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4(4):253–265. doi:10.1038/nrc1317

    Article  CAS  PubMed  Google Scholar 

  105. Amadori D, Volpi A, Maltoni R, Nanni O, Amaducci L, Amadori A, Giunchi DC, Vio A, Saragoni A, Silvestrini R (1997) Cell proliferation as a predictor of response to chemotherapy in metastatic breast cancer: a prospective study. Breast Cancer Res Treat 43(1):7–14

    Article  CAS  PubMed  Google Scholar 

  106. Meyer JS, McDivitt RW, Stone KR, Prey MU, Bauer WC (1984) Practical breast carcinoma cell kinetics: review and update. Breast Cancer Res Treat 4(2):79–88

    Article  CAS  PubMed  Google Scholar 

  107. Skipper HE (1971) Kinetics of mammary tumor cell growth and implications for therapy. Cancer 28(6):1479–1499

    Article  CAS  PubMed  Google Scholar 

  108. Zou JX, Duan Z, Wang J, Sokolov A, Xu J, Chen CZ, Li JJ, Chen HW (2014) Kinesin family deregulation coordinated by bromodomain protein ANCCA and histone methyltransferase MLL for breast cancer cell growth, survival and tamoxifen resistance. Mol Cancer Res. doi:10.1158/1541-7786.MCR-13-0459

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas U. Mayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mayer, T.U., Hauf, S. (2015). Kinesin-8 Members and Their Potential as Biomarker or Therapeutic Target. In: Kozielski, FSB, F. (eds) Kinesins and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9732-0_11

Download citation

Publish with us

Policies and ethics