Skip to main content

The Kinesin Superfamily

  • Chapter
  • First Online:
Kinesins and Cancer

Abstract

Kinesins are enzymes that use the energy of ATP hydrolysis to generate force and/or motility along microtubule polymers. A large number of kinesin enzymes are involved in mitosis with important roles in spindle assembly, chromosome congression, chromosome segregation, and cytokinesis. In this chapter, we begin with a description of the kinesin motor domain and the general principles of chemomechanical coupling. We then discuss general principles of kinesin organization and regulation. Finally, we provide a brief description of the kinesins that are known to function in mitosis, which will be the focus of the later chapters of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brady ST (1985) A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317:73–75

    CAS  PubMed  Google Scholar 

  2. Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Lawrence CJ et al (2004) A standardized kinesin nomenclature. J Cell Biol 167:19–22

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Miki H, Okada Y, Hirokawa N (2005) Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol 15:467–476

    CAS  PubMed  Google Scholar 

  5. Wickstead B, Gull K (2006) A “holistic” kinesin phylogeny reveals new kinesin families and predicts protein functions. Mol Biol Cell 17:1734–1743

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Kull FJ, Sablin EP, Lau R, Fletterick RJ, Vale RD (1996) Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380:550–555

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Rayment I et al (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58

    CAS  PubMed  Google Scholar 

  8. Kull FJ (2000) Motor proteins of the kinesin superfamily: structure and mechanism. Essays Biochem 35:61–73

    CAS  PubMed  Google Scholar 

  9. Kull FJ, Endow SA (2002) Kinesin: switch I & II and the motor mechanism. J Cell Sci 115:15–23

    CAS  PubMed  Google Scholar 

  10. Marx A, Hoenger A, Mandelkow E (2009) Structures of kinesin motor proteins. Cell Motil Cytoskeleton 66:958–966

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Woehlke G (2001) A look into kinesin’s powerhouse. FEBS Lett 508:291–294

    CAS  PubMed  Google Scholar 

  12. Hua W, Young EC, Fleming ML, Gelles J (1997) Coupling of kinesin steps to ATP hydrolysis. Nature 388:390–393

    CAS  PubMed  Google Scholar 

  13. Schnitzer MJ, Block SM (1997) Kinesin hydrolyses one ATP per 8-nm step. Nature 388:386–390

    CAS  PubMed  Google Scholar 

  14. Schnitzer MJ, Visscher K, Block SM (2000) Force production by single kinesin motors. Nat Cell Biol 2:718–723

    CAS  PubMed  Google Scholar 

  15. Vale RD et al (1996) Direct observation of single kinesin molecules moving along microtubules. Nature 380:451–453

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Svoboda K, Block SM (1994) Force and velocity measured for single kinesin molecules. Cell 77:773–784

    CAS  PubMed  Google Scholar 

  17. Visscher K, Schnitzer MJ, Block SM (1999) Single kinesin molecules studied with a molecular force clamp. Nature 400:184–189

    CAS  PubMed  Google Scholar 

  18. Yildiz A, Tomishige M, Vale RD, Selvin PR (2004) Kinesin walks hand-over-hand. Science 303:676–678

    CAS  PubMed  Google Scholar 

  19. Valentine MT, Fordyce PM, Krzysiak TC, Gilbert SP, Block SM (2006) Individual dimers of the mitotic kinesin motor Eg5 step processively and support substantial loads in vitro. Nat Cell Biol 8:470–476

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Yardimci H, van Duffelen M, Mao Y, Rosenfeld SS, Selvin PR (2008) The mitotic kinesin CENP-E is a processive transport motor. Proc Natl Acad Sci U S A 105:6016–6021

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Rice S et al (1999) A structural change in the kinesin motor protein that drives motility. Nature 402:778–784

    CAS  PubMed  Google Scholar 

  22. Schief WR, Howard J (2001) Conformational changes during kinesin motility. Curr Opin Cell Biol 13:19–28

    CAS  PubMed  Google Scholar 

  23. Guydosh NR, Block SM (2006) Backsteps induced by nucleotide analogs suggest the front head of kinesin is gated by strain. Proc Natl Acad Sci U S A 103:8054–8059

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Hwang W, Lang MJ (2009) Mechanical design of translocating motor proteins. Cell Biochem Biophys 54:11–22

    CAS  PubMed  Google Scholar 

  25. Hyeon C, Onuchic JN (2007) Internal strain regulates the nucleotide binding site of the kinesin leading head. Proc Natl Acad Sci U S A 104:2175–2180

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Jaud J, Bathe F, Schliwa M, Rief M, Woehlke G (2006) Flexibility of the neck domain enhances kinesin-1 motility under load. Biophys J 91:1407–1412

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Miyazono Y, Hayashi M, Karagiannis P, Harada Y, Tadakuma H (2010) Strain through the neck linker ensures processive runs: a DNA-kinesin hybrid nanomachine study. EMBO J 29:93–106

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Rosenfeld SS, Fordyce PM, Jefferson GM, King PH, Block SM (2003) Stepping and stretching. How kinesin uses internal strain to walk processively. J Biol Chem 278:18550–18556

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Shastry S, Hancock WO (2010) Neck linker length determines the degree of processivity in kinesin-1 and kinesin-2 motors. Curr Biol 20:939–943

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Yildiz A, Tomishige M, Gennerich A, Vale RD (2008) Intramolecular strain coordinates kinesin stepping behavior along microtubules. Cell 134:1030–1041

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Khalil AS et al (2008) Kinesin’s cover-neck bundle folds forward to generate force. Proc Natl Acad Sci U S A 105:19247–19252

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Hwang W, Lang MJ, Karplus M (2008) Force generation in kinesin hinges on cover-neck bundle formation. Structure 16:62–71

    CAS  PubMed  Google Scholar 

  33. Sosa H et al (1997) A model for the microtubule-Ncd motor protein complex obtained by cryo-electron microscopy and image analysis. Cell 90:217–224

    CAS  PubMed  Google Scholar 

  34. Woehlke G et al (1997) Microtubule interaction site of the kinesin motor. Cell 90:207–216

    CAS  PubMed  Google Scholar 

  35. Block SM (2007) Kinesin motor mechanics: binding, stepping, tracking, gating, and limping. Biophys J 92:2986–2995

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Zhao YC, Kull FJ, Cochran JC (2010) Modulation of the kinesin ATPase cycle by neck linker docking and microtubule binding. J Biol Chem 285:25213–25220

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Cochran JC et al (2009) ATPase cycle of the nonmotile kinesin NOD allows microtubule end tracking and drives chromosome movement. Cell 136:110–122

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Ogawa T, Nitta R, Okada Y, Hirokawa N (2004) A common mechanism for microtubule destabilizers-M type kinesins stabilize curling of the protofilament using the class-specific neck and loops. Cell 116:591–602

    CAS  PubMed  Google Scholar 

  39. Sindelar CV, Downing KH (2007) The beginning of kinesin’s force-generating cycle visualized at 9-A resolution. J Cell Biol 177:377–385

