Advertisement

Introduction

Chapter
  • 977 Downloads

Abstract

Biological olfactory and taste systems are natural chemical sensing systems that are crucial for almost all the creatures to sensing the chemical signals for various purposes such as survival, feeding, and breeding.

Keywords

Olfactory Receptor Sensitive Element Taste Receptor Electronic Nose Taste Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ache BW, Young JM. Olfaction: Diverse species, conserved principles. Neuron. 2005;48(3):417–30.CrossRefPubMedGoogle Scholar
  2. 2.
    Buck L, Axel R. A novel multigene family may encode odorant receptors-a molecular-basis for odor recognition. Cell. 1991;65(1):175–87.CrossRefPubMedGoogle Scholar
  3. 3.
    Chandrashekar J, Hoon MA, Ryba NJP, Zuker CS. The receptors and cells for mammalian taste. Nature. 2006;444(7117):288–94.CrossRefPubMedGoogle Scholar
  4. 4.
    DeFazio RA, Dvoryanchikov G, Maruyama Y, Kim JW, Pereira E, Roper SD, Chaudhari N. Separate populations of receptor cells and presynaptic cells in mouse taste buds. J Neurosci. 2006;26(15):3971–80.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Dryer L, Berghard A. Odorant receptors: a plethora of G-protein-coupled receptors. Trends Pharmacol Sci. 1999;20(10):413–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Firestein S. How the olfactory system makes sense of scents. Nature. 2001;413(6852):211–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Matsunami H, Montmayeur JP, Buck LB. A family of candidate taste receptors in human and mouse. Nature. 2000;404(6778):601–4.CrossRefPubMedGoogle Scholar
  8. 8.
    Aungst JL, Heyward PM, Puche AC, Karnup SV, Hayar A, Szabo G, Shipley MT. Centre-surround inhibition among olfactory bulb glomeruli. Nature. 2003;426(6967):623–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Kay LM, Stopfer M. Information processing in the olfactory systems of insects and vertebrates. Semin Cell Dev Biol. 2006;17(4):433–42.CrossRefPubMedGoogle Scholar
  10. 10.
    Leon M, Johnson BA. Olfactory coding in the mammalian olfactory bulb. Brain Res Rev. 2003;42(1):23–32.CrossRefPubMedGoogle Scholar
  11. 11.
    Du L, Wu C, Liu Q, Huang L, Wang P. Recent advances in olfactory receptor-based biosensors. Biosens Bioelectron. 2013:42570–580.Google Scholar
  12. 12.
    Li Y, Liu QJ, Xu Y, Cai H, Qin LF, Wang LJ, Wang P. The development of taste transduction and taste chip technology. Chin Sci Bull. 2005;50(14):1415–23.CrossRefGoogle Scholar
  13. 13.
    Wang P, Xu GX, Qin LF, Xu Y, Li Y, Li R. Cell-based biosensors and its application in biomedicine. Sensors Actuators B-Chem. 2005;108(1–2):576–84.CrossRefGoogle Scholar
  14. 14.
    Wu C, Du L, Zou L, Zhao L, Huang L, Wang P. Recent advances in taste cell- and receptor-based biosensors. Sensors Actuators B-Chem. 2014:20175–85.Google Scholar
  15. 15.
    Wu C, Wang L, Zhou J, Zhao L, Wang P. The progress of olfactory transduction and biomimetic olfactory-based biosensors. Chin Sci Bull. 2007;52(14):1886–96.CrossRefGoogle Scholar
  16. 16.
    Freeman WJ. Simulation of chaotic EEG patterns with a dynamic-model of the olfactory system. Biol Cybern. 1987;56(2–3):139–50.CrossRefPubMedGoogle Scholar
  17. 17.
    Gardner RJ. Lipid solubility and the sourness of acids-implications for models of the acid taste receptor. Chem Senses. 1980;5(3):185–94.CrossRefGoogle Scholar
  18. 18.
    Iiyama S, Toko K, Yamafuji K. Effect of bitter substances on a model membrane system of taste reception. Agric Biol Chem. 1986;50(11):2709–14.CrossRefGoogle Scholar
  19. 19.
