Advertisement

Smell Sensors Based on Olfactory Epithelium

Chapter
  • 954 Downloads

Abstract

The appearance of bioelectronic noses plays a great role in promoting the development of olfaction studies and odor detections for that these smell sensors take advantage of biological sensitivity of their bioactive materials and their sensor sections [1, 2, 3]. Olfactory cell-based smell sensors are of course among typical kinds of bioelectronic noses that are still active on the stage, which have been introduced in the previous chapter.

Keywords

Olfactory Receptor Olfactory Epithelium Microelectrode Array Intact Epithelium Sensor Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bousse L. Whole cell biosensors. Sens Actuators B: Chem. 1996;34:270–5.CrossRefGoogle Scholar
  2. 2.
    Rudolph AS, Reasor J. Cell and tissue based technologies for environmental detection and medical diagnostics. Biosens Bioelectron. 2001;16:429–31.CrossRefPubMedGoogle Scholar
  3. 3.
    Liu Q, Wang P. Cell-based biosensors: principles and applications. Boston: Artech House; 2009.Google Scholar
  4. 4.
    Reisert J, Lai J, Yau K-W, Bradley J. Mechanism of the excitatory Cl − response in mouse olfactory receptor neurons. Neuron. 2005;45:553–61.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Hofmann F, Bading H. Long term recordings with microelectrode arrays: studies of transcription-dependent neuronal plasticity and axonal regeneration. J Physiol Paris. 2006;99:125–32.CrossRefPubMedGoogle Scholar
  6. 6.
    Chen S, Lane AP, Bock R, Leinders-Zufall T, Zufall F. Blocking adenylyl cyclase inhibits olfactory generator currents induced by “IP3-odors”. J Neurophysiol. 2000;84:575–80.PubMedGoogle Scholar
  7. 7.
    Nickell WT, Kleene NK, Kleene SJ. Mechanisms of neuronal chloride accumulation in intact mouse olfactory epithelium. J Physiol. 2007;583:1005–20.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Liu Q, Ye W, Yu H, Hu N, Du L, Wang P, Yang M. Olfactory mucosa tissue-based biosensor: A bioelectronic nose with receptor cells in intact olfactory epithelium. Sens Actuators B: Chem. 2010;146:527–33.CrossRefGoogle Scholar
  9. 9.
    Liu Q, Cai H, Xu Y, Li Y, Li R, Wang P. Olfactory cell-based biosensor: a first step towards a neurochip of bioelectronic nose. Biosens Bioelectron. 2006;22:318–22.CrossRefPubMedGoogle Scholar
  10. 10.
    Liu Q, Ye W, Hu N, Cai H, Yu H, Wang P. Olfactory receptor cells respond to odors in a tissue and semiconductor hybrid neuron chip. Biosens Bioelectron. 2010;26:1672–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Liu Q, Ye W, Xiao L, Du L, Hu N, Wang P. Extracellular potentials recording in intact olfactory epithelium by microelectrode array for a bioelectronic nose. Biosens Bioelectron. 2010;25:2212–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Glatz R, Bailey-Hill K. Mimicking nature’s noses: from receptor deorphaning to olfactory biosensing. Prog Neurobiol. 2011;93:270–96.CrossRefPubMedGoogle Scholar
  13. 13.
    Marrakchi M, Vidic J, Jaffrezic-Renault N, Martelet C, Pajot-Augy E. A new concept of olfactory biosensor based on interdigitated microelectrodes and immobilized yeasts expressing the human receptor OR17-40. Eur Biophys J. 2007;36:1015–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Ko HJ, Park TH. Piezoelectric olfactory biosensor: ligand specificity and dose-dependence of an olfactory receptor expressed in a heterologous cell system. Biosens Bionelectron. 2005;20:1327–32.CrossRefGoogle Scholar
  15. 15.