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Vale RD, Milligan RA (2000) The way things move: looking under the hood of molecular motor proteins. Science 288:88–95

    CAS  PubMed  Google Scholar 

  41. Gigant B et al (2013) Structure of a kinesin-tubulin complex and implications for kinesin motility. Nat Struct Mol Biol 20:1001–1007

    CAS  PubMed  Google Scholar 

  42. Kikkawa M et al (2001) Switch-based mechanism of kinesin motors. Nature 411:439–445

    CAS  PubMed  Google Scholar 

  43. Block SM, Asbury CL, Shaevitz JW, Lang MJ (2003) Probing the kinesin reaction cycle with a 2D optical force clamp. Proc Natl Acad Sci U S A 100:2351–2356

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Klumpp LM, Hoenger A, Gilbert SP (2004) Kinesin’s second step. Proc Natl Acad Sci U S A 101:3444–3449

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Hancock WO, Howard J (1999) Kinesin’s processivity results from mechanical and chemical coordination between the ATP hydrolysis cycles of the two motor domains. Proc Natl Acad Sci U S A 96:13147–13152

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Spudich JA (2006) Molecular motors take tension in stride. Cell 126:242–244

    CAS  PubMed  Google Scholar 

  47. Nitta R, Okada Y, Hirokawa N (2008) Structural model for strain-dependent microtubule activation of Mg-ADP release from kinesin. Nat Struct Mol Biol 15:1067–1075

    CAS  PubMed  Google Scholar 

  48. Kaan HY et al (2010) Structural basis for inhibition of Eg5 by dihydropyrimidines: stereoselectivity of antimitotic inhibitors enastron, dimethylenastron and fluorastrol. J Med Chem 53:5676–5683

    CAS  PubMed  Google Scholar 

  49. Maliga Z et al (2006) A pathway of structural changes produced by monastrol binding to Eg5. J Biol Chem 281:7977–7982

    CAS  PubMed  Google Scholar 

  50. Talapatra SK, Schuttelkopf AW, Kozielski F (2012) The structure of the ternary Eg5-ADP-ispinesib complex. Acta Crystallogr D Biol Crystallogr 68:1311–1319

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Yan Y et al (2004) Inhibition of a mitotic motor protein: where, how, and conformational consequences. J Mol Biol 335:547–554

    CAS  PubMed  Google Scholar 

  52. Brier S, Lemaire D, Debonis S, Forest E, Kozielski F (2004) Identification of the protein binding region of S-trityl-L-cysteine, a new potent inhibitor of the mitotic kinesin Eg5. Biochemistry 43:13072–13082

    CAS  PubMed  Google Scholar 

  53. Cochran JC, Gatial JE 3rd, Kapoor TM, Gilbert SP (2005) Monastrol inhibition of the mitotic kinesin Eg5. J Biol Chem 280:12658–12667

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Behnke-Parks WM et al (2011) Loop L5 acts as a conformational latch in the mitotic kinesin Eg5. J Biol Chem 286:5242–5253

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Waitzman JS et al (2011) The loop 5 element structurally and kinetically coordinates dimers of the human kinesin-5, Eg5. Biophys J 101:2760–2769

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Parke CL, Wojcik EJ, Kim S, Worthylake DK (2010) ATP hydrolysis in Eg5 kinesin involves a catalytic two-water mechanism. J Biol Chem 285:5859–5867

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Du Y, English CA, Ohi R (2010) The kinesin-8 Kif18A dampens microtubule plus-end dynamics. Curr Biol 20:374–380

    CAS  PubMed  Google Scholar 

  58. Gupta ML Jr, Carvalho P, Roof DM, Pellman D (2006) Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle. Nat Cell Biol 8:913–923

    CAS  PubMed  Google Scholar 

  59. Varga V et al (2006) Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nat Cell Biol 8:957–962

    CAS  PubMed  Google Scholar 

  60. Peters C et al (2010) Insight into the molecular mechanism of the multitasking kinesin-8 motor. EMBO J 29:3437–3447

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Walczak CE, Gayek S, Ohi R (2013) Microtubule-depolymerizing kinesins. Annu Rev Cell Dev Biol 29:417–441

    CAS  PubMed  Google Scholar 

  62. Shipley K et al (2004) Structure of a kinesin microtubule depolymerization machine. EMBO J 23:1422–1432

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Tan D, Rice WJ, Sosa H (2008) Structure of the kinesin13-microtubule ring complex. Structure 16:1732–1739

    CAS  PubMed  Google Scholar 

  64. Huang TG, Suhan J, Hackney DD (1994) Drosophila kinesin motor domain extending to amino acid position 392 is dimeric when expressed in Escherichia coli. J Biol Chem 269:16502–16507

    CAS  PubMed  Google Scholar 

  65. Kozielski F, De Bonis S, Burmeister WP, Cohen-Addad C, Wade RH (1999) The crystal structure of the minus-end-directed microtubule motor protein ncd reveals variable dimer conformations. Structure 7:1407–1416

    CAS  PubMed  Google Scholar 

  66. Kozielski F et al (1997) The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell 91:985–994

    CAS  PubMed  Google Scholar 

  67. Hizlan D et al (2006) Structural analysis of the ZEN-4/CeMKLP1 motor domain and its interaction with microtubules. J Struct Biol 153:73–84

    CAS  PubMed  Google Scholar 

  68. Rashid DJ, Bononi J, Tripet BP, Hodges RS, Pierce DW (2005) Monomeric and dimeric states exhibited by the kinesin-related motor protein KIF1A. J Pept Res 65:538–549

    CAS  PubMed  Google Scholar 

  69. Shimizu Y, Morii H, Arisaka F, Tanokura M (2005) Stalk region of kinesin-related protein Unc104 has moderate ability to form coiled-coil dimer. Biochem Biophys Res Commun 337:868–874

    CAS  PubMed  Google Scholar 

  70. Hammond JW et al (2009) Mammalian kinesin-3 motors are dimeric in vivo and move by processive motility upon release of autoinhibition. PLoS Biol 7:e72

    PubMed  Google Scholar 

  71. Huckaba TM, Gennerich A, Wilhelm JE, Chishti AH, Vale RD (2011) Kinesin-73 is a processive motor that localizes to Rab5-containing organelles. J Biol Chem 286:7457–7467

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Huo L et al (2012) The CC1-FHA tandem as a central hub for controlling the dimerization and activation of kinesin-3 KIF1A. Structure 20:1550–1561

    CAS  PubMed  Google Scholar 

  73. Mayr MI, Storch M, Howard J, Mayer TU (2011) A non-motor microtubule binding site is essential for the high processivity and mitotic function of kinesin-8 Kif18A. PLoS One 6:e27471

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Erent M, Drummond DR, Cross RA (2012) S. pombe kinesins-8 promote both nucleation and catastrophe of microtubules. PLoS One 7:e30738

