Skip to main content

DNA-Decorated Devices as Smell Sensors

  • Chapter
  • First Online:
Bioinspired Smell and Taste Sensors
  • 1107 Accesses

Abstract

Biomimetic smell sensors have achieved significant progress in the recent two decades, which have shown promising prospects and potential applications in many fields such as biomedicine, environmental protection, and drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Du L, Wu C, Liu Q, Huang L, Wang P. Recent advances in olfactory receptor-based biosensors. Biosens Bioelectron; 2013. pp. 42570–580.

    Google Scholar 

  2. Wu C, Wang L, Zhou J, Zhao L, Wang P. The progress of olfactory transduction and biomimetic olfactory-based biosensors. Chin Sci Bull. 2007;52(14):1886–96.

    Article  CAS  Google Scholar 

  3. Feldkamp U, Niemeyer CM. Rational design of DNA nanoarchitectures. Angewandte Chemie-International Edition. 2006;45(12):1856–76.

    Article  CAS  Google Scholar 

  4. Seeman NC. An overview of structural DNA Nanotechnology. Mol Biotechnol. 2007;37(3):246–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Seeman NC. DNA in a material world. Nature. 2003;421(6921):427–31.

    Article  PubMed  Google Scholar 

  6. Bath J, Turberfield AJ. DNA nanomachines. Nat Nanotechnol. 2007;2(5):275–84.

    Article  CAS  PubMed  Google Scholar 

  7. Johnson ATC, Khamis SM, Preti G, Kwak J, Gelperin A. DNA-coated nanosensors for breath analysis. IEEE Sens J. 2010;10(1):159–66.

    Article  CAS  Google Scholar 

  8. Staii C, Johnson AT. DNA-decorated carbon nanotubes for chemical sensing. Nano Lett. 2005;5(9):1774–8.

    Article  CAS  PubMed  Google Scholar 

  9. White J, Truesdell K, Williams LB, AtKisson MS, Kauer JS. Solid-state, dye-labeled DNA detects volatile compounds in the vapor phase. PLoS Biol. 2008;6(1):30–6.

    Article  CAS  Google Scholar 

  10. Lee SH, Park TH. Recent Advances in the Development of Bioelectronic Nose. Biotechnol Bioprocess Eng. 2010;15(1):22–9.

    Article  CAS  Google Scholar 

  11. Oh EH, Song HS, Park TH. Recent advances in electronic and bioelectronic noses and their biomedical applications. Enzyme Microb Technol. 2011;48(6–7):427–37.

    Article  CAS  PubMed  Google Scholar 

  12. Glatz R, Bailey-Hill K. Mimicking nature’s noses: from receptor deorphaning to olfactory biosensing. Prog Neurobiol. 2011;93(2):270–96.

    Article  PubMed  Google Scholar 

  13. Wang P, Xu GX, Qin LF, Xu Y, Li Y, Li R. Cell-based biosensors and its application in biomedicine. Sens Actuators B-Chem. 2005;108(1–2):576–84.

    Article  CAS  Google Scholar 

  14. Watson JD, Crick FHC. Molecular structure of nucleic acids-a structure for deoxyribose nucleic acid. Nature. 1953;171(4356):737–8.

    Article  CAS  PubMed  Google Scholar 

  15. Yang JS, Swager TM. Fluorescent porous polymer films as TNT chemosensors: electronic and structural effects. J Am Chem Soc. 1998;120(46):11864–73.

    Article  CAS  Google Scholar 

  16. Liu Y, Mills RC, Boncella JM, Schanze KS. Fluorescent polyacetylene thin film sensor for nitroaromatics. Langmuir. 2001;17(24):7452–5.

    Article  CAS  Google Scholar 

  17. Chen LH, McBranch DW, Wang HL, Helgeson R, Wudl F, Whitten DG. Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer. Proc Natl Acad Sci USA. 1999;96(22):12287–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Mitrovics J, Ulmer H, Weimar U, Gopel W. Modular sensor systems for gas sensing and odor monitoring: The MOSES concept. Acc Chem Res. 1998;31(5):307–15.

    Article  CAS  Google Scholar 

  19. Grate JW, Rosepehrsson SL, Venezky DL, Klusty M, Wohltjen H. Smart sensor system for trace organophosphorus and organosulfur vapor detection employing a temperature-controlled array of surface-acoustic-wave sensors, automated sample preconcentration, and pattern-recognition. Anal Chem. 1993;65(14):1868–81.

    Article  CAS  Google Scholar 

  20. White J, Kauer JS, Dickinson TA, Walt DR. Rapid analyte recognition in a device based on optical sensors and the olfactory system. Anal Chem. 1996;68(13):2191–202.

    Article  CAS  PubMed  Google Scholar 

  21. Zellers ET, Batterman SA, Han MW, Patrash SJ. Optimal coating selsction for the analysis of organic vapor mixtures with polymer-coated surface-acoustic-wave sensor arrays. Anal Chem. 1995;67(6):1092–106.

    Article  CAS  PubMed  Google Scholar 

  22. Crone B, Dodabalapur A, Gelperin A, Torsi L, Katz H. Odor sensing and recognition with organic field-effect sensors and circuits. Appl Phys Lett; 2001. 783.

    Google Scholar 

  23. Persaud K, Dodd G. Analysis of discrimination mechnisms in the mammalian olfactory system using a model nose. Nature. 1982;299(5881):352–5.

