DNA-Decorated Devices as Smell Sensors



Biomimetic smell sensors have achieved significant progress in the recent two decades, which have shown promising prospects and potential applications in many fields such as biomedicine, environmental protection, and drug discovery.


Volatile Compound Chemical Compound Sensor Array Base Sequence Sensitive Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Du L, Wu C, Liu Q, Huang L, Wang P. Recent advances in olfactory receptor-based biosensors. Biosens Bioelectron; 2013. pp. 42570–580.Google Scholar
  2. 2.
    Wu C, Wang L, Zhou J, Zhao L, Wang P. The progress of olfactory transduction and biomimetic olfactory-based biosensors. Chin Sci Bull. 2007;52(14):1886–96.CrossRefGoogle Scholar
  3. 3.
    Feldkamp U, Niemeyer CM. Rational design of DNA nanoarchitectures. Angewandte Chemie-International Edition. 2006;45(12):1856–76.CrossRefGoogle Scholar
  4. 4.
    Seeman NC. An overview of structural DNA Nanotechnology. Mol Biotechnol. 2007;37(3):246–57.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Seeman NC. DNA in a material world. Nature. 2003;421(6921):427–31.CrossRefPubMedGoogle Scholar
  6. 6.
    Bath J, Turberfield AJ. DNA nanomachines. Nat Nanotechnol. 2007;2(5):275–84.CrossRefPubMedGoogle Scholar
  7. 7.
    Johnson ATC, Khamis SM, Preti G, Kwak J, Gelperin A. DNA-coated nanosensors for breath analysis. IEEE Sens J. 2010;10(1):159–66.CrossRefGoogle Scholar
  8. 8.
    Staii C, Johnson AT. DNA-decorated carbon nanotubes for chemical sensing. Nano Lett. 2005;5(9):1774–8.CrossRefPubMedGoogle Scholar
  9. 9.
    White J, Truesdell K, Williams LB, AtKisson MS, Kauer JS. Solid-state, dye-labeled DNA detects volatile compounds in the vapor phase. PLoS Biol. 2008;6(1):30–6.CrossRefGoogle Scholar
  10. 10.
    Lee SH, Park TH. Recent Advances in the Development of Bioelectronic Nose. Biotechnol Bioprocess Eng. 2010;15(1):22–9.CrossRefGoogle Scholar
  11. 11.
    Oh EH, Song HS, Park TH. Recent advances in electronic and bioelectronic noses and their biomedical applications. Enzyme Microb Technol. 2011;48(6–7):427–37.CrossRefPubMedGoogle Scholar
  12. 12.
    Glatz R, Bailey-Hill K. Mimicking nature’s noses: from receptor deorphaning to olfactory biosensing. Prog Neurobiol. 2011;93(2):270–96.CrossRefPubMedGoogle Scholar
  13. 13.
    Wang P, Xu GX, Qin LF, Xu Y, Li Y, Li R. Cell-based biosensors and its application in biomedicine. Sens Actuators B-Chem. 2005;108(1–2):576–84.CrossRefGoogle Scholar
  14. 14.
    Watson JD, Crick FHC. Molecular structure of nucleic acids-a structure for deoxyribose nucleic acid. Nature. 1953;171(4356):737–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Yang JS, Swager TM. Fluorescent porous polymer films as TNT chemosensors: electronic and structural effects. J Am Chem Soc. 1998;120(46):11864–73.CrossRefGoogle Scholar
  16. 16.
    Liu Y, Mills RC, Boncella JM, Schanze KS. Fluorescent polyacetylene thin film sensor for nitroaromatics. Langmuir. 2001;17(24):7452–5.CrossRefGoogle Scholar
  17. 17.
    Chen LH, McBranch DW, Wang HL, Helgeson R, Wudl F, Whitten DG. Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer. Proc Natl Acad Sci USA. 1999;96(22):12287–92.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Mitrovics J, Ulmer H, Weimar U, Gopel W. Modular sensor systems for gas sensing and odor monitoring: The MOSES concept. Acc Chem Res. 1998;31(5):307–15.CrossRefGoogle Scholar
  19. 19.
    Grate JW, Rosepehrsson SL, Venezky DL, Klusty M, Wohltjen H. Smart sensor system for trace organophosphorus and organosulfur vapor detection employing a temperature-controlled array of surface-acoustic-wave sensors, automated sample preconcentration, and pattern-recognition. Anal Chem. 1993;65(14):1868–81.CrossRefGoogle Scholar
  20. 20.
    White J, Kauer JS, Dickinson TA, Walt DR. Rapid analyte recognition in a device based on optical sensors and the olfactory system. Anal Chem. 1996;68(13):2191–202.CrossRefPubMedGoogle Scholar
  21. 21.
    Zellers ET, Batterman SA, Han MW, Patrash SJ. Optimal coating selsction for the analysis of organic vapor mixtures with polymer-coated surface-acoustic-wave sensor arrays. Anal Chem. 1995;67(6):1092–106.CrossRefPubMedGoogle Scholar
  22. 22.
    Crone B, Dodabalapur A, Gelperin A, Torsi L, Katz H. Odor sensing and recognition with organic field-effect sensors and circuits. Appl Phys Lett; 2001. 783.Google Scholar
  23. 23.
    Persaud K, Dodd G. Analysis of discrimination mechnisms in the mammalian olfactory system using a model nose. Nature. 1982;299(5881):352–5.CrossRefPubMedGoogle Scholar
  24. 24.
    White J, Mall S, Kauer J. Using biology to guide development of an artificial olfactory system. In: Ayers J, Davis J, Rudolph A, editors. Neuro technology for biomimetic robots. Cambridge (Massachusetts): MIT Press; 2002. p. 97–113.Google Scholar
  25. 25.
    Freund MS, Lewis NS. A chemically diverse conducting polymer-based electronic nose. Proc Natl Acad Sci USA. 1995;92(7):2652–6.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Hatfield JV, Neaves P, Hicks PJ, Persaud K, Travers P. Towards an integrated electronic nose using conducting polymer sensors. Sens Actuators B-Chem. 1994;18(1–3):221–8.CrossRefGoogle Scholar
  27. 27.
    Kauer J, White J. Representation of odor information in the olfactory system: from biology to an artificial nose. In: Barth F, Humphrey J, Secomb T, editors. Sensors and sensing in biology and engineering. Springer: Berlin. 2003. p. 305–322.Google Scholar
  28. 28.
    Dickinson TA, White J, Kauer JS, Walt DR. Current trends in ‘artificial-nose’ technology. Trends Biotechnol. 1998;16(6):250–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Pengfei QF, Vermesh O, Grecu M, Javey A, Wang O, Dai HJ, Peng S, Cho KJ. Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett. 2003;3(3):347–51.CrossRefGoogle Scholar
  30. 30.
    Freitag M, Johnson AT, Kalinin SV, Bonnell DA. Role of single defects in electronic transport through carbon nanotube field-effect transistors. Phys Rev Lett; 2002. 89(21).Google Scholar
  31. 31.
    Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho KJ, Dai HJ. Nanotube molecular wires as chemical sensors. Science. 2000;287(5453):622–5.CrossRefPubMedGoogle Scholar
  32. 32.
    Bradley K, Gabriel JCP, Star A, Gruner G. Short-channel effects in contact-passivated nanotube chemical sensors. Appl Phys Lett. 2003;83(18):3821–3.CrossRefGoogle Scholar
  33. 33.
    Chopra S, McGuire K, Gothard N, Rao AM, Pham A. Selective gas detection using a carbon nanotube sensor. Appl Phys Lett. 2003;83(11):2280–2.CrossRefGoogle Scholar
  34. 34.
    Novak JP, Snow ES, Houser EJ, Park D, Stepnowski JL, McGill RA. Nerve agent detection using networks of single-walled carbon nanotubes. Appl Phys Lett. 2003;83(19):4026–8.CrossRefGoogle Scholar
  35. 35.
    Valentini L, Armentano I, Kenny JM, Cantalini C, Lozzi L, Santucci S. Sensors for sub-ppm NO2 gas detection based on carbon nanotube thin films. Appl Phys Lett. 2003;82(6):961–3.CrossRefGoogle Scholar
  36. 36.
    Li J, Lu YJ, Ye Q, Cinke M, Han J, Meyyappan M. Carbon nanotube sensors for gas and organic vapor detection. Nano Lett. 2003;3(7):929–33.CrossRefGoogle Scholar
  37. 37.
    Williams KA, Veenhuizen PTM, de la Torre BG, Eritja R, Dekker C. Nanotechnology—carbon nanotubes with DNA recognition. Nature; 2002. 420(6917): 761–761.Google Scholar
  38. 38.
    Wong SS, Joselevich E, Woolley AT, Cheung CL, Lieber CM. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature. 1998;394(6688):52–5.CrossRefPubMedGoogle Scholar
  39. 39.
    Barone PW, Baik S, Heller DA, Strano MS. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater. 2005; 4(1): 86–U16.Google Scholar
  40. 40.
    Chen RJ, Bangsaruntip S, Drouvalakis KA, Kam NWS, Shim M, Li YM, Kim W, Utz PJ, Dai HJ. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci USA. 2003;100(9):4984–9.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Snow ES, Perkins FK, Houser EJ, Badescu SC, Reinecke TL. Chemical detection with a single-walled carbon nanotube capacitor. Science. 2005;307(5717):1942–5.CrossRefPubMedGoogle Scholar
  42. 42.
    Hahm J, Lieber CM. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2004;4(1):51–4.CrossRefGoogle Scholar
  43. 43.
    Zhang DH, Liu ZQ, Li C, Tang T, Liu XL, Han S, Lei B, Zhou CW. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 2004;4(10):1919–24.CrossRefGoogle Scholar
  44. 44.
    Wang WU, Chen C, Lin KH, Fang Y, Lieber CM. Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc Natl Acad Sci USA. 2005;102(9):3208–12.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG. DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater. 2003;2(5):338–42.CrossRefPubMedGoogle Scholar
  46. 46.
    Radosavljevic M, Freitag M, Thadani KV, Johnson AT. Nonvolatile molecular memory elements based on ambipolar nanotube field effect transistors. Nano Lett. 2002;2(7):761–4.CrossRefGoogle Scholar
  47. 47.
    Jurs PC, Bakken GA, McClelland HE. Computational methods for the analysis of chemical sensor array data from volatile analytes. Chem Rev. 2000;100(7):2649–78.CrossRefPubMedGoogle Scholar

Copyright information

© Science Press, Beijing and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Zhejiang UniversityHangzhouChina

Personalised recommendations