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Tokai-Nishizumi N, Ohsugi M, Suzuki E, Yamamoto T (2005) The chromokinesin Kid is required for maintenance of proper metaphase spindle size. Mol Biol Cell 16:5455–5463

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Kondo S et al (1994) KIF3A is a new microtubule-based anterograde motor in the nerve axon. J Cell Biol 125:1095–1107

    CAS  PubMed  Google Scholar 

  77. Yamazaki H, Nakata T, Okada Y, Hirokawa N (1995) KIF3A/B: a heterodimeric kinesin superfamily protein that works as a microtubule plus end-directed motor for membrane organelle transport. J Cell Biol 130:1387–1399

    CAS  PubMed  Google Scholar 

  78. Yamazaki H, Nakata T, Okada Y, Hirokawa N (1996) Cloning and characterization of KAP3: a novel kinesin superfamily-associated protein of KIF3A/3B. Proc Natl Acad Sci U S A 93:8443–8448

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Muresan V et al (1998) KIF3C and KIF3A form a novel neuronal heteromeric kinesin that associates with membrane vesicles. Mol Biol Cell 9:637–652

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Muthukrishnan G, Zhang Y, Shastry S, Hancock WO (2009) The processivity of kinesin-2 motors suggests diminished front-head gating. Curr Biol 19:442–447

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Yang Z, Goldstein LS (1998) Characterization of the KIF3C neural kinesin-like motor from mouse. Mol Biol Cell 9:249–261

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Chana M, Tripet BP, Mant CT, Hodges RS (2002) The role of unstructured highly charged regions on the stability and specificity of dimerization of two-stranded alpha-helical coiled-coils: analysis of the neck-hinge region of the kinesin-like motor protein Kif3A. J Struct Biol 137:206–219

    CAS  PubMed  Google Scholar 

  83. Chana MS, Tripet B, Mant CT, Hodges RS (2008) Stability and specificity of heterodimer formation for the coiled-coil neck regions of the motor proteins Kif3A and Kif3B: the role of unstructured oppositely charged regions. J Pept Res 65:209–220

    Google Scholar 

  84. De Marco V, Burkhard P, Le Bot N, Vernos I, Hoenger A (2001) Analysis of heterodimer formation by Xklp3A/B, a newly cloned kinesin-II from Xenopus laevis. EMBO J 20:3370–3379

    PubMed Central  PubMed  Google Scholar 

  85. De Marco V, De Marco A, Goldie KN, Correia JJ, Hoenger A (2003) Dimerization properties of a Xenopus laevis kinesin-II carboxy-terminal stalk fragment. EMBO Rep 4:717–722

    PubMed Central  PubMed  Google Scholar 

  86. Vukajlovic M, Dietz H, Schliwa M, Okten Z (2011) How kinesin-2 forms a stalk. Mol Biol Cell 22:4279–4287

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Doodhi H, Jana SC, Devan P, Mazumdar S, Ray K (2012) Biochemical and molecular dynamic simulation analysis of a weak coiled coil association between kinesin-II stalks. PLoS One 7:e45981

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Rashid DJ, Wedaman KP, Scholey JM (1995) Heterodimerization of the two motor subunits of the heterotrimeric kinesin, KRP85/95. J Mol Biol 252:157–162

    CAS  PubMed  Google Scholar 

  89. Brunnbauer M et al (2012) Torque generation of kinesin motors is governed by the stability of the neck domain. Mol Cell 46:147–158

    CAS  PubMed  Google Scholar 

  90. Pan X, Acar S, Scholey JM (2010) Torque generation by one of the motor subunits of heterotrimeric kinesin-2. Biochem Biophys Res Commun 401:53–57

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Allingham JS, Sproul LR, Rayment I, Gilbert SP (2007) Vik1 modulates microtubule-Kar3 interactions through a motor domain that lacks an active site. Cell 128:1161–1172

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Chen CJ, Rayment I, Gilbert SP (2011) Kinesin Kar3Cik1 ATPase pathway for microtubule cross-linking. J Biol Chem 286:29261–29272

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Rank KC et al (2012) Kar3Vik1, a member of the kinesin-14 superfamily, shows a novel kinesin microtubule binding pattern. J Cell Biol 197:957–970

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Sproul LR, Anderson DJ, Mackey AT, Saunders WS, Gilbert SP (2005) Cik1 targets the minus-end kinesin depolymerase kar3 to microtubule plus ends. Curr Biol 15:1420–1427

    PubMed Central  CAS  PubMed  Google Scholar 

  95. DeBoer SR et al (2008) Conventional kinesin holoenzymes are composed of heavy and light chain homodimers. Biochemistry 47:4535–4543

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Hackney DD, Levitt JD, Wagner DD (1991) Characterization of alpha 2 beta 2 and alpha 2 forms of kinesin. Biochem Biophys Res Commun 174:810–815

    CAS  PubMed  Google Scholar 

  97. Cole DG, Saxton WM, Sheehan KB, Scholey JM (1994) A “slow” homotetrameric kinesin-related motor protein purified from Drosophila embryos. J Biol Chem 269:22913–22916

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Kashina AS et al (1996) A bipolar kinesin. Nature 379:270–272

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Tao L et al (2006) A homotetrameric kinesin-5, KLP61F, bundles microtubules and antagonizes Ncd in motility assays. Curr Biol 16:2293–2302

    CAS  PubMed  Google Scholar 

  100. Acar S et al (2013) The bipolar assembly domain of the mitotic motor kinesin-5. Nat Commun 4:1343

    PubMed Central  PubMed  Google Scholar 

  101. Kapitein LC et al (2005) The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 435:114–118

    CAS  PubMed  Google Scholar 

  102. van den Wildenberg SM et al (2008) The homotetrameric kinesin-5 KLP61F preferentially crosslinks microtubules into antiparallel orientations. Curr Biol 18:1860–1864

    PubMed Central  PubMed  Google Scholar 

  103. Mishima M, Kaitna S, Glotzer M (2002) Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. Dev Cell 2:41–54

    CAS  PubMed  Google Scholar 

  104. Somers WG, Saint R (2003) A RhoGEF and Rho family GTPase-activating protein complex links the contractile ring to cortical microtubules at the onset of cytokinesis. Dev Cell 4:29–39

    CAS  PubMed  Google Scholar 

  105. Pavicic-Kaltenbrunner V, Mishima M, Glotzer M (2007) Cooperative assembly of CYK-4/MgcRacGAP and ZEN-4/MKLP1 to form the centralspindlin complex. Mol Biol Cell 18:4992–5003

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Cai D, Hoppe AD, Swanson JA, Verhey KJ (2007) Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells. J Cell Biol 176:51–63

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Coy DL, Hancock WO, Wagenbach M, Howard J (1999) Kinesin’s tail domain is an inhibitory regulator of the motor domain. Nat Cell Biol 1:288–292

    CAS  PubMed  Google Scholar 

  108. Dietrich KA et al (2008) The kinesin-1 motor protein is regulated by a direct interaction of its head and tail. Proc Natl Acad Sci U S A 105:8938–8943

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Friedman DS, Vale RD (1999) Single-molecule analysis of kinesin motility reveals regulation by the cargo-binding tail domain. Nat Cell Biol 1:293–297

    CAS  PubMed  Google Scholar 

  110. Hackney DD, Baek N, Snyder AC (2009) Half-site inhibition of dimeric kinesin head domains by monomeric tail domains. Biochemistry 48:3448–3456

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Hackney DD, Levitt JD, Suhan J (1992) Kinesin undergoes a 9 S to 6 S conformational transition. J Biol Chem 267:8696–8701

    CAS  PubMed  Google Scholar 

  112. Hackney DD, Stock MF (2000) Kinesin’s IAK tail domain inhibits initial microtubule-stimulated ADP release. Nat Cell Biol 2:257–260

    CAS  PubMed  Google Scholar 

  113. Hackney DD, Stock MF (2008) Kinesin tail domains and Mg2+ directly inhibit release of ADP from head domains in the absence of microtubules. Biochemistry 47:7770–7778

    CAS  PubMed  Google Scholar 

  114. Kaan HY, Hackney DD, Kozielski F (2011) The structure of the kinesin-1 motor-tail complex reveals the mechanism of autoinhibition. Science 333:883–885

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Verhey KJ et al (1998) Light chain-dependent regulation of Kinesin’s interaction with microtubules. J Cell Biol 143:1053–1066

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Wong YL, Rice SE (2010) Kinesin’s light chains inhibit the head- and microtubule-binding activity of its tail. Proc Natl Acad Sci U S A 107:11781–11786

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Hammond JW, Blasius TL, Soppina V, Cai D, Verhey KJ (2010) Autoinhibition of the kinesin-2 motor KIF17 via dual intramolecular mechanisms. J Cell Biol 189:1013–1025

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Imanishi M, Endres NF, Gennerich A, Vale RD (2006) Autoinhibition regulates the motility of the C. elegans intraflagellar transport motor OSM-3. J Cell Biol 174:931–937

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Yamada KH, Hanada T, Chishti AH (2007) The effector domain of human Dlg tumor suppressor acts as a switch that relieves autoinhibition of kinesin-3 motor GAKIN/KIF13B. Biochemistry 46:10039–10045

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Lee JR et al (2004) An intramolecular interaction between the FHA domain and a coiled coil negatively regulates the kinesin motor KIF1A. EMBO J 23:1506–1515

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Espeut J et al (2008) Phosphorylation relieves autoinhibition of the kinetochore motor Cenp-E. Mol Cell 29:637–643

    CAS  PubMed  Google Scholar 

  122. Stumpff J et al (2011) A tethering mechanism controls the processivity and kinetochore-microtubule plus-end enrichment of the kinesin-8 Kif18A. Mol Cell 43:764–775

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Antonio C et al (2000) Xkid, a chromokinesin required for chromosome alignment on the metaphase plate. Cell 102:425–435

    CAS  PubMed  Google Scholar 

  124. Vernos I et al (1995) Xklp1, a chromosomal Xenopus kinesin-like protein essential for spindle organization and chromosome positioning. Cell 81:117–127

    CAS  PubMed  Google Scholar 

  125. Brown KD, Wood KW, Cleveland DW (1996) The kinesin-like protein CENP-E is kinetochore-associated throughout poleward chromosome segregation during anaphase-A. J Cell Sci 109:961–969

    CAS  PubMed  Google Scholar 

  126. Tokai N et al (1996) Kid, a novel kinesin-like DNA binding protein, is localized to chromosomes and the mitotic spindle. EMBO J 15:457–467

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Levesque AA, Compton DA (2001) The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles. J Cell Biol 154:1135–1146

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Goshima G, Vale RD (2005) Cell cycle-dependent dynamics and regulation of mitotic kinesins in Drosophila S2 cells. Mol Biol Cell 16:3896–3907

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Liu X, Erikson RL (2007) The nuclear localization signal of mitotic kinesin-like protein Mklp-1: effect on Mklp-1 function during cytokinesis. Biochem Biophys Res Commun 353:960–964

    CAS  PubMed  Google Scholar 

  130. Cai S, Weaver LN, Ems-McClung SC, Walczak CE (2009) Kinesin-14 family proteins HSET/XCTK2 control spindle length by cross-linking and sliding microtubules. Mol Biol Cell 20:1348–1359

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Liao H, Li G, Yen TJ (1994) Mitotic regulation of microtubule cross-linking activity of CENP-E kinetochore protein. Science 265:394–398

    CAS  PubMed  Google Scholar 

  132. Blangy A et al (1995) Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83:1159–1169

    CAS  PubMed  Google Scholar 

  133. Sawin KE, Mitchison TJ (1995) Mutations in the kinesin-like protein Eg5 disrupting localization to the mitotic spindle. Proc Natl Acad Sci U S A 92:4289–4293

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Ohsugi M et al (2003) Cdc2-mediated phosphorylation of Kid controls its distribution to spindle and chromosomes. EMBO J 22:2091–2103

    PubMed Central  CAS  PubMed  Google Scholar 

  135. Cahu J et al (2008) Phosphorylation by Cdk1 increases the binding of Eg5 to microtubules in vitro and in Xenopus egg extract spindles. PLoS One 3:e3936

    PubMed Central  PubMed  Google Scholar 

  136. Severson AF, Hamill DR, Carter JC, Schumacher J, Bowerman B (2000) The aurora-related kinase AIR-2 recruits ZEN-4/CeMKLP1 to the mitotic spindle at metaphase and is required for cytokinesis. Curr Biol 10:1162–1171

    CAS  PubMed  Google Scholar 

  137. Andrews PD et al (2004) Aurora B regulates MCAK at the mitotic centromere. Dev Cell 6:253–268

    CAS  PubMed  Google Scholar 

  138. Lan W et al (2004) Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr Biol 14:273–286

    CAS  PubMed  Google Scholar 

  139. Ohi R, Sapra T, Howard J, Mitchison TJ (2004) Differentiation of cytoplasmic and meiotic spindle assembly MCAK functions by Aurora B-dependent phosphorylation. Mol Biol Cell 15:2895–2906

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Knowlton AL, Lan W, Stukenberg PT (2006) Aurora B is enriched at merotelic attachment sites, where it regulates MCAK. Curr Biol 16:1705–1710

    CAS  PubMed  Google Scholar 

  141. Zhang X, Lan W, Ems-McClung SC, Stukenberg PT, Walczak CE (2007) Aurora B phosphorylates multiple sites on mitotic centromere-associated kinesin to spatially and temporally regulate its function. Mol Biol Cell 18:3264–3276

    PubMed Central  CAS  PubMed  Google Scholar 

  142. Kim Y, Holland AJ, Lan W, Cleveland DW (2010) Aurora kinases and protein phosphatase 1 mediate chromosome congression through regulation of CENP-E. Cell 142:444–455