    Article  CAS  PubMed  Google Scholar 

  24. White J, Mall S, Kauer J. Using biology to guide development of an artificial olfactory system. In: Ayers J, Davis J, Rudolph A, editors. Neuro technology for biomimetic robots. Cambridge (Massachusetts): MIT Press; 2002. p. 97–113.

    Google Scholar 

  25. Freund MS, Lewis NS. A chemically diverse conducting polymer-based electronic nose. Proc Natl Acad Sci USA. 1995;92(7):2652–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Hatfield JV, Neaves P, Hicks PJ, Persaud K, Travers P. Towards an integrated electronic nose using conducting polymer sensors. Sens Actuators B-Chem. 1994;18(1–3):221–8.

    Article  CAS  Google Scholar 

  27. Kauer J, White J. Representation of odor information in the olfactory system: from biology to an artificial nose. In: Barth F, Humphrey J, Secomb T, editors. Sensors and sensing in biology and engineering. Springer: Berlin. 2003. p. 305–322.

    Google Scholar 

  28. Dickinson TA, White J, Kauer JS, Walt DR. Current trends in ‘artificial-nose’ technology. Trends Biotechnol. 1998;16(6):250–8.

    Article  CAS  PubMed  Google Scholar 

  29. Pengfei QF, Vermesh O, Grecu M, Javey A, Wang O, Dai HJ, Peng S, Cho KJ. Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett. 2003;3(3):347–51.

    Article  Google Scholar 

  30. Freitag M, Johnson AT, Kalinin SV, Bonnell DA. Role of single defects in electronic transport through carbon nanotube field-effect transistors. Phys Rev Lett; 2002. 89(21).

    Google Scholar 

  31. Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho KJ, Dai HJ. Nanotube molecular wires as chemical sensors. Science. 2000;287(5453):622–5.

    Article  CAS  PubMed  Google Scholar 

  32. Bradley K, Gabriel JCP, Star A, Gruner G. Short-channel effects in contact-passivated nanotube chemical sensors. Appl Phys Lett. 2003;83(18):3821–3.

    Article  CAS  Google Scholar 

  33. Chopra S, McGuire K, Gothard N, Rao AM, Pham A. Selective gas detection using a carbon nanotube sensor. Appl Phys Lett. 2003;83(11):2280–2.

    Article  CAS  Google Scholar 

  34. Novak JP, Snow ES, Houser EJ, Park D, Stepnowski JL, McGill RA. Nerve agent detection using networks of single-walled carbon nanotubes. Appl Phys Lett. 2003;83(19):4026–8.

    Article  CAS  Google Scholar 

  35. Valentini L, Armentano I, Kenny JM, Cantalini C, Lozzi L, Santucci S. Sensors for sub-ppm NO2 gas detection based on carbon nanotube thin films. Appl Phys Lett. 2003;82(6):961–3.

    Article  CAS  Google Scholar 

  36. Li J, Lu YJ, Ye Q, Cinke M, Han J, Meyyappan M. Carbon nanotube sensors for gas and organic vapor detection. Nano Lett. 2003;3(7):929–33.

    Article  CAS  Google Scholar 

  37. Williams KA, Veenhuizen PTM, de la Torre BG, Eritja R, Dekker C. Nanotechnology—carbon nanotubes with DNA recognition. Nature; 2002. 420(6917): 761–761.

    Google Scholar 

  38. Wong SS, Joselevich E, Woolley AT, Cheung CL, Lieber CM. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature. 1998;394(6688):52–5.

    Article  CAS  PubMed  Google Scholar 

  39. Barone PW, Baik S, Heller DA, Strano MS. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater. 2005; 4(1): 86–U16.

    Google Scholar 

  40. Chen RJ, Bangsaruntip S, Drouvalakis KA, Kam NWS, Shim M, Li YM, Kim W, Utz PJ, Dai HJ. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci USA. 2003;100(9):4984–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Snow ES, Perkins FK, Houser EJ, Badescu SC, Reinecke TL. Chemical detection with a single-walled carbon nanotube capacitor. Science. 2005;307(5717):1942–5.

    Article  CAS  PubMed  Google Scholar 

  42. Hahm J, Lieber CM. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2004;4(1):51–4.

    Article  CAS  Google Scholar 

  43. Zhang DH, Liu ZQ, Li C, Tang T, Liu XL, Han S, Lei B, Zhou CW. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 2004;4(10):1919–24.

    Article  CAS  Google Scholar 

  44. Wang WU, Chen C, Lin KH, Fang Y, Lieber CM. Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc Natl Acad Sci USA. 2005;102(9):3208–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG. DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater. 2003;2(5):338–42.

    Article  CAS  PubMed  Google Scholar 

  46. Radosavljevic M, Freitag M, Thadani KV, Johnson AT. Nonvolatile molecular memory elements based on ambipolar nanotube field effect transistors. Nano Lett. 2002;2(7):761–4.

    Article  CAS  Google Scholar 

  47. Jurs PC, Bakken GA, McClelland HE. Computational methods for the analysis of chemical sensor array data from volatile analytes. Chem Rev. 2000;100(7):2649–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunsheng Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Science Press, Beijing and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wu, C., Du, L., Zou, L. (2015). DNA-Decorated Devices as Smell Sensors. In: Wang, P., Liu, Q., Wu, C., Hsia, K. (eds) Bioinspired Smell and Taste Sensors. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7333-1_8

Download citation

Publish with us

Policies and ethics