Skip to main content

Involvement of p53 in the Repair of DNA Double Strand Breaks: Multifaceted Roles of p53 in Homologous Recombination Repair (HRR) and Non-Homologous End Joining (NHEJ)

  • Chapter
  • First Online:
Mutant p53 and MDM2 in Cancer

Part of the book series: Subcellular Biochemistry ((SCBI,volume 85))

Abstract

p53 is a tumor suppressor protein that prevents oncogenic transformation and maintains genomic stability by blocking proliferation of cells harboring unrepaired or misrepaired DNA. A wide range of genotoxic stresses such as DNA damaging anti-cancer drugs and ionizing radiation promote nuclear accumulation of p53 and trigger its ability to activate or repress a number of downstream target genes involved in various signaling pathways. This cascade leads to the activation of multiple cell cycle checkpoints and subsequent cell cycle arrest, allowing the cells to either repair the DNA or undergo apoptosis, depending on the intensity of DNA damage. In addition, p53 has many transcription-independent functions, including modulatory roles in DNA repair and recombination. This chapter will focus on the role of p53 in regulating or influencing the repair of DNA double-strand breaks that mainly includes homologous recombination repair (HRR) and non-homologous end joining (NHEJ). Through this discussion, we will try to establish that p53 acts as an important linchpin between upstream DNA damage signaling cues and downstream cellular events that include repair, recombination, and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akyuz N, Boehden GS, Susse S, Rimek A, Preuss U, Scheidtmann KH, Wiesmuller L (2002) DNA substrate dependence of p53-mediated regulation of double-strand break repair. Mol Cell Biol 22(17):6306–6317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Albor A, Kaku S, Kulesz-Martin M (1998) Wild-type and mutant forms of p53 activate human topoisomerase I: a possible mechanism for gain of function in mutants. Cancer Res 58(10):2091–2094

    CAS  PubMed  Google Scholar 

  3. Amundson SA, Patterson A, Do KT, Fornace AJ Jr (2002) A nucleotide excision repair master-switch: p53 regulated coordinate induction of global genomic repair genes. Cancer Biol Ther 1(2):145–149

    Article  CAS  PubMed  Google Scholar 

  4. Avantaggiati ML, Ogryzko V, Gardner K, Giordano A, Levine AS, Kelly K (1997) Recruitment of p300/CBP in p53-dependent signal pathways. Cell 89(7):1175–1184

    Article  CAS  PubMed  Google Scholar 

  5. Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y, Ziv Y (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281(5383):1674–1677

    Article  CAS  PubMed  Google Scholar 

  6. Barlow C, Hirotsune S, Paylor R, Liyanage M, Eckhaus M, Collins F, Shiloh Y, Crawley JN, Ried T, Tagle D, Wynshaw-Boris A (1996) Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86(1):159–171

    Article  CAS  PubMed  Google Scholar 

  7. Bell S, Klein C, Muller L, Hansen S, Buchner J (2002) P53 contains large unstructured regions in its native state. J Mol Biol 322(5):917–927

    Article  CAS  PubMed  Google Scholar 

  8. Bennardo N, Cheng A, Huang N, Stark JM (2008) Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet 4(6):e1000110

    Article  PubMed Central  PubMed  Google Scholar 

  9. Blagosklonny MV (2000) P53 from complexity to simplicity: mutant P53 stabilization, gain-of-function, and dominant-negative effect. FASEB J 14(13):1901–1907

    Article  CAS  PubMed  Google Scholar 

  10. Boehden GS, Akyuz N, Roemer K, Wiesmuller L (2003) P53 Mutated in the transactivation domain retains regulatory functions in homology-directed double-strand break repair. Oncogene 22(26):4111–4117

    Article  CAS  PubMed  Google Scholar 

  11. Bolderson E, Tomimatsu N, Richard DJ, Boucher D, Kumar R, Pandita TK, Burma S, Khanna KK (2010) Phosphorylation of Exo1 modulates homologous recombination repair of DNA double-strand breaks. Nucleic Acids Res 38(6):1821–1831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Bradley MO, Kohn KW (1979) X-ray induced DNA double strand break production and repair in mammalian cells as measured by neutral filter elution. Nucleic Acids Res 7(3):793–804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD (1999) Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci U S A 96(24):13777–13782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Chen L, Trujillo K, Sung P, Tomkinson AE (2000) Interactions of the DNA ligase IV-XRCC4 complex with DNA ends and the DNA-dependent protein kinase. J Biol Chem 275(34):26196–26205

    Article  CAS  PubMed  Google Scholar 

  15. Degtyareva N, Subramanian D, Griffith JD (2001) Analysis of the binding of p53 to DNAs containing mismatched and bulged bases. J Biol Chem 276(12):8778–8784

    Article  CAS  PubMed  Google Scholar 

  16. Di Como CJ, Gaiddon C, Prives C (1999) P73 function is inhibited by tumor-derived P53 mutants in Mammalian cells. Mol Cell Biol 19(2):1438–1449

    PubMed Central  PubMed  Google Scholar 

  17. Dudenhoffer C, Rohaly G, Will K, Deppert W, Wiesmuller L (1998) Specific mismatch recognition in heteroduplex intermediates by p53 suggests a role in fidelity control of homologous recombination. Mol Cell Biol 18(9):5332–5342

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Ferguson DO, Alt FW (2001) DNA double strand break repair and chromosomal translocation: lessons from animal models. Oncogene 20(40):5572–5579

    Article  CAS  PubMed  Google Scholar 

  19. Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F, Jacks T (2002) p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416(6880):560–564

    Article  CAS  PubMed  Google Scholar 

  20. Frank KM, Sharpless NE, Gao Y, Sekiguchi JM, Ferguson DO, Zhu C, Manis JP, Horner J, DePinho RA, Alt FW (2000) DNA ligase IV deficiency in mice leads to defective neurogenesis and embryonic lethality via the p53 pathway. Mol Cell 5(6):993–1002

    Article  CAS  PubMed  Google Scholar 

  21. Freedman DA, Wu L, Levine AJ (1999) Functions of the MDM2 oncoprotein. Cell Mol Life Sci 55(1):96–107

    Article  CAS  PubMed  Google Scholar 

  22. Gaiddon C, Lokshin M, Ahn J, Zhang T, Prives C (2001) A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol 21(5):1874–1887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Gajjar M, Candeias MM, Malbert-Colas L, Mazars A, Fujita J, Olivares-Illana V, Fahraeus R (2012) The p53 mRNA-Mdm2 interaction controls Mdm2 nuclear trafficking and is required for p53 activation following DNA damage. Cancer Cell 21(1):25–35

    Article  CAS  PubMed  Google Scholar 

  24. Gannon HS, Woda BA, Jones SN (2012) ATM phosphorylation of Mdm2 Ser394 regulates the amplitude and duration of the DNA damage response in mice. Cancer Cell 21(5):668–679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Gao Y, Ferguson DO, Xie W, Manis JP, Sekiguchi J, Frank KM, Chaudhuri J, Horner J, DePinho RA, Alt FW (2000) Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature 404(6780):897–900

    Article  CAS  PubMed  Google Scholar 

  26. Gao Y, Sun Y, Frank KM, Dikkes P, Fujiwara Y, Seidl KJ, Sekiguchi JM, Rathbun GA, Swat W, Wang J, Bronson RT, Malynn BA, Bryans M, Zhu C, Chaudhuri J, Davidson L, Ferrini R, Stamato T, Orkin SH, Greenberg ME, Alt FW (1998) A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell 95(7):891–902

    Article  CAS  PubMed  Google Scholar 

  27. Goodman RH, Smolik S (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev 14(13):1553–1577

    CAS  PubMed  Google Scholar 

  28. Gottifredi V, Shieh S, Taya Y, Prives C (2001) p53 accumulates but is functionally impaired when DNA synthesis is blocked. Proc Natl Acad Sci U S A 98(3):1036–1041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Gu W, Shi XL, Roeder RG (1997) Synergistic activation of transcription by CBP and p53. Nature 387(6635):819–823

    Article  CAS  PubMed  Google Scholar 

  30. Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Elledge SJ, Mak TW (2000) DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287(5459):1824–1827