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Tanenbaum ME et al (2011) A complex of Kif18b and MCAK promotes microtubule depolymerization and is negatively regulated by Aurora kinases. Curr Biol 21:1356–1365

    CAS  PubMed  Google Scholar 

  144. Lee YM et al (2010) Cell cycle-regulated expression and subcellular localization of a kinesin-8 member human KIF18B. Gene 466:16–25

    CAS  PubMed  Google Scholar 

  145. Mayr MI et al (2007) The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Curr Biol 17:488–498

    CAS  PubMed  Google Scholar 

  146. Brown KD, Coulson RM, Yen TJ, Cleveland DW (1994) Cyclin-like accumulation and loss of the putative kinetochore motor CENP-E results from coupling continuous synthesis with specific degradation at the end of mitosis. J Cell Biol 125:1303–1312

    CAS  PubMed  Google Scholar 

  147. Funabiki H, Murray AW (2000) The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell 102:411–424

    CAS  PubMed  Google Scholar 

  148. Fontijn RD et al (2001) The human kinesin-like protein RB6K is under tight cell cycle control and is essential for cytokinesis. Mol Cell Biol 21:2944–2955

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Carvalho P, Gupta ML Jr, Hoyt MA, Pellman D (2004) Cell cycle control of kinesin-mediated transport of Bik1 (CLIP-170) regulates microtubule stability and dynein activation. Dev Cell 6:815–829

    CAS  PubMed  Google Scholar 

  150. Feine O, Zur A, Mahbubani H, Brandeis M (2007) Human Kid is degraded by the APC/C(Cdh1) but not by the APC/C(Cdc20). Cell Cycle 6:2516–2523

    CAS  PubMed  Google Scholar 

  151. Ganguly A, Bhattacharya R, Cabral F (2008) Cell cycle dependent degradation of MCAK: evidence against a role in anaphase chromosome movement. Cell Cycle 7:3187–3193

    PubMed Central  CAS  PubMed  Google Scholar 

  152. Seguin L et al (2009) CUX1 and E2F1 regulate coordinated expression of the mitotic complex genes Ect2, MgcRacGAP, and MKLP1 in S phase. Mol Cell Biol 29:570–581

    PubMed Central  CAS  PubMed  Google Scholar 

  153. Sedgwick GG et al (2013) Mechanisms controlling the temporal degradation of Nek2A and Kif18A by the APC/C-Cdc20 complex. EMBO J 32:303–314

    PubMed Central  CAS  PubMed  Google Scholar 

  154. Wittmann T, Boleti H, Antony C, Karsenti E, Vernos I (1998) Localization of the kinesin-like protein Xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein. J Cell Biol 143:673–685

    PubMed Central  CAS  PubMed  Google Scholar 

  155. Tahara K et al (2008) Importin-beta and the small guanosine triphosphatase Ran mediate chromosome loading of the human chromokinesin Kid. J Cell Biol 180:493–506

    PubMed Central  CAS  PubMed  Google Scholar 

  156. Trieselmann N, Armstrong S, Rauw J, Wilde A (2003) Ran modulates spindle assembly by regulating a subset of TPX2 and Kid activities including Aurora A activation. J Cell Sci 116:4791–4798

    CAS  PubMed  Google Scholar 

  157. Ems-McClung SC, Zheng Y, Walczak CE (2004) Importin alpha/beta and Ran-GTP regulate XCTK2 microtubule binding through a bipartite nuclear localization signal. Mol Biol Cell 15:46–57

    PubMed Central  CAS  PubMed  Google Scholar 

  158. Wilbur JD, Heald R (2013) Mitotic spindle scaling during Xenopus development by kif2a and importin alpha. Elife 2:e00290

    PubMed Central  PubMed  Google Scholar 

  159. Manning BD, Barrett JG, Wallace JA, Granok H, Snyder M (1999) Differential regulation of the Kar3p kinesin-related protein by two associated proteins, Cik1p and Vik1p. J Cell Biol 144:1219–1233

    PubMed Central  CAS  PubMed  Google Scholar 

  160. Benanti JA, Matyskiela ME, Morgan DO, Toczyski DP (2009) Functionally distinct isoforms of Cik1 are differentially regulated by APC/C-mediated proteolysis. Mol Cell 33:581–590

    PubMed Central  CAS  PubMed  Google Scholar 

  161. Atherton J, Houdusse A, Moores C (2013) Mapping out distribution routes for kinesin couriers. Biol Cell 105:465–487

    CAS  PubMed  Google Scholar 

  162. Peris L et al (2009) Motor-dependent microtubule disassembly driven by tubulin tyrosination. J Cell Biol 185:1159–1166

    PubMed Central  CAS  PubMed  Google Scholar 

  163. Sturgill EG, Ohi R (2013) Kinesin-12 differentially affects spindle assembly depending on its microtubule substrate. Curr Biol 23:1280–1290

    PubMed Central  CAS  PubMed  Google Scholar 

  164. Segbert C et al (2003) KLP-18, a Klp2 kinesin, is required for assembly of acentrosomal meiotic spindles in Caenorhabditis elegans. Mol Biol Cell 14:4458–4469

    PubMed Central  CAS  PubMed  Google Scholar 

  165. Enos AP, Morris NR (1990) Mutation of a gene that encodes a kinesin-like protein blocks nuclear division in A. nidulans. Cell 60:1019–1027

    CAS  PubMed  Google Scholar 

  166. Hoyt MA, He L, Loo KK, Saunders WS (1992) Two Saccharomyces cerevisiae kinesin-related gene products required for mitotic spindle assembly. J Cell Biol 118:109–120

    CAS  PubMed  Google Scholar 

  167. Roof DM, Meluh PB, Rose MD (1992) Kinesin-related proteins required for assembly of the mitotic spindle. J Cell Biol 118:95–108

    CAS  PubMed  Google Scholar 

  168. Roostalu J et al (2011) Directional switching of the kinesin Cin8 through motor coupling. Science 332:94–99

    CAS  PubMed  Google Scholar 

  169. Gerson-Gurwitz A et al (2011) Directionality of individual kinesin-5 Cin8 motors is modulated by loop 8, ionic strength and microtubule geometry. EMBO J 30:4942–4954

    PubMed Central  CAS  PubMed  Google Scholar 

  170. Fridman V et al (2013) Kinesin-5 Kip1 is a bi-directional motor that stabilizes microtubules and tracks their plus-ends in vivo. J Cell Sci 126:4147–4159

    CAS  PubMed  Google Scholar 

  171. Ferenz NP, Gable A, Wadsworth P (2010) Mitotic functions of kinesin-5. Semin Cell Dev Biol 21:255–259

    PubMed Central  CAS  PubMed  Google Scholar 

  172. Kapoor TM, Mayer TU, Coughlin ML, Mitchison TJ (2000) Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J Cell Biol 150:975–988

    PubMed Central  CAS  PubMed  Google Scholar 

  173. Saunders AM, Powers J, Strome S, Saxton WM (2007) Kinesin-5 acts as a brake in anaphase spindle elongation. Curr Biol 17:R453–R454

    PubMed Central  CAS  PubMed  Google Scholar 

  174. Tikhonenko I, Nag DK, Martin N, Koonce MP (2008) Kinesin-5 is not essential for mitotic spindle elongation in Dictyostelium. Cell Motil Cytoskeleton 65:853–862

    CAS  PubMed  Google Scholar 

  175. Sakowicz R et al (1998) A marine natural product inhibitor of kinesin motors. Science 280:292–295

    CAS  PubMed  Google Scholar 

  176. Liu L, Parameswaran S, Liu J, Kim S, Wojcik EJ (2011) Loop 5-directed compounds inhibit chimeric kinesin-5 motors: implications for conserved allosteric mechanisms. J Biol Chem 286:6201–6210

    PubMed Central  CAS  PubMed  Google Scholar 

  177. Rath O, Kozielski F (2012) Kinesins and cancer. Nat Rev Cancer 12:527–539

    CAS  PubMed  Google Scholar 

  178. Tanenbaum ME et al (2009) Kif15 cooperates with eg5 to promote bipolar spindle assembly. Curr Biol 19:1703–1711

    CAS  PubMed  Google Scholar 

  179. Boleti H, Karsenti E, Vernos I (1996) Xklp2, a novel Xenopus centrosomal kinesin-like protein required for centrosome separation during mitosis. Cell 84:49–59

    CAS  PubMed  Google Scholar 

  180. Vanneste D, Takagi M, Imamoto N, Vernos I (2009) The role of Hklp2 in the stabilization and maintenance of spindle bipolarity. Curr Biol 19:1712–1717

    CAS  PubMed  Google Scholar 

  181. Yen TJ et al (1991) CENP-E, a novel human centromere-associated protein required for progression from metaphase to anaphase. EMBO J 10:1245–1254

    PubMed Central  CAS  PubMed  Google Scholar 

  182. Yen TJ, Li G, Schaar BT, Szilak I, Cleveland DW (1992) CENP-E is a putative kinetochore motor that accumulates just before mitosis. Nature 359:536–539

    CAS  PubMed  Google Scholar 

  183. Schaar BT, Chan GK, Maddox P, Salmon ED, Yen TJ (1997) CENP-E function at kinetochores is essential for chromosome alignment. J Cell Biol 139:1373–1382

    PubMed Central  CAS  PubMed  Google Scholar 

  184. Wood KW, Sakowicz R, Goldstein LS, Cleveland DW (1997) CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 91:357–366

    CAS  PubMed  Google Scholar 

  185. Yao X, Anderson KL, Cleveland DW (1997) The microtubule-dependent motor centromere-associated protein E (CENP-E) is an integral component of kinetochore corona fibers that link centromeres to spindle microtubules. J Cell Biol 139:435–447

    PubMed Central  CAS  PubMed  Google Scholar 

  186. Chan GK, Schaar BT, Yen TJ (1998) Characterization of the kinetochore binding domain of CENP-E reveals interactions with the kinetochore proteins CENP-F and hBUBR1. J Cell Biol 143:49–63

    PubMed Central  CAS  PubMed  Google Scholar 

  187. Abrieu A, Kahana JA, Wood KW, Cleveland DW (2000) CENP-E as an essential component of the mitotic checkpoint in vitro. Cell 102:817–826

    CAS  PubMed  Google Scholar 

  188. Yao X, Abrieu A, Zheng Y, Sullivan KF, Cleveland DW (2000) CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nat Cell Biol 2:484–491

    CAS  PubMed  Google Scholar 

  189. Weaver BA, Silk AD, Montagna C, Verdier-Pinard P, Cleveland DW (2007) Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11:25–36

    CAS  PubMed  Google Scholar 

  190. Wood KW et al (2010) Antitumor activity of an allosteric inhibitor of centromere-associated protein-E. Proc Natl Acad Sci U S A 107:5839–5844

    PubMed Central  CAS  PubMed  Google Scholar 

  191. Meluh PB, Rose MD (1990) KAR3, a kinesin-related gene required for yeast nuclear fusion. Cell 60:1029–1041

    CAS  PubMed  Google Scholar 

  192. Hoyt MA, He L, Totis L, Saunders WS (1993) Loss of function of Saccharomyces cerevisiae kinesin-related CIN8 and KIP1 is suppressed by KAR3 motor domain mutations. Genetics 135:35–44

    PubMed Central  CAS  PubMed  Google Scholar 

  193. O’Connell MJ, Meluh PB, Rose MD, Morris NR (1993) Suppression of the bimC4 mitotic spindle defect by deletion of klpA, a gene encoding a KAR3-related kinesin-like protein in Aspergillus nidulans. J Cell Biol 120:153–162

    PubMed  Google Scholar 

  194. McDonald HB, Stewart RJ, Goldstein LS (1990) The kinesin-like ncd protein of Drosophila is a minus end-directed microtubule motor. Cell 63:1159–1165

    CAS  PubMed  Google Scholar 

  195. Chandra R, Salmon ED, Erickson HP, Lockhart A, Endow SA (1993) Structural and functional domains of the Drosophila ncd microtubule motor protein. J Biol Chem 268:9005–9013

    CAS  PubMed  Google Scholar 

  196. Janson ME et al (2007) Crosslinkers and motors organize dynamic microtubules to form stable bipolar arrays in fission yeast. Cell 128:357–368

    CAS  PubMed  Google Scholar 

  197. Oladipo A, Cowan A, Rodionov V (2007) Microtubule motor Ncd induces sliding of microtubules in vivo. Mol Biol Cell 18:3601–3606

    PubMed Central  CAS  PubMed  Google Scholar 

  198. Fink G et al (2009) The mitotic kinesin-14 Ncd drives directional microtubule-microtubule sliding. Nat Cell Biol 11:717–723

    CAS  PubMed  Google Scholar 

  199. Gaglio T et al (1996) Opposing motor activities are required for the organization of the mammalian mitotic spindle pole. J Cell Biol 135:399–414

    CAS  PubMed  Google Scholar 

  200. Mountain V et al (1999) The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle. J Cell Biol 147:351–366

    PubMed Central  CAS  PubMed  Google Scholar 

  201. Zhu C et al (2005) Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol Biol Cell 16:3187–3199

    PubMed Central  CAS  PubMed  Google Scholar 

  202. Kwon M et al (2008) Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 22:2189–2203

    PubMed Central  CAS  PubMed  Google Scholar 

  203. Kleylein-Sohn J et al (2012) Acentrosomal spindle organization renders cancer cells dependent on the kinesin HSET. J Cell Sci 125:5391–5402

    CAS  PubMed  Google Scholar 

  204. Wu J et al (2013) Discovery and mechanistic study of a small molecule inhibitor for motor protein KIFC1. ACS Chem Biol 8:2201–2208

    CAS  PubMed  Google Scholar 

  205. Watts CA, Richards FM, Bender A, Bond PJ, Korb O, Kern O, Riddick M, Owen P, Myers RM, Raff J, Gergely F, Jodrell DI, Ley SV (2013) Design, synthesis, and biological evaluation of an allosteric inhibitor of HSET that targets cancer cells with supernumerary centrosomes. Chem Biol 20(11):1399–1410

    Google Scholar 

  206. Yang B, Lamb ML, Zhang T, Hennessy EJ, Grewal G, Sha L, Zambrowski M, Block MH, Dowling JE, Su N, Wu J, Deegan T, Mikule K, Wang W, Kaspera R, Chuaqui C, Chen H (2014) Discovery of potent KIFC1 inhibitors using a method of integrated high-throughput synthesis and screening. J Med Chem 57(23):9958–9970

    Google Scholar 

  207. Grinberg-Rashi H et al (2009) The expression of three genes in primary non-small cell lung cancer is associated with metastatic spread to the brain. Clin Cancer Res 15:1755–1761

    CAS  PubMed  Google Scholar 

  208. Ems-McClung SC, Walczak CE (2010) Kinesin-13s in mitosis: key players in the spatial and temporal organization of spindle microtubules. Semin Cell Dev Biol 21:276–282

    PubMed Central  CAS  PubMed  Google Scholar 

  209. Desai A, Verma S, Mitchison TJ, Walczak CE (1999) Kin I kinesins are microtubule-destabilizing enzymes. Cell 96:69–78

    CAS  PubMed  Google Scholar 

  210. Hunter AW et al (2003) The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Mol Cell 11:445–457

    CAS  PubMed  Google Scholar 

  211. Kline-Smith SL, Walczak CE (2002) The microtubule-destabilizing kinesin XKCM1 regulates microtubule dynamic instability in cells. Mol Biol Cell 13:2718–2731

    PubMed Central  CAS  PubMed  Google Scholar 

  212. Rizk RS et al (2009) MCAK and paclitaxel have differential effects on spindle microtubule organization and dynamics. Mol Biol Cell 20:1639–1651

    PubMed Central  CAS  PubMed  Google Scholar 

  213. Kline-Smith SL, Khodjakov A, Hergert P, Walczak CE (2004) Depletion of centromeric MCAK leads to chromosome congression and segregation defects due to improper kinetochore attachments. Mol Biol Cell 15:1146–1159

    PubMed Central  CAS  PubMed  Google Scholar 

  214. Moore AT et al (2005) MCAK associates with the tips of polymerizing microtubules. J Cell Biol 169:391–397

    PubMed Central  CAS  PubMed  Google Scholar 

  215. Zhang X, Ems-McClung SC, Walczak CE (2008) Aurora A phosphorylates MCAK to control ran-dependent spindle bipolarity. Mol Biol Cell 19:2752–2765

    PubMed Central  CAS  PubMed  Google Scholar 

  216. Ganem NJ, Compton DA (2004) The KinI kinesin Kif2a is required for bipolar spindle assembly through a functional relationship with MCAK. J Cell Biol 166:473–478

    PubMed Central  CAS  PubMed  Google Scholar 

  217. Rogers GC et al (2004) Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase. Nature 427:364–370

    CAS  PubMed  Google Scholar 

  218. Maney T, Hunter AW, Wagenbach M, Wordeman L (1998) Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J Cell Biol 142:787–801

    PubMed Central  CAS  PubMed  Google Scholar 

  219. Wordeman L, Wagenbach M, von Dassow G (2007) MCAK facilitates chromosome movement by promoting kinetochore microtubule turnover. J Cell Biol 179:869–879

    PubMed Central  CAS  PubMed  Google Scholar 

  220. Shimo A et al (2008) Involvement of kinesin family member 2C/mitotic centromere-associated kinesin overexpression in mammary carcinogenesis. Cancer Sci 99:62–70

    CAS  PubMed  Google Scholar 

  221. Huang R et al (2013) Intracellular targets for a phosphotyrosine peptidomimetic include the mitotic kinesin, MCAK. Biochem Pharmacol 86:597–611

    PubMed Central  CAS  PubMed  Google Scholar 

  222. Maeda N et al (2005) Effects of DNA polymerase inhibitory and antitumor activities of lipase-hydrolyzed glycolipid fractions from spinach. J Nutr Biochem 16:121–128

    CAS  PubMed  Google Scholar 

  223. Talje L, Ben E, Kadhi K, Atchia K, Tremblay-Boudreault T, Carreno S, Kwok BH (2014) DHTP is an allosteric inhibitor of the kinesin-13 family of microtubule depolymerases. FEBS Lett 588(14):2315–2320

    Google Scholar 

  224. Ishikawa K et al (2008) Mitotic centromere-associated kinesin is a novel marker for prognosis and lymph node metastasis in colorectal cancer. Br J Cancer 98:1824–1829

    PubMed Central  CAS  PubMed  Google Scholar 

  225. Nakamura Y et al (2007) Clinicopathological and biological significance of mitotic centromere-associated kinesin overexpression in human gastric cancer. Br J Cancer 97:543–549

    PubMed Central  CAS  PubMed  Google Scholar 

  226. Vanneste D, Ferreira V, Vernos I (2011) Chromokinesins: localization-dependent functions and regulation during cell division. Biochem Soc Trans 39:1154–1160

    CAS  PubMed  Google Scholar 

  227. Yajima J et al (2003) The human chromokinesin Kid is a plus end-directed microtubule-based motor. EMBO J 22:1067–1074

    PubMed Central  CAS  PubMed  Google Scholar 

  228. Sekine Y et al (1994) A novel microtubule-based motor protein (KIF4) for organelle transports, whose expression is regulated developmentally. J Cell Biol 127:187–201

    CAS  PubMed  Google Scholar 

  229. Bieling P, Telley IA, Surrey T (2010) A minimal midzone protein module controls formation and length of antiparallel microtubule overlaps. Cell 142:420–432

    CAS  PubMed  Google Scholar 

  230. Bringmann H et al (2004) A kinesin-like motor inhibits microtubule dynamic instability. Science 303:1519–1522

    CAS  PubMed  Google Scholar 

  231. Zhang P, Knowles BA, Goldstein LS, Hawley RS (1990) A kinesin-like protein required for distributive chromosome segregation in Drosophila. Cell 62:1053–1062

    CAS  PubMed  Google Scholar 

  232. Mazumdar M, Sundareshan S, Misteli T (2004) Human chromokinesin KIF4A functions in chromosome condensation and segregation. J Cell Biol 166:613–620

    PubMed Central  CAS  PubMed  Google Scholar 

  233. Williams BC, Riedy MF, Williams EV, Gatti M, Goldberg ML (1995) The Drosophila kinesin-like protein KLP3A is a midbody component required for central spindle assembly and initiation of cytokinesis. J Cell Biol 129:709–723

