Skip to main content

DNA Structure and Promoter Engineering

  • Chapter
  • First Online:
Systems and Synthetic Biology

Abstract

Transcription initiation is the first step in the regulation of gene expression. Promoters are the regions of genomic DNA where transcription initiation machinery assembles and are generally characterized by presence of short nucleotide sequence motifs like TATA-box, Inr element, BRE, etc. However, apart from these motifs, promoter regions have been reported to have structural properties, such as lower stability, lesser bendability and more curvature compared to other genomic regions. Interestingly, these properties are conserved from archaea to mammals, with little differences. Several algorithms have been developed to differentiate promoter regions from non promoters, using DNA structural properties. Here we show that, in E. coli and S. cerevisiae, genes with different experimentally determined expression levels, differ in their structural features. Promoters of highly expressed or less responsive genes are less stable, less bendable and more curved compared to promoters of lowly expressed or more responsive genes. This suggests that these structural properties can be used to design promoters to modulate gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Bendability and curvature are cooperative in nature, whereas stability is only restricted to nearest neighbor effects.

  2. 2.

    Human and mouse TSS data were downloaded from DBTSS database (Wakaguri et al. 2008). E. coli data downloaded from RegulonDB version 7.0 (Gama-Castro et al. 2011). S. cerevisiae data downloaded from Xu et al. transcriptome study (Xu et al. 2009).

  3. 3.

    The terms bendability, rigidity and flexibility have been used interchangeably. DNA flexibility is of two types, torsional flexibility (due to variations in twist about the axis) and bending flexibility (or bendability, due to variations in roll, tilt, slide and shift). In present context rigidity or flexibility refers to only bending flexibility.

  4. 4.

    Curvature values shown here are calculated using BMHT dinucleotide step parameters (Bolshoy et al. 1991) and in-house software NUCRADGEN (http://nucleix.mbu.iisc.ernet.in/nucradgen/index.htm).

  5. 5.

    A-tracts consist of stretches of minimum four consecutive A:T base pairs without a flexible TA step.

  6. 6.

    RNA-seq data was downloaded from (Gama-Castro et al. 2011) and estimation of gene expression was done by analyzing RPKM (Mortazavi et al. 2008) for E. coli.

  7. 7.

    Responsiveness is the gene expression variability measured from curated datasets representing various conditions. Responsiveness data for S. cerevisiae was downloaded from (Choi and Kim 2009).

  8. 8.

    The number of promoter sequences considered for this analysis are 100 in the datasets corresponding to highest and lowest gene expression in case of E. coli. The two datasets corresponding to low and high responsiveness contaians 200 sequences for S. cerevisiae.

  9. 9.

    The trinucleotides sorted using NPP model are not according to absolute flexibility values, but on the basis of rotational preference for minor or major groove.

References

  • Allawi HT, SantaLucia J (1997) Thermodynamics and NMR of internal G.T mismatches in DNA. Biochemistry 36(34):10581–10594

    Article  CAS  PubMed  Google Scholar 

  • Bansal M, Bhattacharyya D, Ravi B (1995) NUPARM and NUCGEN: software for analysis and generation of sequence dependent nucleic acid structures. Comput Appl Biosci 11(3):281–287

    CAS  PubMed  Google Scholar 

  • Basehoar AD, Zanton SJ, Pugh BF (2004) Identification and distinct regulation of yeast TATA box-containing genes. Cell 116(5):699–709

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya D, Bansal M (1988) A general procedure for generation of curved DNA molecules. J Biomol Struct Dyn 6(1):93–104

    Article  CAS  PubMed  Google Scholar 

  • Bi C, Benham CJ (2004) WebSIDD: server for predicting stress-induced duplex destabilized (SIDD) sites in superhelical DNA. Bioinformatics 20(9):1477–1479

    Article  CAS  PubMed  Google Scholar 

  • Bolshoy A, McNamara P, Harrington RE, Trifonov EN (1991) Curved DNA without A-A: experimental estimation of all 16 DNA wedge angles. Proc Natl Acad Sci U S A 88(6):2312–2316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bracco L, Kotlarz D, Kolb A, Diekmann S, Buc H (1989) Synthetic curved DNA sequences can act as transcriptional activators in Escherichia coli. EMBO J 8(13):4289–4296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brukner I, Sanchez R, Suck D, Pongor S (1995) Sequence-dependent bending propensity of DNA as revealed by DNase I: parameters for trinucleotides. EMBO J 14(8):1812–1818

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, Semple CA, Taylor MS, Engstrom PG, Frith MC, Forrest AR, Alkema WB, Tan SL, Plessy C, Kodzius R, Ravasi T, Kasukawa T, Fukuda S, Kanamori-Katayama M, Kitazume Y, Kawaji H, Kai C, Nakamura M, Konno H, Nakano K, Mottagui-Tabar S, Arner P, Chesi A, Gustincich S, Persichetti F, Suzuki H, Grimmond SM, Wells CA, Orlando V, Wahlestedt C, Liu ET, Harbers M, Kawai J, Bajic VB, Hume DA, Hayashizaki Y (2006) Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 38(6):626–635

    Article  CAS  PubMed  Google Scholar 

  • Choi JK, Kim YJ (2009) Intrinsic variability of gene expression encoded in nucleosome positioning sequences. Nat Genet 41(4):498–503

    Article  CAS  PubMed  Google Scholar 

  • Falconi M, Colonna B, Prosseda G, Micheli G, Gualerzi CO (1998) Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS. EMBO J 17(23):7033–7043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gama-Castro S, Salgado H, Peralta-Gil M, Santos-Zavaleta A, Muniz-Rascado L, Solano-Lira H, Jimenez-Jacinto V, Weiss V, Garcia-Sotelo JS, Lopez-Fuentes A, Porron-Sotelo L, Alquicira-Hernandez S, Medina-Rivera A, Martinez-Flores I, Alquicira-Hernandez K, Martinez-Adame R, Bonavides-Martinez C, Miranda-Rios J, Huerta AM, Mendoza-Vargas A, Collado-Torres L, Taboada B, Vega-Alvarado L, Olvera M, Olvera L, Grande R, Morett E, Collado-Vides J (2011) RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units). Nucleic Acids Res 39(Database issue):98–105

    Article  Google Scholar 

  • Gartenberg MR, Crothers DM (1991) Synthetic DNA bending sequences increase the rate of in vitro transcription initiation at the Escherichia coli lac promoter. J Mol Biol 219(2):217–230

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Bansal M (2003) A glossary of DNA structures from A to Z. Acta Crystallogr D Biol Crystallogr 59(4):620–626

    Article  PubMed  Google Scholar 

  • Haran TE, Mohanty U (2009) The unique structure of A-tracts and intrinsic DNA bending. Q Rev Biophys 42(1):41–81

    Article  CAS  PubMed  Google Scholar 

  • Huppert JL, Balasubramanian S (2007) G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res 35(2):406–413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang C, Pugh BF (2009) Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10(3):161–172

    Article  CAS  PubMed  Google Scholar 

  • Kanhere A, Bansal M (2005) Structural properties of promoters: similarities and differences between prokaryotes and eukaryotes. Nucleic Acids Res 33(10):3165–3175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meysman P, Marchal K, Engelen K (2012) DNA structural properties in the classification of genomic transcription regulation elements. Bioinform Biol Insights 6:155–168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628

    Article  CAS  PubMed  Google Scholar 

  • Pedersen AG, Baldi P, Chauvin Y, Brunak S (1998) DNA structure in human RNA polymerase II promoters. J Mol Biol 281(4):663–673

    Article  CAS  PubMed  Google Scholar 

  • Prosseda G, Falconi M, Giangrossi M, Gualerzi CO, Micheli G, Colonna B (2004) The virF promoter in Shigella: more than just a curved DNA stretch. Mol Microbiol 51(2):523–537

    Article  CAS  PubMed  Google Scholar 

  • Rangannan V, Bansal M (2010) High-quality annotation of promoter regions for 913 bacterial genomes. Bioinformatics 26(24):3043–3050

    Article  CAS  PubMed  Google Scholar 

  • Ranjan R, Patro S, Pradhan B, Kumar A, Maiti IB, Dey N (2012) Development and functional analysis of novel genetic promoters using DNA shuffling, hybridization and a combination thereof. PLoS ONE 7(3):e3193–1

    Article  Google Scholar 

  • Raveh-Sadka T, Levo M, Shabi U, Shany B, Keren L, Lotan-Pompan M, Zeevi D, Sharon E, Weinberger A, Segal E (2012) Manipulating nucleosome disfavoring sequences allows fine-tune regulation of gene expression in yeast. Nat Genet 44(7):743–750

    Article  CAS  PubMed  Google Scholar 

  • SantaLucia J (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci U S A 95(4):1460–1465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Satchwell SC, Drew HR, Travers AA (1986) Sequence periodicities in chicken nucleosome core DNA. J Mol Biol 191(4):659–675

    Article  CAS  PubMed  Google Scholar 

  • Sharon E, Kalma Y, Sharp A, Raveh-Sadka T, Levo M, Zeevi D, Keren L, Yakhini Z, Weinberger A, Segal E (2012) Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nat Biotechnol 30(6):521–530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smale ST, Kadonaga JT (2003) The RNA polymerase II core promoter. Annu Rev Biochem 72: 449–479

    Article  CAS  PubMed  Google Scholar 

  • Wakaguri H, Yamashita R, Suzuki Y, Sugano S, Nakai K (2008) DBTSS: database of transcription start sites, progress report 2008. Nucleic Acids Res 36(Database issue):97–101

    Google Scholar 

  • Wang H, Noordewier M, Benham CJ (2004) Stress-induced DNA duplex destabilization (SIDD) in the E. coli genome: SIDD sites are closely associated with promoters. Genome Res 14(8): 1575–1584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Z, Wei W, Gagneur J, Perocchi F, Clauder-Munster S, Camblong J, Guffanti E, Stutz F, Huber W, Steinmetz LM (2009) Bidirectional promoters generate pervasive transcription in yeast. Nature 457(7232):1033–1037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

AK acknowledges CSIR, INDIA for scholarship. MB is a recipient of J. C. Bose National Fellowship of DST, India. We thank Asmita Gupta for assistance in the preparation of Fig. 13.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manju Bansal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yella, V., Kumar, A., Bansal, M. (2015). DNA Structure and Promoter Engineering. In: Singh, V., Dhar, P. (eds) Systems and Synthetic Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9514-2_13

Download citation

Publish with us

Policies and ethics