    Lee SH, Jun SB, Ko HJ, Kim SJ, Park TH. Cell-based olfactory biosensor using microfabricated planar electrode. Biosens Bionelectron. 2009;24:2659–64.CrossRefGoogle Scholar
  16. 16.
    Lee SH, Park TH. Recent advances in the development of bioelectronic nose. Biotechnol Bioprocess Eng. 2010;15:22–9.CrossRefGoogle Scholar
  17. 17.
    Liu Q, Hu N, Ye W, Cai H, Zhang F, Wang P. Extracellular recording of spatiotemporal patterning in response to odors in the olfactory epithelium by microelectrode arrays. Biosens Bioelectron. 2011;27:12–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Liu Q, Hu N, Zhang F, Zhang D, Hsia KJ, Wang P. Olfactory epithelium biosensor: odor discrimination of receptor neurons from a bio-hybrid sensing system. Biomed Microdevices. 2012;14:1055–61.CrossRefPubMedGoogle Scholar
  19. 19.
    Micholt E, Jans D, Callewaert G, Bartic C, Lammertyn J, Nicolaï B. Extracellular recordings from rat olfactory epithelium slices using micro electrode arrays. Sens Actuators B: Chem. 2013;184:40–7.CrossRefGoogle Scholar
  20. 20.
    Mombaerts P. Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci. 2004;5:263–78.CrossRefPubMedGoogle Scholar
  21. 21.
    Buck LB. Olfactory receptors and odor coding in mammals. Nutr Rev. 2004;62:S184–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Firestein S. How the olfactory system makes sense of scents. Nature. (2001);413:211–218.Google Scholar
  23. 23.
    Grumet AE, Wyatt JL, Rizzo JF. Multi-electrode stimulation and recording in the isolated retina. J Neurosci Methods. 2000;101:31–42.CrossRefPubMedGoogle Scholar
  24. 24.
    Stett A, Egert U, Guenther E, Hofmann F, Meyer T, Nisch W, Haemmerle H. Biological application of microelectrode arrays in drug discovery and basic research. Anal Bioanal Chem. 2003;377:486–95.CrossRefPubMedGoogle Scholar
  25. 25.
    Segev R, Goodhouse J, Puchalla J, Berry MJ. Recording spikes from a large fraction of the ganglion cells in a retinal patch. Nat Neurosci. 2004;7:1155–62.CrossRefGoogle Scholar
  26. 26.
    Breer H. Olfactory receptors: molecular basis for recognition and discrimination of odors. Anal Bioanal Chem. 2003;377:427–33.CrossRefPubMedGoogle Scholar
  27. 27.
    Munger SD. Olfaction: noses within noses. Nature. 2009;459:521–2.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang C, Yan J, Chen Y, Chen C, Zhang K, Huang X. The olfactory signal transduction for attractive odorants in Caenorhabditis elegans. Biotechnol Adv. (2013).Google Scholar
  29. 29.
    Johnstone AF, Gross GW, Weiss DG, Schroeder OH-U, Gramowski A, Shafer TJ. Microelectrode arrays: a physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology. 2010;31:331–50.CrossRefPubMedGoogle Scholar
  30. 30.
    Liu Q, Wu C, Cai H, Hu N, Zhou J, Wang P. Cell-based biosensors and their application in biomedicine. Chem Rev. 2014;114:6423–61.CrossRefPubMedGoogle Scholar
  31. 31.
    Hierlemann A, Frey U, Hafizovic S, Heer F. Growing cells atop microelectronic chips: interfacing electrogenic cells in vitro with CMOS-based microelectrode arrays. Proc IEEE. 2011;99:252–84.CrossRefGoogle Scholar
  32. 32.
    Frega M, Pasquale V, Tedesco M, Marcoli M, Contestabile A, Nanni M, Bonzano L, Maura G, Chiappalone M. Cortical cultures coupled to Micro-Electrode Arrays: a novel approach to perform in vitro excitotoxicity testing. Neurotoxicol Teratol. (2011).Google Scholar
  33. 33.
    Daus AW, Layer PG, Thielemann C. A spheroid-based biosensor for the label-free detection of drug-induced field potential alterations. Sens Actuator B-Chem. 2012;165:53–8.CrossRefGoogle Scholar