    CAS  PubMed  Google Scholar 

  234. Mazumdar M et al (2006) Tumor formation via loss of a molecular motor protein. Curr Biol 16:1559–1564

    PubMed Central  CAS  PubMed  Google Scholar 

  235. Cottingham FR, Hoyt MA (1997) Mitotic spindle positioning in Saccharomyces cerevisiae is accomplished by antagonistically acting microtubule motor proteins. J Cell Biol 138:1041–1053

    PubMed Central  CAS  PubMed  Google Scholar 

  236. Garcia MA, Koonrugsa N, Toda T (2002) Two kinesin-like Kin I family proteins in fission yeast regulate the establishment of metaphase and the onset of anaphase A. Curr Biol 12:610–621

    CAS  PubMed  Google Scholar 

  237. Stumpff J, von Dassow G, Wagenbach M, Asbury C, Wordeman L (2008) The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Dev Cell 14:252–262

    PubMed Central  CAS  PubMed  Google Scholar 

  238. Stout JR et al (2011) Kif18B interacts with EB1 and controls astral microtubule length during mitosis. Mol Biol Cell 22:3070–3080

    PubMed Central  CAS  PubMed  Google Scholar 

  239. Su X et al (2011) Mechanisms underlying the dual-mode regulation of microtubule dynamics by Kip3/kinesin-8. Mol Cell 43:751–763

    PubMed Central  CAS  PubMed  Google Scholar 

  240. Weaver LN et al (2011) Kif18A uses a microtubule binding site in the tail for plus-end localization and spindle length regulation. Curr Biol 21:1500–1506

    PubMed Central  CAS  PubMed  Google Scholar 

  241. Nagahara M et al (2011) Kinesin 18A expression: clinical relevance to colorectal cancer progression. Int J Cancer 129:2543–2552

    CAS  PubMed  Google Scholar 

  242. Zhang C et al (2010) Kif18A is involved in human breast carcinogenesis. Carcinogenesis 31:1676–1684

    CAS  PubMed  Google Scholar 

  243. Catarinella M, Gruner T, Strittmatter T, Marx A, Mayer TU (2009) BTB-1: a small molecule inhibitor of the mitotic motor protein Kif18A. Angew Chem Int Ed Engl 48:9072–9076

    CAS  PubMed  Google Scholar 

  244. Braun J, Möckel MM, Strittmatter T, Marx A, Groth U, Mayer TU (2014) Synthesis and biological evaluation of optimized inhibitors of the mitotic kinesin Kif18A. ACS Chem Biol [Epub ahead of print]

    Google Scholar 

  245. Glotzer M (2009) The 3Ms of central spindle assembly: microtubules, motors and MAPs. Nat Rev Mol Cell Biol 10:9–20

    PubMed Central  CAS  PubMed  Google Scholar 

  246. Gruneberg U et al (2006) KIF14 and citron kinase act together to promote efficient cytokinesis. J Cell Biol 172:363–372

    PubMed Central  CAS  PubMed  Google Scholar 

  247. Jantsch-Plunger V et al (2000) CYK-4: a Rho family gtpase activating protein (GAP) required for central spindle formation and cytokinesis. J Cell Biol 149:1391–1404

    PubMed Central  CAS  PubMed  Google Scholar 

  248. Nislow C, Lombillo VA, Kuriyama R, McIntosh JR (1992) A plus-end-directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic spindles. Nature 359:543–547

    CAS  PubMed  Google Scholar 

  249. Gasnereau I et al (2012) KIF20A mRNA and its product MKlp2 are increased during hepatocyte proliferation and hepatocarcinogenesis. Am J Pathol 180:131–140

    CAS  PubMed  Google Scholar 

  250. Imai K et al (2011) Identification of HLA-A2-restricted CTL epitopes of a novel tumour-associated antigen, KIF20A, overexpressed in pancreatic cancer. Br J Cancer 104:300–307

    PubMed Central  CAS  PubMed  Google Scholar 

  251. Taniuchi K et al (2005) Down-regulation of RAB6KIFL/KIF20A, a kinesin involved with membrane trafficking of discs large homologue 5, can attenuate growth of pancreatic cancer cell. Cancer Res 65:105–112

    CAS  PubMed  Google Scholar 

  252. Tcherniuk S et al (2010) Relocation of Aurora B and survivin from centromeres to the central spindle impaired by a kinesin-specific MKLP-2 inhibitor. Angew Chem Int Ed Engl 49:8228–8231

    CAS  PubMed  Google Scholar 

  253. Alphey L et al (1997) KLP38B: a mitotic kinesin-related protein that binds PP1. J Cell Biol 138:395–409

    PubMed Central  CAS  PubMed  Google Scholar 

  254. Molina I et al (1997) A chromatin-associated kinesin-related protein required for normal mitotic chromosome segregation in Drosophila. J Cell Biol 139:1361–1371

    PubMed Central  CAS  PubMed  Google Scholar 

  255. Ohkura H et al (1997) Mutation of a gene for a Drosophila kinesin-like protein, Klp38B, leads to failure of cytokinesis. J Cell Sci 110:945–954

    CAS  PubMed  Google Scholar 

  256. Ruden DM, Cui W, Sollars V, Alterman M (1997) A Drosophila kinesin-like protein, Klp38B, functions during meiosis, mitosis, and segmentation. Dev Biol 191:284–296

    CAS  PubMed  Google Scholar 

  257. Carleton M et al (2006) RNA interference-mediated silencing of mitotic kinesin KIF14 disrupts cell cycle progression and induces cytokinesis failure. Mol Cell Biol 26:3853–3863

    PubMed Central  CAS  PubMed  Google Scholar 

  258. Basavarajappa HD, Corson TW (2012) KIF14 as an oncogene in retinoblastoma: a target for novel therapeutics? Future Med Chem 4:2149–2152

    CAS  PubMed  Google Scholar 

  259. Corson TW et al (2007) KIF14 messenger RNA expression is independently prognostic for outcome in lung cancer. Clin Cancer Res 13:3229–3234

    CAS  PubMed  Google Scholar 

  260. Corson TW, Gallie BL (2006) KIF14 mRNA expression is a predictor of grade and outcome in breast cancer. Int J Cancer 119:1088–1094

    CAS  PubMed  Google Scholar 

  261. Corson TW, Huang A, Tsao MS, Gallie BL (2005) KIF14 is a candidate oncogene in the 1q minimal region of genomic gain in multiple cancers. Oncogene 24:4741–4753

    CAS  PubMed  Google Scholar 

  262. Madhavan J et al (2007) High expression of KIF14 in retinoblastoma: association with older age at diagnosis. Invest Ophthalmol Vis Sci 48:4901–4906

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristen J. Verhey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Verhey, K.J., Cochran, J.C., Walczak, C.E. (2015). The Kinesin Superfamily. In: Kozielski, FSB, F. (eds) Kinesins and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9732-0_1

Download citation

Publish with us

Policies and ethics