Skip to main content

Smell Sensors Based on Olfactory Epithelium

  • Chapter
  • First Online:
Bioinspired Smell and Taste Sensors
  • 1132 Accesses

Abstract

The appearance of bioelectronic noses plays a great role in promoting the development of olfaction studies and odor detections for that these smell sensors take advantage of biological sensitivity of their bioactive materials and their sensor sections [13]. Olfactory cell-based smell sensors are of course among typical kinds of bioelectronic noses that are still active on the stage, which have been introduced in the previous chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bousse L. Whole cell biosensors. Sens Actuators B: Chem. 1996;34:270–5.

    Article  CAS  Google Scholar 

  2. Rudolph AS, Reasor J. Cell and tissue based technologies for environmental detection and medical diagnostics. Biosens Bioelectron. 2001;16:429–31.

    Article  CAS  PubMed  Google Scholar 

  3. Liu Q, Wang P. Cell-based biosensors: principles and applications. Boston: Artech House; 2009.

    Google Scholar 

  4. Reisert J, Lai J, Yau K-W, Bradley J. Mechanism of the excitatory Cl − response in mouse olfactory receptor neurons. Neuron. 2005;45:553–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Hofmann F, Bading H. Long term recordings with microelectrode arrays: studies of transcription-dependent neuronal plasticity and axonal regeneration. J Physiol Paris. 2006;99:125–32.

    Article  CAS  PubMed  Google Scholar 

  6. Chen S, Lane AP, Bock R, Leinders-Zufall T, Zufall F. Blocking adenylyl cyclase inhibits olfactory generator currents induced by “IP3-odors”. J Neurophysiol. 2000;84:575–80.

    CAS  PubMed  Google Scholar 

  7. Nickell WT, Kleene NK, Kleene SJ. Mechanisms of neuronal chloride accumulation in intact mouse olfactory epithelium. J Physiol. 2007;583:1005–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Liu Q, Ye W, Yu H, Hu N, Du L, Wang P, Yang M. Olfactory mucosa tissue-based biosensor: A bioelectronic nose with receptor cells in intact olfactory epithelium. Sens Actuators B: Chem. 2010;146:527–33.

    Article  CAS  Google Scholar 

  9. Liu Q, Cai H, Xu Y, Li Y, Li R, Wang P. Olfactory cell-based biosensor: a first step towards a neurochip of bioelectronic nose. Biosens Bioelectron. 2006;22:318–22.

    Article  CAS  PubMed  Google Scholar 

  10. Liu Q, Ye W, Hu N, Cai H, Yu H, Wang P. Olfactory receptor cells respond to odors in a tissue and semiconductor hybrid neuron chip. Biosens Bioelectron. 2010;26:1672–8.

    Article  CAS  PubMed  Google Scholar 

  11. Liu Q, Ye W, Xiao L, Du L, Hu N, Wang P. Extracellular potentials recording in intact olfactory epithelium by microelectrode array for a bioelectronic nose. Biosens Bioelectron. 2010;25:2212–7.

    Article  CAS  PubMed  Google Scholar 

  12. Glatz R, Bailey-Hill K. Mimicking nature’s noses: from receptor deorphaning to olfactory biosensing. Prog Neurobiol. 2011;93:270–96.

    Article  PubMed  Google Scholar 

  13. Marrakchi M, Vidic J, Jaffrezic-Renault N, Martelet C, Pajot-Augy E. A new concept of olfactory biosensor based on interdigitated microelectrodes and immobilized yeasts expressing the human receptor OR17-40. Eur Biophys J. 2007;36:1015–8.

    Article  CAS  PubMed  Google Scholar 

  14. Ko HJ, Park TH. Piezoelectric olfactory biosensor: ligand specificity and dose-dependence of an olfactory receptor expressed in a heterologous cell system. Biosens Bionelectron. 2005;20:1327–32.

    Article  CAS  Google Scholar 

  15. Lee SH, Jun SB, Ko HJ, Kim SJ, Park TH. Cell-based olfactory biosensor using microfabricated planar electrode. Biosens Bionelectron. 2009;24:2659–64.

    Article  CAS  Google Scholar 

  16. Lee SH, Park TH. Recent advances in the development of bioelectronic nose. Biotechnol Bioprocess Eng. 2010;15:22–9.

    Article  CAS  Google Scholar 

  17. Liu Q, Hu N, Ye W, Cai H, Zhang F, Wang P. Extracellular recording of spatiotemporal patterning in response to odors in the olfactory epithelium by microelectrode arrays. Biosens Bioelectron. 2011;27:12–7.

    Article  PubMed  Google Scholar 

  18. Liu Q, Hu N, Zhang F, Zhang D, Hsia KJ, Wang P. Olfactory epithelium biosensor: odor discrimination of receptor neurons from a bio-hybrid sensing system. Biomed Microdevices. 2012;14:1055–61.

    Article  CAS  PubMed  Google Scholar 

  19. Micholt E, Jans D, Callewaert G, Bartic C, Lammertyn J, Nicolaï B. Extracellular recordings from rat olfactory epithelium slices using micro electrode arrays. Sens Actuators B: Chem. 2013;184:40–7.

    Article  CAS  Google Scholar 

  20. Mombaerts P. Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci. 2004;5:263–78.

    Article  CAS  PubMed  Google Scholar 

  21. Buck LB. Olfactory receptors and odor coding in mammals. Nutr Rev. 2004;62:S184–8.

    Article  PubMed  Google Scholar 

  22. Firestein S. How the olfactory system makes sense of scents. Nature. (2001);413:211–218.

    Google Scholar 

  23. Grumet AE, Wyatt JL, Rizzo JF. Multi-electrode stimulation and recording in the isolated retina. J Neurosci Methods. 2000;101:31–42.

    Article  CAS  PubMed  Google Scholar 

  24. Stett A, Egert U, Guenther E, Hofmann F, Meyer T, Nisch W, Haemmerle H. Biological application of microelectrode arrays in drug discovery and basic research. Anal Bioanal Chem. 2003;377:486–95.

    Article  CAS  PubMed  Google Scholar 

  25. Segev R, Goodhouse J, Puchalla J, Berry MJ. Recording spikes from a large fraction of the ganglion cells in a retinal patch. Nat Neurosci. 2004;7:1155–62.

    Article  Google Scholar 

  26. Breer H. Olfactory receptors: molecular basis for recognition and discrimination of odors. Anal Bioanal Chem. 2003;377:427–33.

    Article  CAS  PubMed  Google Scholar 

  27. Munger SD. Olfaction: noses within noses. Nature. 2009;459:521–2.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang C, Yan J, Chen Y, Chen C, Zhang K, Huang X. The olfactory signal transduction for attractive odorants in Caenorhabditis elegans. Biotechnol Adv. (2013).

    Google Scholar 

  29. Johnstone AF, Gross GW, Weiss DG, Schroeder OH-U, Gramowski A, Shafer TJ. Microelectrode arrays: a physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology. 2010;31:331–50.

    Article  CAS  PubMed  Google Scholar 

  30. Liu Q, Wu C, Cai H, Hu N, Zhou J, Wang P. Cell-based biosensors and their application in biomedicine. Chem Rev. 2014;114:6423–61.

    Article  CAS  PubMed  Google Scholar 

  31. Hierlemann A, Frey U, Hafizovic S, Heer F. Growing cells atop microelectronic chips: interfacing electrogenic cells in vitro with CMOS-based microelectrode arrays. Proc IEEE. 2011;99:252–84.

    Article  CAS  Google Scholar 

  32. Frega M, Pasquale V, Tedesco M, Marcoli M, Contestabile A, Nanni M, Bonzano L, Maura G, Chiappalone M. Cortical cultures coupled to Micro-Electrode Arrays: a novel approach to perform in vitro excitotoxicity testing. Neurotoxicol Teratol. (2011).

    Google Scholar 

  33. Daus AW, Layer PG, Thielemann C. A spheroid-based biosensor for the label-free detection of drug-induced field potential alterations. Sens Actuator B-Chem. 2012;165:53–8.

    Article  CAS  Google Scholar 

  34. Werdich AA, Lima EA, Ivanov B, Ges I, Anderson ME, Wikswo JP, Baudenbacher FJ. A microfluidic device to confine a single cardiac myocyte in a sub-nanoliter volume on planar microelectrodes for extracellular potential recordings. Lab Chip. 2004;4:357–62.

    Article  CAS  PubMed  Google Scholar 

  35. Misawa N, Mitsuno H, Kanzaki R, Takeuchi S. Highly sensitive and selective odorant sensor using living cells expressing insect olfactory receptors. Proc Nat Acad Sci. 2010;107:15340–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991;65:175–87.

    Article  CAS  PubMed  Google Scholar 

  37. Meierhenrich UJ, Golebiowski J, Fernandez X, Cabrol-Bass D. The molecular basis of olfactory chemoreception. Angew Chem Int Ed. 2004;43:6410–2.

    Article  CAS  Google Scholar 

  38. Selinger JV, Pancrazio JJ, Gross GW. Measuring synchronization in neuronal networks for biosensor applications. Biosens Bioelectron. 2004;19:675–83.

    Article  CAS  PubMed  Google Scholar 

  39. Eytan D, Minerbi A, Ziv N, Marom S. Dopamine-induced dispersion of correlations between action potentials in networks of cortical neurons. J Neurophysiol. 2004;92:1817–24.

    Article  CAS  PubMed  Google Scholar 

  40. Chiappalone M, Bove M, Vato A, Tedesco M, Martinoia S. Dissociated cortical networks show spontaneously correlated activity patterns during in vitro development. Brain Res. 1093;2006:41–53.

    Google Scholar 

  41. Lowry CA, Kay LM. Chemical factors determine olfactory system beta oscillations in waking rats. J Neurophysiol. 2007;98:394–404.

    Article  CAS  PubMed  Google Scholar 

  42. Ito I, Watanabe S, Kirino Y. Air movement evokes electro-olfactogram oscillations in the olfactory epithelium and modulates olfactory processing in a slug. J Neurophysiol. 2006;96:1939–48.

    Article  PubMed  Google Scholar 

  43. Niessing J, Friedrich RW. Olfactory pattern classification by discrete neuronal network states. Nature. 2010;465:47–52.

    Article  CAS  PubMed  Google Scholar 

  44. Xie C, Lin Z, Hanson L, Cui Y, Cui B. Intracellular recording of action potentials by nanopillar electroporation. Nat Nanotechnol. 2012;7:185–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Wang K, Fishman HA, Dai H, Harris JS. Neural stimulation with a carbon nanotube microelectrode array. Nano Lett. 2006;6:2043–8.

    Article  CAS  PubMed  Google Scholar 

  46. Ziegler C, Göpel W, Hämmerle H, Hatt H, Jung G, Laxhuber L, Schmidt H-L, Schütz S, Vögtle F, Zell A. Bioelectronic noses: a status report Part II. Biosens Bioelectron. 1998;13:539–71.

    Article  CAS  PubMed  Google Scholar 

  47. Smith RG, D’Souza N, Nicklin S. A review of biosensors and biologically-inspired systems for explosives detection. Analyst. 2008;133:571–84.

    Article  CAS  PubMed  Google Scholar 

  48. Fanget S, Hentz S, Puget P, Arcamone J, Matheron M, Colinet E, Andreucci P, Duraffourg L, Myers E, Roukes M. Gas sensors based on gravimetric detection—A review. Sens Actuators B: Chem. 2011;160:804–21.

    Article  CAS  Google Scholar 

  49. Viswaprakash N, Dennis JC, Globa L, Pustovyy O, Josephson EM, Kanju P, Morrison EE, Vodyanoy VJ. Enhancement of odorant-induced responses in olfactory receptor neurons by zinc nanoparticles. Chem senses. (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingjun Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Science Press, Beijing and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhang, Q., Liu, Q. (2015). Smell Sensors Based on Olfactory Epithelium. In: Wang, P., Liu, Q., Wu, C., Hsia, K. (eds) Bioinspired Smell and Taste Sensors. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7333-1_4

Download citation

Publish with us

Policies and ethics