    Article  CAS  PubMed  Google Scholar 

  31. Hollstein M, Rice K, Greenblatt MS, Soussi T, Fuchs R, Sorlie T, Hovig E, Smith-Sorensen B, Montesano R, Harris CC (1994) Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res 22(17):3551–3555

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) P53 mutations in human cancers. Science 253(5015):49–53

    Article  CAS  PubMed  Google Scholar 

  33. Hupp TR, Meek DW, Midgley CA, Lane DP (1992) Regulation of the specific DNA binding function of p53. Cell 71(5):875–886

    Article  CAS  PubMed  Google Scholar 

  34. Kraxenberger F, Weber KJ, Friedl AA, Eckardt-Schupp F, Flentje M, Quicken P, Kellerer AM (1998) DNA double-strand breaks in mammalian cells exposed to gamma-rays and very heavy ions. Fragment-size distributions determined by pulsed-field gel electrophoresis. Radiat Environ Biophys 37(2):107–115

    Article  CAS  PubMed  Google Scholar 

  35. Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274(5289):948–953

    Article  CAS  PubMed  Google Scholar 

  36. Lakin ND, Jackson SP (1999) Regulation of p53 in response to DNA damage. Oncogene 18(53):7644–7655

    Article  CAS  PubMed  Google Scholar 

  37. Lambert PF, Kashanchi F, Radonovich MF, Shiekhattar R, Brady JN (1998) Phosphorylation of p53 serine 15 increases interaction with CBP. J Biol Chem 273(49):33048–33053

    Article  CAS  PubMed  Google Scholar 

  38. Li Y, Prives C (2007) Are interactions with p63 and p73 involved in mutant p53 gain of oncogenic function? Oncogene 26(15):2220–2225

    Article  CAS  PubMed  Google Scholar 

  39. Liang SH, Clarke MF (1999) A bipartite nuclear localization signal is required for p53 nuclear import regulated by a carboxyl-terminal domain. J Biol Chem 274(46):32699–32703

    Article  CAS  PubMed  Google Scholar 

  40. Lieber MR (2008) The mechanism of human nonhomologous DNA end joining. J Biol Chem 283(1):1–5

    Article  CAS  PubMed  Google Scholar 

  41. Lin X, Ramamurthi K, Mishima M, Kondo A, Howell SB (2000) p53 interacts with the DNA mismatch repair system to modulate the cytotoxicity and mutagenicity of hydrogen peroxide. Mol Pharmacol 58(6):1222–1229

    CAS  PubMed  Google Scholar 

  42. Lin Y, Waldman BC, Waldman AS (2003) Suppression of high-fidelity double-strand break repair in mammalian chromosomes by pifithrin-alpha, a chemical inhibitor of p53. DNA Repair 2(1):1–11

    Article  CAS  PubMed  Google Scholar 

  43. Linke SP, Sengupta S, Khabie N, Jeffries BA, Buchhop S, Miska S, Henning W, Pedeux R, Wang XW, Hofseth LJ, Yang Q, Garfield SH, Sturzbecher HW, Harris CC (2003) p53 interacts with hRAD51 and hRAD54, and directly modulates homologous recombination. Cancer Res 63(10):2596–2605

    CAS  PubMed  Google Scholar 

  44. Lu H, Levine AJ (1995) Human TAFII31 protein is a transcriptional coactivator of the p53 protein. Proc Natl Acad Sci U S A 92(11):5154–5158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Martinez J, Georgoff I, Martinez J, Levine AJ (1991) Cellular localization and cell cycle regulation by a temperature-sensitive p53 protein. Genes Dev 5(2):151–159

    Article  CAS  PubMed  Google Scholar 

  46. Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ (2000) Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci U S A 97(19):10389–10394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Maya R, Balass M, Kim ST, Shkedy D, Leal JF, Shifman O, Moas M, Buschmann T, Ronai Z, Shiloh Y, Kastan MB, Katzir E, Oren M (2001) ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev 15(9):1067–1077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Mazin AV, Alexeev AA, Kowalczykowski SC (2003) A novel function of Rad54 protein. Stabilization of the Rad51 nucleoprotein filament. J Biol Chem 278(16):14029–14036

    Article  CAS  PubMed  Google Scholar 

  49. McKay BC, Ljungman M, Rainbow AJ (1999) Potential roles for p53 in nucleotide excision repair. Carcinogenesis 20(8):1389–1396

    Article  CAS  PubMed  Google Scholar 

  50. Mekeel KL, Tang W, Kachnic LA, Luo CM, DeFrank JS, Powell SN (1997) Inactivation of p53 results in high rates of homologous recombination. Oncogene 14(15):1847–1857

    Article  CAS  PubMed  Google Scholar 

  51. Milner J, Medcalf EA (1991) Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell 65(5):765–774

    Article  CAS  PubMed  Google Scholar 

  52. Mimori T, Hardin JA (1986) Mechanism of interaction between Ku protein and DNA. J Biol Chem 261(22):10375–10379

    CAS  PubMed  Google Scholar 

  53. Mohapatra S, Kawahara M, Khan IS, Yannone SM, Povirk LF (2011) Restoration of G1 chemo/radioresistance and double-strand-break repair proficiency by wild-type but not endonuclease-deficient Artemis. Nucleic Acids Res 39(15):6500–6510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Mohapatra S, Yannone SM, Lee SH, Hromas RA, Akopiants K, Menon V, Ramsden DA, Povirk LF (2013) Trimming of damaged 3′ overhangs of DNA double-strand breaks by the Metnase and Artemis endonucleases. DNA Repair 12(6):422–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Moll UM, Petrenko O (2003) The MDM2-p53 interaction. Mol Cancer Res 1(14):1001–1008

    CAS  PubMed  Google Scholar 

  56. Offer H, Wolkowicz R, Matas D, Blumenstein S, Livneh Z, Rotter V (1999) Direct involvement of p53 in the base excision repair pathway of the DNA repair machinery. FEBS Lett 450(3):197–204

    Article  CAS  PubMed  Google Scholar 

  57. O’Keefe K, Li H, Zhang Y (2003) Nucleocytoplasmic shuttling of p53 is essential for MDM2-mediated cytoplasmic degradation but not ubiquitination. Mol Cell Biol 23(18):6396–6405

    Article  PubMed Central  PubMed  Google Scholar 

  58. Povirk LF (1996) DNA damage and mutagenesis by radiomimetic DNA-cleaving agents: bleomycin, neocarzinostatin and other enediynes. Mutat Res 355(1–2):71–89

    Article  PubMed  Google Scholar 

  59. Rieckmann T, Kriegs M, Nitsch L, Hoffer K, Rohaly G, Kocher S, Petersen C, Dikomey E, Dornreiter I, Dahm-Daphi J (2013) p53 modulates homologous recombination at I-SceI-induced double-strand breaks through cell-cycle regulation. Oncogene 32(8):968–975

    Article  CAS  PubMed  Google Scholar 

  60. Roemer K (1999) Mutant p53: gain-of-function oncoproteins and wild-type p53 inactivators. Biol Chem 380(7–8):879–887

    CAS  PubMed  Google Scholar 

  61. Romanova LY, Willers H, Blagosklonny MV, Powell SN (2004) The interaction of p53 with replication protein A mediates suppression of homologous recombination. Oncogene 23(56):9025–9033

    Article  CAS  PubMed  Google Scholar 

  62. Rooney S, Sekiguchi J, Whitlow S, Eckersdorff M, Manis JP, Lee C, Ferguson DO, Alt FW (2004) Artemis and p53 cooperate to suppress oncogenic N-myc amplification in progenitor B cells. Proc Natl Acad Sci U S A 101(8):2410–2415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Roots R, Kraft G, Gosschalk E (1985) The formation of radiation-induced DNA breaks: the ratio of double-strand breaks to single-strand breaks. Int J Radiat Oncol Biol Phys 11(2):259–265

    Article  CAS  PubMed  Google Scholar 

  64. Roth DB, Porter TN, Wilson JH (1985) Mechanisms of nonhomologous recombination in mammalian cells. Mol Cell Biol 5(10):2599–2607

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Rothkamm K, Kruger I, Thompson LH, Lobrich M (2003) Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23(16):5706–5715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Rustandi RR, Baldisseri DM, Weber DJ (2000) Structure of the negative regulatory domain of p53 bound to S100B(betabeta). Nat Struct Biol 7(7):570–574

    Article  CAS  PubMed  Google Scholar 

  67. Saintigny Y, Lopez BS (2002) Homologous recombination induced by replication inhibition, is stimulated by expression of mutant p53. Oncogene 21(3):488–492

    Article  CAS  PubMed  Google Scholar 

  68. Saintigny Y, Rouillard D, Chaput B, Soussi T, Lopez BS (1999) Mutant p53 proteins stimulate spontaneous and radiation-induced intrachromosomal homologous recombination independently of the alteration of the transactivation activity and of the G1 checkpoint. Oncogene 18(24):3553–3563

    Article  CAS  PubMed  Google Scholar 

  69. Sampath J, Sun D, Kidd VJ, Grenet J, Gandhi A, Shapiro LH, Wang Q, Zambetti GP, Schuetz JD (2001) Mutant p53 cooperates with ETS and selectively up-regulates human MDR1 not MRP1. J Biol Chem 276(42):39359–39367

    Article  CAS  PubMed  Google Scholar 

  70. Sartori AA, Lukas C, Coates J, Mistrik M, Fu S, Bartek J, Baer R, Lukas J, Jackson SP (2007) Human CtIP promotes DNA end resection. Nature 450(7169):509–514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Sengupta S, Linke SP, Pedeux R, Yang Q, Farnsworth J, Garfield SH, Valerie K, Shay JW, Ellis NA, Wasylyk B, Harris CC (2003) BLM helicase-dependent transport of p53 to sites of stalled DNA replication forks modulates homologous recombination. EMBO J 22(5):1210–1222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Serrano MA, Li Z, Dangeti M, Musich PR, Patrick S, Roginskaya M, Cartwright B, Zou Y (2013) DNA-PK, ATM and ATR collaboratively regulate p53-RPA interaction to facilitate homologous recombination DNA repair. Oncogene 32(19):2452–2462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Sharpless NE, DePinho RA (1999) The INK4A/ARF locus and its two gene products. Curr Opin Genet Dev 9(1):22–30

    Article  CAS  PubMed  Google Scholar 

  74. Sharpless NE, Ferguson DO, O’Hagan RC, Castrillon DH, Lee C, Farazi PA, Alson S, Fleming J, Morton CC, Frank K, Chin L, Alt FW, DePinho RA (2001) Impaired nonhomologous end-joining provokes soft tissue sarcomas harboring chromosomal translocations, amplifications, and deletions. Mol Cell 8(6):1187–1196

    Article  CAS  PubMed  Google Scholar 

  75. Shiama N (1997) The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol 7(6):230–236

    Article  CAS  PubMed  Google Scholar 

  76. Shiloh Y, Kastan MB (2001) ATM: genome stability, neuronal development, and cancer cross paths. Adv Cancer Res 83:209–254

    Article  CAS  PubMed  Google Scholar 

  77. Siliciano JD, Canman CE, Taya Y, Sakaguchi K, Appella E, Kastan MB (1997) DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev 11(24):3471–3481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Singh DK, Ahn B, Bohr VA (2009) Roles of RECQ helicases in recombination based DNA repair, genomic stability and aging. Biogerontology 10(3):235–252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Sirbu BM, Lachmayer SJ, Wulfing V, Marten LM, Clarkson KE, Lee LW, Gheorghiu L, Zou L, Powell SN, Dahm-Daphi J, Willers H (2011) ATR-p53 restricts homologous recombination in response to replicative stress but does not limit DNA interstrand crosslink repair in lung cancer cells. PLoS One 6(8):e23053

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Song H, Hollstein M, Xu Y (2007) p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat Cell Biol 9(5):573–580

    Article  CAS  PubMed  Google Scholar 

  81. Stommel JM, Wahl GM (2004) Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation. EMBO J 23(7):1547–1556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Susse S, Janz C, Janus F, Deppert W, Wiesmuller L (2000) Role of heteroduplex joints in the functional interactions between human Rad51 and wild-type p53. Oncogene 19(39):4500–4512

    Article  CAS  PubMed  Google Scholar 

  83. Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, Yamaguchi-Iwai Y, Shinohara A, Takeda S (1998) Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 17(18):5497–5508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Tang W, Willers H, Powell SN (1999) p53 directly enhances rejoining of DNA double-strand breaks with cohesive ends in gamma-irradiated mouse fibroblasts. Cancer Res 59(11):2562–2565

    CAS  PubMed  Google Scholar 

  85. Thottassery JV, Zambetti GP, Arimori K, Schuetz EG, Schuetz JD (1997) p53-dependent regulation of MDR1 gene expression causes selective resistance to chemotherapeutic agents. Proc Natl Acad Sci U S A 94(20):11037–11042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY, Taya Y, Prives C, Abraham RT (1999) A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 13(2):152–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. van den Bosch M, Bree RT, Lowndes NF (2003) The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep 4(9):844–849

    Article  PubMed Central  PubMed  Google Scholar 

  88. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408(6810):307–310

    Article  CAS  PubMed  Google Scholar 

  89. Walker KK, Levine AJ (1996) Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc Natl Acad Sci U S A 93(26):15335–15340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Ward IM, Minn K, Jorda KG, Chen J (2003) Accumulation of checkpoint protein 53BP1 at DNA breaks involves its binding to phosphorylated histone H2AX. J Biol Chem 278(22):19579–19582

    Article  CAS  PubMed  Google Scholar 

  91. Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D (1999) Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol 1(1):20–26

    Article  CAS  PubMed  Google Scholar 

  92. Weinberg RL, Freund SM, Veprintsev DB, Bycroft M, Fersht AR (2004) Regulation of DNA binding of p53 by its C-terminal domain. J Mol Biol 342(3):801–811

    Article  CAS  PubMed  Google Scholar 

  93. Wilcock D, Lane DP (1991) Localization of p53, retinoblastoma and host replication proteins at sites of viral replication in herpes-infected cells. Nature 349(6308):429–431

    Article  CAS  PubMed  Google Scholar 

  94. Xu Y (2006) DNA damage: a trigger of innate immunity but a requirement for adaptive immune homeostasis. Nat Rev Immunol 6(4):261–270

    Article  CAS  PubMed  Google Scholar 

  95. Xu Y, Baltimore D (1996) Dual roles of ATM in the cellular response to radiation and in cell growth control. Genes Dev 10(19):2401–2410

    Article  CAS  PubMed  Google Scholar 

  96. Yoon D, Wang Y, Stapleford K, Wiesmuller L, Chen J (2004) P53 inhibits strand exchange and replication fork regression promoted by human Rad51. J Mol Biol 336(3):639–654

    Article  CAS  PubMed  Google Scholar 

  97. Yun S, Lie-A-Cheong C, Porter AC (2004) Discriminatory suppression of homologous recombination by p53. Nucleic Acids Res 32(22):6479–6489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Zhang X, Zhu Y, Geng L, Wang H, Legerski RJ (2009) Artemis is a negative regulator of p53 in response to oxidative stress. Oncogene 28(22):2196–2204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Zhou T, Akopiants K, Mohapatra S, Lin PS, Valerie K, Ramsden DA, Lees-Miller SP, Povirk LF (2009) Tyrosyl-DNA phosphodiesterase and the repair of 3′-phosphoglycolate-terminated DNA double-strand breaks. DNA Repair 8(8):901–911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Zurer I, Hofseth LJ, Cohen Y, Xu-Welliver M, Hussain SP, Harris CC, Rotter V (2004) The role of p53 in base excision repair following genotoxic stress. Carcinogenesis 25(1):11–19

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The preparation of this review was supported in part by grants CA40615 and CA166264 from the National Cancer Institute, US DHHS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence Povirk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Menon, V., Povirk, L. (2014). Involvement of p53 in the Repair of DNA Double Strand Breaks: Multifaceted Roles of p53 in Homologous Recombination Repair (HRR) and Non-Homologous End Joining (NHEJ). In: Deb, S., Deb, S. (eds) Mutant p53 and MDM2 in Cancer. Subcellular Biochemistry, vol 85. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9211-0_17

Download citation

Publish with us

Policies and ethics