    Ivarsson P, Kikkawa Y, Winquist F, Krantz-Rulcker C, Hojer NE, Hayashi K, Toko K, Lundstrom I. Comparison of a voltammetric electronic tongue and a lipid membrane taste sensor. Anal Chim Acta. 2001;449(1–2):59–68.CrossRefGoogle Scholar
  20. 20.
    Toko K. Taste sensor. Sensors Actuators B-Chem. 2000;64(1–3):205–15.CrossRefGoogle Scholar
  21. 21.
    Stephan A, Bucking M, Steinhart H. Novel analytical tools for food flavours. Food Res Int. 2000;33(3–4):199–209.CrossRefGoogle Scholar
  22. 22.
    Persaud K, Dodd G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature. 1982;299(5881):352–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Hayashi K, Yamanaka M, Toko K, Yamafuji K. Multichannel taste sensor using lipid-membranes. Sensors Actuators B-Chem. 1990;2(3):205–13.CrossRefGoogle Scholar
  24. 24.
    Legin AV, Rudnitskaya AM, Vlasov YG, Di Natale C, D’Amico A. The features of the electronic tongue in comparison with the characteristics of the discrete ion-selective sensors. Sensors Actuators B-Chem. 1999;58(1–3):464–8.CrossRefGoogle Scholar
  25. 25.
    Liu Q, Zhang F, Zhang D, Hu N, Hsia KJ, Wang P. Extracellular potentials recording in intact taste epithelium by microelectrode array for a taste sensor. Biosens Bioelectron. 2013:43186–192.Google Scholar
  26. 26.
    Glatz R, Bailey-Hill K. Mimicking nature’s noses: from receptor deorphaning to olfactory biosensing. Prog Neurobiol. 2011;93(2):270–96.CrossRefPubMedGoogle Scholar
  27. 27.
    Lee SH, Park TH. Recent advances in the development of bioelectronic nose. Biotechnol Bioprocess Eng. 2010;15(1):22–9.CrossRefGoogle Scholar
  28. 28.
    Schoning MJ, Schroth P, Schutz S. The use of insect chemoreceptors for the assembly of biosensors based on semiconductor field-effect transistors. Electroanalysis. 2000;12(9):645–52.CrossRefGoogle Scholar
  29. 29.
    Schutz S, Schoning MJ, Schroth P, Malkoc U, Weissbecker B, Kordos P, Luth H, Hummel HE. An insect-based BioFET as a bioelectronic nose. Sensors Actuators B-Chem. 2000;65(1–3):291–5.CrossRefGoogle Scholar
  30. 30.
    Sankaran S, Panigrahi S, Mallik S. Odorant binding protein based biomimetic sensors for detection of alcohols associated with Salmonella contamination in packaged beef. Biosens Bioelectron. 2011;26(7):3103–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Corcelli A, Lobasso S, Lopalco P, Dibattista M, Araneda R, Peterlin Z, Firestein S. Detection of explosives by olfactory sensory neurons. J Hazard Mater. 2010;175(1–3):1096–100.CrossRefPubMedGoogle Scholar
  32. 32.
    Marshall B, Warr CG, de Bruyne M. Detection of volatile indicators of illicit substances by the olfactory receptors of Drosophila melanogaster. Chem Senses. 2010;35(7):613–25.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Staii C, Johnson AT. DNA-decorated carbon nanotubes for chemical sensing. Nano Lett. 2005;5(9):1774–8.CrossRefPubMedGoogle Scholar
  34. 34.
    White J, Truesdell K, Williams LB, AtKisson MS, Kauer JS. Solid-state, dye-labeled DNA detects volatile compounds in the vapor phase. PLoS Biol. 2008;6(1):30–6.CrossRefGoogle Scholar
  35. 35.
    Hui G, Mi S, Deng S. Sweet and bitter tastants specific detection by the taste cell-based sensor. Biosens Bioelectron. 2012;35(1):429–38.CrossRefPubMedGoogle Scholar
  36. 36.
    Wang T, Hui G, Deng S. A novel sweet taste cell-based sensor. Biosens Bioelectron. 2010;26(2):929–34.CrossRefPubMedGoogle Scholar
  37. 37.
    Wu C, Du L, Mao L, Wang P. A novel bitter detection biosensor based on light addressable potentiometric sensor. J Innov Opt Health Sci. 2012;5(2).Google Scholar
  38. 38.
    Wu C, Du L, Zou L, Huang L, Wang P. A biomimetic bitter receptor-based biosensor with high efficiency immobilization and purification using self-assembled aptamers. Analyst. 2013;138(20):5989–94.CrossRefPubMedGoogle Scholar
  39. 39.
    Wu C, Chen P, Yu H, Liu Q, Zong X, Cai H, Wang P. A novel biomimetic olfactory-based biosensor for single olfactory sensory neuron monitoring. Biosens Bioelectron. 2009;24(5):1498–502.CrossRefPubMedGoogle Scholar
  40. 40.
    Wu C, Chen P, Yuan Q, Wang P. Response enhancement of olfactory sensory neurons-based biosensors for odorant detection. J Zhejiang Univ-Sci B. 2009;10(4):285–90.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Chen P, Liu X, Wang B, Cheng G, Wang P. A biomimetic taste receptor cell-based biosensor for electrophysiology recording and acidic sensation. Sensors Actuators B-Chem. 2009;139(2):576–83.CrossRefGoogle Scholar
  42. 42.
    Zhang W, Li Y, Liu Q, Xu Y, Cai H, Wang P. A novel experimental research based on taste cell chips for taste transduction mechanism. Sensors Actuators B-Chem. 2008;131(1):24–8.CrossRefGoogle Scholar
  43. 43.
    Chen P, Wang B, Cheng G, Wang P. Taste receptor cell-based biosensor for taste specific recognition based on temporal firing. Biosens Bioelectron. 2009;25(1):228–33.CrossRefPubMedGoogle Scholar
  44. 44.
    Chen P, Zhang W, Chen P, Zhou Z, Chen C, Hu J, Wang P. A serotonin-sensitive sensor for investigation of taste cell-to-cell communication. Biosens Bioelectron. 2011;26(6):3054–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Du L, Zou L, Zhao L, Huang L, Wang P, Wu C. Label-free functional assays of chemical receptors using a bioengineered cell-based biosensor with localized extracellular acidification measurement. Biosens Bioelectron. 2014:54623–627.Google Scholar
  46. 46.
    Pauling L, Robinson AB, Teranish R, Cary P. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc Natl Acad Sci USA. 1971;68(10):2374–000.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Miekisch W, Schubert JK, Noeldge-Schomburg GFE. Diagnostic potential of breath analysis—focus on volatile organic compounds. Clin Chim Acta. 2004;347(1–2):25–39.CrossRefPubMedGoogle Scholar
  48. 48.
    Minna J, Schiller J, eds. Harrison’s principles of internal medicine. 17th ed. Library Journal, vol. 133. New York: McGraw-Hill; 2008. pp. 551–562.Google Scholar
  49. 49.
    Phillips M, Cataneo RN, Cummin ARC, Gagliardi AJ, Gleeson K, Greenberg J, Maxfield RA, Rom WN. Detection of lung cancer with volatile markers in the breath. Chest. 2003;123(6):2115–23.CrossRefPubMedGoogle Scholar
  50. 50.
    Phillips M, Gleeson K, Hughes JMB, Greenberg J, Cataneo RN, Baker L, McVay WP. Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. Lancet. 1999;353(9168):1930–3.CrossRefPubMedGoogle Scholar
  51. 51.
    Chen X, Cao MF, Li Y, Hu WJ, Wang P, Ying KJ, Pan HM. A study of an electronic nose for detection of lung cancer based on a virtual SAW gas sensors array and imaging recognition method. Meas Sci Technol. 2005;16(8):1535–46.CrossRefGoogle Scholar
  52. 52.
    Johnson ATC, Khamis SM, Preti G, Kwak J, Gelperin A. DNA-coated nanosensors for breath analysis. IEEE Sens J. 2010;10(1):159–66.CrossRefGoogle Scholar
  53. 53.
    Strauch M, Luedke A, Muench D, Laudes T, Galizia CG, Martinelli E, Lavra L, Paolesse R, Ulivieri A, Catini A, Capuano R, Di Natale C. More than apples and oranges—detecting cancer with a fruit fly’s antenna. Sci Rep. 2014;4(3576):1–9.Google Scholar

Copyright information

© Science Press, Beijing and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Biosensor National Special Labaratory, Department of Biomedical EngineeringZhejiang UniversityHangzhouChina
  2. 2.University of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations