Skip to main content

In Vivo Bioelectronic Tongue

  • Chapter
  • First Online:
Bioinspired Smell and Taste Sensors
  • 1139 Accesses

Abstract

Over the past two decades, the development of biomimetic techniques for chemical sensing has been promoted by research in chemical signal transduction mechanisms. Much work has been done in the development of bioinspired sensors which combined biological functional components with various secondary sensors [1]. Taking advantage of mammalian chemical sensing mechanisms, many kinds of biological components originating from gustatory system have been used as recognition elements, including gustatory cells, gustatory tissues, and taste-related proteins [2, 3]. Comparing to conventional sensitive materials such as lipid membranes, biological taste components have the merits of fast response, high sensitivity, and excellent specificity for potential applications in many fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valle M. Bioinspired sensor systems[J]. Sensors. 2011;11(11):10180–6.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Liu Q, Zhang F, Zhang D, et al. Bioelectronic tongue of taste buds on microelectrode array for salt sensing. Biosens Bioelectron. 2013;40(1):115–20.

    Article  CAS  PubMed  Google Scholar 

  3. Liu Q, Zhang D, Zhang F, et al. Biosensor recording of extracellular potentials in the taste epithelium for bitter detection. Sens Actuators B: Chem. 2013;176:497–504.

    Article  CAS  Google Scholar 

  4. Liu Q, Wu C, Cai H, et al. Cell-Based biosensors and their application in biomedicine. Chem Rev. 2014;114(19):10131–76.

    Google Scholar 

  5. Lemon CH, Katz DB. The neural processing of taste. BMC neuroscience. 2007;8(Suppl 3):S5.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Roper SD. Taste buds as peripheral chemosensory processors. Semi Cell Dev Biol, Academic Press. 2013;24(1):71–79.

    Google Scholar 

  7. Carleton A, Accolla R, Simon SA. Coding in the mammalian gustatory system. Trends Neurosci. 2010;33(7):326–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Zaidi FN, Todd K, Enquist L, et al. Types of taste circuits synaptically linked to a few geniculate ganglion neurons. J Comparative Neurol. 2008;511(6):753–72.

    Article  Google Scholar 

  9. Spector AC, Travers SP. The representation of taste quality in the mammalian nervous system. Behav Cogn Neurosci Rev. 2005;4(3):143–91.

    Article  PubMed  Google Scholar 

  10. Tokita K, Inoue T, Boughter JD Jr. Afferent connections of the parabrachial nucleus in C57BL/6 J mice. Neuroscience. 2009;161(2):475–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Maffei A, Haley M, Fontanini A. Neural processing of gustatory information in insular circuits. Curr Opin Neurobiol. 2012;22(4):709–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Pritchard TC, Macaluso DA, Eslinger PJ. Taste perception in patients with insular cortex lesions. Behav Neurosci. 1999;113(4):663.

    Article  CAS  PubMed  Google Scholar 

  13. Smith DV. St John S J. Neural coding of gustatory information. Curr Opin Neurobiol. 1999;9(4):427–35.

    Article  CAS  PubMed  Google Scholar 

  14. DʼAgostino AE, Di Lorenzo PM. Information processing in the Gustatory System. In: Springer Handbook of Bio-/Neuroinformatics. Springer Berlin Heidelberg, 2014. p. 783–796.

    Google Scholar 

  15. Frank M. An analysis of hamster afferent taste nerve response functions. J Gen Physiol. 1973;61(5):588–618.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Contreras RJ. Changes in gustatory nerve discharges with sodium deficiency: a single unit analysis. Brain Res. 1977;121(2):373–8.

    Article  CAS  PubMed  Google Scholar 

  17. Contreras RJ, Frank M. Sodium deprivation alters neural responses to gustatory stimuli. J Gen Physiol. 1979;73(5):569–94.

    Article  CAS  PubMed  Google Scholar 

  18. Danilova V, Hellekant G. Sense of taste in a New World monkey, the common marmoset. II. Link between behavior and nerve activity. J Neurophysiol. 2004;92(2):1067–76.

    Article  PubMed  Google Scholar 

  19. Huang AL, Chen X, Hoon MA, et al. The cells and logic for mammalian sour taste detection. Nature. 2006;442(7105):934–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Mueller KL, Hoon MA, Erlenbach I, et al. The receptors and coding logic for bitter taste. Nature. 2005;434(7030):225–9.

    Article  CAS  PubMed  Google Scholar 

  21. Chandrashekar J, Kuhn C, Oka Y, et al. The cells and peripheral representation of sodium taste in mice. Nature. 2010;464(7286):297–301.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Zhao GQ, Zhang Y, Hoon MA, et al. The receptors for mammalian sweet and umami taste. Cell. 2003;115(3):255–66.

    Article  CAS  PubMed  Google Scholar 

  23. Gilbertson TA, Boughter JD, Zhang H, et al. Distribution of gustatory sensitivities in rat taste cells: whole-cell responses to apical chemical stimulation. J Neurosci. 2001;21(13):4931–41.

    CAS  PubMed  Google Scholar 

  24. Caicedo A, Kim KN, Roper SD. Individual mouse taste cells respond to multiple chemical stimuli. J Physiol. 2002;544(2):501–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Doetsch GS, Erickson RP. Synaptic processing of taste-quality information in the nucleus tractus solitarius of the rat. J Neurophysiol. 1970;33(4):490–507.

    CAS  PubMed  Google Scholar 

  26. Lin W, Burks CA, Hansen DR, et al. Taste receptor cells express pH-sensitive leak K + channels. J Neurophysiol. 2004;92(5):2909–19.

    Article  CAS  PubMed  Google Scholar 

  27. Paxinos G, Watson C. The rat brain in stereotaxic coordinates: hard cover edition. Academic press. 2006.

    Google Scholar 

  28. Phillips MI, Norgren RE. A rapid method for permanent implantation of an intraoral fistula in rats[J]. Behavior Research Methods & Instrumentation. 1970;2(3):124–124.

    Article  Google Scholar 

  29. Pavão R, Piette CE, Lopes-dos-Santos V, et al. Local Field Potentials in the Gustatory Cortex Carry Taste Information. J Neurosci. 2014;34(26):8778–87.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Fontanini A, Katz DB. 7 to 12 Hz activity in rat gustatory cortex reflects disengagement from a fluid self-administration task. J Neurophysiol. 2005;93(5):2832–40.

    Article  PubMed  Google Scholar 

  31. Garcia J, Kimeldorf DJ, Koelling RA. Conditioned aversion to saccharin resulting from exposure to gamma radiation. Science. 1955.

    Google Scholar 

  32. Ivanova SF, Bures J. Acquisition of conditioned taste aversion in rats is prevented by tetrodotoxin blockade of a small midbrain region centered around the parabrachial nuclei. Physiol Behav. 1990;48(4):543–9.

    Article  CAS  PubMed  Google Scholar 

  33. Yamamoto T, Azuma S, Kawamura Y. Significance of cortical-amygdalar-hypothalamic connections in retention of conditioned taste aversion in rats. Exp Neurol. 1981;74(3):758–68.

    Article  CAS  PubMed  Google Scholar 

  34. Gallo M, Roldan G, Bureš J. Differential involvement of gustatory insular cortex and amygdala in the acquisition and retrieval of conditioned taste aversion in rats. Behav Brain Res. 1992;52(1):91–7.

    Article  CAS  PubMed  Google Scholar 

  35. Hamill OP, Marty A, Neher E, et al. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archiv. 1981;391(2):85–100.

    Article  CAS  PubMed  Google Scholar 

  36. Sakman B, Neher I. Patch-Clamp Technique. Threshold. 1992;20:2–4.

    Google Scholar 

  37. Scanziani M, Häusser M. Electrophysiology in the age of light. Nature. 2009;461(7266):930–9.

    Article  CAS  PubMed  Google Scholar 

  38. Lee AK, Epsztein J, Brecht M. Head-anchored whole-cell recordings in freely moving rats. Nat Protoc. 2009;4(3):385–92.

    Article  CAS  PubMed  Google Scholar 

  39. Lee AK, Manns ID, Sakmann B, et al. Whole-cell recordings in freely moving rats. Neuron. 2006;51(4):399–407.

    Article  CAS  PubMed  Google Scholar 

  40. Vasilyev DV, Merrill TL, Bowlby MR. Development of a novel automated ion channel recording method using “inside-out” whole-cell membranes. J Biomol Screen. 2005;10(8):806–13.

    Article  CAS  PubMed  Google Scholar 

  41. Avenet P, Lindemann B. Patch-clamp study of isolated taste receptor cells of the frog. J Membr Biol. 1987;97(3):223–40.

    Article  CAS  PubMed  Google Scholar 

  42. Gilbertson TA, Boughter JD, Zhang H, et al. Distribution of gustatory sensitivities in rat taste cells: whole-cell responses to apical chemical stimulation. J Neurosci. 2001;21(13):4931–41.

    CAS  PubMed  Google Scholar 

  43. Zhang Y, Hoon MA, Chandrashekar J, et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell. 2003;112(3):293–301.

    Article  CAS  PubMed  Google Scholar 

  44. Katz DB, Simon SA, Nicolelis MAL. Taste-specific neuronal ensembles in the gustatory cortex of awake rats. J Neurosci. 2002;22(5):1850–7.

    CAS  PubMed  Google Scholar 

  45. Ogawa H, Sato M, Yamashita S. Multiple sensitivity of chorda tympani fibres of the rat and hamster to gustatory and thermal stimuli. J Physiol. 1968;199(1):223–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Harada S, Smith DV. Gustatory sensitivities of the hamster’s soft palate. Chem Senses. 1992;17(1):37–51.

    Article  Google Scholar 

  47. Lemon CH, Smith DV. Neural representation of bitter taste in the nucleus of the solitary tract. J Neurophysiol. 2005;94(6):3719–29.

    Article  CAS  PubMed  Google Scholar 

  48. Geran LC, Travers SP. Single neurons in the nucleus of the solitary tract respond selectively to bitter taste stimuli. J Neurophysiol. 2006;96(5):2513–27.

    Article  PubMed  Google Scholar 

  49. McCaughey SA, Scott TR. The taste of sodium. Neurosci Biobehav Rev. 1998;22(5):663–76.

    Article  CAS  PubMed  Google Scholar 

  50. Rosen AM, Victor JD, Di Lorenzo PM. Temporal coding of taste in the parabrachial nucleus of the pons of the rat. J Neurophysiol. 2011;105(4):1889–96.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Shimura T, Tanaka H, Yamamoto T. Salient responsiveness of parabrachial neurons to the conditioned stimulus after the acquisition of taste aversion learning in rats. Neuroscience. 1997;81(1):239–47.

    Article  CAS  PubMed  Google Scholar 

  52. Stapleton JR, Lavine ML, Wolpert RL, et al. Rapid taste responses in the gustatory cortex during licking. J Neurosci. 2006;26(15):4126–38.

    Article  CAS  PubMed  Google Scholar 

  53. Chen JY, Victor JD, Di Lorenzo PM. Temporal coding of intensity of NaCl and HCl in the nucleus of the solitary tract of the rat. J Neurophysiol. 2011;105(2):697–711.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Terry LA, White SF, Tigwell LJ. The application of biosensors to fresh produce and the wider food industry. J Agric Food Chem. 2005;53(5):1309–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Science Press, Beijing and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Qin, Z., Zhang, B., Hu, L. (2015). In Vivo Bioelectronic Tongue. In: Wang, P., Liu, Q., Wu, C., Hsia, K. (eds) Bioinspired Smell and Taste Sensors. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7333-1_14

Download citation

Publish with us

Policies and ethics