  34. 34.
    Werdich AA, Lima EA, Ivanov B, Ges I, Anderson ME, Wikswo JP, Baudenbacher FJ. A microfluidic device to confine a single cardiac myocyte in a sub-nanoliter volume on planar microelectrodes for extracellular potential recordings. Lab Chip. 2004;4:357–62.CrossRefPubMedGoogle Scholar
  35. 35.
    Misawa N, Mitsuno H, Kanzaki R, Takeuchi S. Highly sensitive and selective odorant sensor using living cells expressing insect olfactory receptors. Proc Nat Acad Sci. 2010;107:15340–4.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991;65:175–87.CrossRefPubMedGoogle Scholar
  37. 37.
    Meierhenrich UJ, Golebiowski J, Fernandez X, Cabrol-Bass D. The molecular basis of olfactory chemoreception. Angew Chem Int Ed. 2004;43:6410–2.CrossRefGoogle Scholar
  38. 38.
    Selinger JV, Pancrazio JJ, Gross GW. Measuring synchronization in neuronal networks for biosensor applications. Biosens Bioelectron. 2004;19:675–83.CrossRefPubMedGoogle Scholar
  39. 39.
    Eytan D, Minerbi A, Ziv N, Marom S. Dopamine-induced dispersion of correlations between action potentials in networks of cortical neurons. J Neurophysiol. 2004;92:1817–24.CrossRefPubMedGoogle Scholar
  40. 40.
    Chiappalone M, Bove M, Vato A, Tedesco M, Martinoia S. Dissociated cortical networks show spontaneously correlated activity patterns during in vitro development. Brain Res. 1093;2006:41–53.Google Scholar
  41. 41.
    Lowry CA, Kay LM. Chemical factors determine olfactory system beta oscillations in waking rats. J Neurophysiol. 2007;98:394–404.CrossRefPubMedGoogle Scholar
  42. 42.
    Ito I, Watanabe S, Kirino Y. Air movement evokes electro-olfactogram oscillations in the olfactory epithelium and modulates olfactory processing in a slug. J Neurophysiol. 2006;96:1939–48.CrossRefPubMedGoogle Scholar
  43. 43.
    Niessing J, Friedrich RW. Olfactory pattern classification by discrete neuronal network states. Nature. 2010;465:47–52.CrossRefPubMedGoogle Scholar
  44. 44.
    Xie C, Lin Z, Hanson L, Cui Y, Cui B. Intracellular recording of action potentials by nanopillar electroporation. Nat Nanotechnol. 2012;7:185–90.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Wang K, Fishman HA, Dai H, Harris JS. Neural stimulation with a carbon nanotube microelectrode array. Nano Lett. 2006;6:2043–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Ziegler C, Göpel W, Hämmerle H, Hatt H, Jung G, Laxhuber L, Schmidt H-L, Schütz S, Vögtle F, Zell A. Bioelectronic noses: a status report Part II. Biosens Bioelectron. 1998;13:539–71.CrossRefPubMedGoogle Scholar
  47. 47.
    Smith RG, D’Souza N, Nicklin S. A review of biosensors and biologically-inspired systems for explosives detection. Analyst. 2008;133:571–84.CrossRefPubMedGoogle Scholar
  48. 48.
    Fanget S, Hentz S, Puget P, Arcamone J, Matheron M, Colinet E, Andreucci P, Duraffourg L, Myers E, Roukes M. Gas sensors based on gravimetric detection—A review. Sens Actuators B: Chem. 2011;160:804–21.CrossRefGoogle Scholar
  49. 49.
    Viswaprakash N, Dennis JC, Globa L, Pustovyy O, Josephson EM, Kanju P, Morrison EE, Vodyanoy VJ. Enhancement of odorant-induced responses in olfactory receptor neurons by zinc nanoparticles. Chem senses. (2009).Google Scholar

Copyright information

© Science Press, Beijing and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.HangzhouChina
  2. 2.Biosensor National Special Labaratory, Department of Biomedical EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations