In Vivo Bioelectronic Tongue

Chapter

Abstract

Over the past two decades, the development of biomimetic techniques for chemical sensing has been promoted by research in chemical signal transduction mechanisms. Much work has been done in the development of bioinspired sensors which combined biological functional components with various secondary sensors [1]. Taking advantage of mammalian chemical sensing mechanisms, many kinds of biological components originating from gustatory system have been used as recognition elements, including gustatory cells, gustatory tissues, and taste-related proteins [2, 3]. Comparing to conventional sensitive materials such as lipid membranes, biological taste components have the merits of fast response, high sensitivity, and excellent specificity for potential applications in many fields.

Keywords

Conditioned Taste Aversion Gustatory Cell Taste Quality Taste Stimulus Gustatory Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Valle M. Bioinspired sensor systems[J]. Sensors. 2011;11(11):10180–6.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Liu Q, Zhang F, Zhang D, et al. Bioelectronic tongue of taste buds on microelectrode array for salt sensing. Biosens Bioelectron. 2013;40(1):115–20.CrossRefPubMedGoogle Scholar
  3. 3.
    Liu Q, Zhang D, Zhang F, et al. Biosensor recording of extracellular potentials in the taste epithelium for bitter detection. Sens Actuators B: Chem. 2013;176:497–504.CrossRefGoogle Scholar
  4. 4.
    Liu Q, Wu C, Cai H, et al. Cell-Based biosensors and their application in biomedicine. Chem Rev. 2014;114(19):10131–76.Google Scholar
  5. 5.
    Lemon CH, Katz DB. The neural processing of taste. BMC neuroscience. 2007;8(Suppl 3):S5.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Roper SD. Taste buds as peripheral chemosensory processors. Semi Cell Dev Biol, Academic Press. 2013;24(1):71–79.Google Scholar
  7. 7.
    Carleton A, Accolla R, Simon SA. Coding in the mammalian gustatory system. Trends Neurosci. 2010;33(7):326–34.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Zaidi FN, Todd K, Enquist L, et al. Types of taste circuits synaptically linked to a few geniculate ganglion neurons. J Comparative Neurol. 2008;511(6):753–72.CrossRefGoogle Scholar
  9. 9.
    Spector AC, Travers SP. The representation of taste quality in the mammalian nervous system. Behav Cogn Neurosci Rev. 2005;4(3):143–91.CrossRefPubMedGoogle Scholar
  10. 10.
    Tokita K, Inoue T, Boughter JD Jr. Afferent connections of the parabrachial nucleus in C57BL/6 J mice. Neuroscience. 2009;161(2):475–88.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Maffei A, Haley M, Fontanini A. Neural processing of gustatory information in insular circuits. Curr Opin Neurobiol. 2012;22(4):709–16.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Pritchard TC, Macaluso DA, Eslinger PJ. Taste perception in patients with insular cortex lesions. Behav Neurosci. 1999;113(4):663.CrossRefPubMedGoogle Scholar
  13. 13.
    Smith DV. St John S J. Neural coding of gustatory information. Curr Opin Neurobiol. 1999;9(4):427–35.CrossRefPubMedGoogle Scholar
  14. 14.
    DʼAgostino AE, Di Lorenzo PM. Information processing in the Gustatory System. In: Springer Handbook of Bio-/Neuroinformatics. Springer Berlin Heidelberg, 2014. p. 783–796.Google Scholar
  15. 15.
    Frank M. An analysis of hamster afferent taste nerve response functions. J Gen Physiol. 1973;61(5):588–618.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Contreras RJ. Changes in gustatory nerve discharges with sodium deficiency: a single unit analysis. Brain Res. 1977;121(2):373–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Contreras RJ, Frank M. Sodium deprivation alters neural responses to gustatory stimuli. J Gen Physiol. 1979;73(5):569–94.CrossRefPubMedGoogle Scholar
  18. 18.
    Danilova V, Hellekant G. Sense of taste in a New World monkey, the common marmoset. II. Link between behavior and nerve activity. J Neurophysiol. 2004;92(2):1067–76.CrossRefPubMedGoogle Scholar
  19. 19.
    Huang AL, Chen X, Hoon MA, et al. The cells and logic for mammalian sour taste detection. Nature. 2006;442(7105):934–8.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Mueller KL, Hoon MA, Erlenbach I, et al. The receptors and coding logic for bitter taste. Nature. 2005;434(7030):225–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Chandrashekar J, Kuhn C, Oka Y, et al. The cells and peripheral representation of sodium taste in mice. Nature. 2010;464(7286):297–301.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Zhao GQ, Zhang Y, Hoon MA, et al. The receptors for mammalian sweet and umami taste. Cell. 2003;115(3):255–66.CrossRefPubMedGoogle Scholar
  23. 23.
    Gilbertson TA, Boughter JD, Zhang H, et al. Distribution of gustatory sensitivities in rat taste cells: whole-cell responses to apical chemical stimulation. J Neurosci. 2001;21(13):4931–41.PubMedGoogle Scholar
  24. 24.
    Caicedo A, Kim KN, Roper SD. Individual mouse taste cells respond to multiple chemical stimuli. J Physiol. 2002;544(2):501–9.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Doetsch GS, Erickson RP. Synaptic processing of taste-quality information in the nucleus tractus solitarius of the rat. J Neurophysiol. 1970;33(4):490–507.PubMedGoogle Scholar
  26. 26.
    Lin W, Burks CA, Hansen DR, et al. Taste receptor cells express pH-sensitive leak K + channels. J Neurophysiol. 2004;92(5):2909–19.CrossRefPubMedGoogle Scholar
  27. 27.
    Paxinos G, Watson C. The rat brain in stereotaxic coordinates: hard cover edition. Academic press. 2006.Google Scholar
  28. 28.
    Phillips MI, Norgren RE. A rapid method for permanent implantation of an intraoral fistula in rats[J]. Behavior Research Methods & Instrumentation. 1970;2(3):124–124.CrossRefGoogle Scholar
  29. 29.
    Pavão R, Piette CE, Lopes-dos-Santos V, et al. Local Field Potentials in the Gustatory Cortex Carry Taste Information. J Neurosci. 2014;34(26):8778–87.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Fontanini A, Katz DB. 7 to 12 Hz activity in rat gustatory cortex reflects disengagement from a fluid self-administration task. J Neurophysiol. 2005;93(5):2832–40.CrossRefPubMedGoogle Scholar
  31. 31.
    Garcia J, Kimeldorf DJ, Koelling RA. Conditioned aversion to saccharin resulting from exposure to gamma radiation. Science. 1955.Google Scholar
  32. 32.
    Ivanova SF, Bures J. Acquisition of conditioned taste aversion in rats is prevented by tetrodotoxin blockade of a small midbrain region centered around the parabrachial nuclei. Physiol Behav. 1990;48(4):543–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Yamamoto T, Azuma S, Kawamura Y. Significance of cortical-amygdalar-hypothalamic connections in retention of conditioned taste aversion in rats. Exp Neurol. 1981;74(3):758–68.CrossRefPubMedGoogle Scholar
  34. 34.
    Gallo M, Roldan G, Bureš J. Differential involvement of gustatory insular cortex and amygdala in the acquisition and retrieval of conditioned taste aversion in rats. Behav Brain Res. 1992;52(1):91–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Hamill OP, Marty A, Neher E, et al. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archiv. 1981;391(2):85–100.CrossRefPubMedGoogle Scholar
  36. 36.
    Sakman B, Neher I. Patch-Clamp Technique. Threshold. 1992;20:2–4.Google Scholar
  37. 37.
    Scanziani M, Häusser M. Electrophysiology in the age of light. Nature. 2009;461(7266):930–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Lee AK, Epsztein J, Brecht M. Head-anchored whole-cell recordings in freely moving rats. Nat Protoc. 2009;4(3):385–92.CrossRefPubMedGoogle Scholar
  39. 39.
    Lee AK, Manns ID, Sakmann B, et al. Whole-cell recordings in freely moving rats. Neuron. 2006;51(4):399–407.CrossRefPubMedGoogle Scholar
  40. 40.
    Vasilyev DV, Merrill TL, Bowlby MR. Development of a novel automated ion channel recording method using “inside-out” whole-cell membranes. J Biomol Screen. 2005;10(8):806–13.CrossRefPubMedGoogle Scholar
  41. 41.
    Avenet P, Lindemann B. Patch-clamp study of isolated taste receptor cells of the frog. J Membr Biol. 1987;97(3):223–40.CrossRefPubMedGoogle Scholar
  42. 42.
    Gilbertson TA, Boughter JD, Zhang H, et al. Distribution of gustatory sensitivities in rat taste cells: whole-cell responses to apical chemical stimulation. J Neurosci. 2001;21(13):4931–41.PubMedGoogle Scholar
  43. 43.
    Zhang Y, Hoon MA, Chandrashekar J, et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell. 2003;112(3):293–301.CrossRefPubMedGoogle Scholar
  44. 44.
    Katz DB, Simon SA, Nicolelis MAL. Taste-specific neuronal ensembles in the gustatory cortex of awake rats. J Neurosci. 2002;22(5):1850–7.PubMedGoogle Scholar
  45. 45.
    Ogawa H, Sato M, Yamashita S. Multiple sensitivity of chorda tympani fibres of the rat and hamster to gustatory and thermal stimuli. J Physiol. 1968;199(1):223–40.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Harada S, Smith DV. Gustatory sensitivities of the hamster’s soft palate. Chem Senses. 1992;17(1):37–51.CrossRefGoogle Scholar
  47. 47.
    Lemon CH, Smith DV. Neural representation of bitter taste in the nucleus of the solitary tract. J Neurophysiol. 2005;94(6):3719–29.CrossRefPubMedGoogle Scholar
  48. 48.
    Geran LC, Travers SP. Single neurons in the nucleus of the solitary tract respond selectively to bitter taste stimuli. J Neurophysiol. 2006;96(5):2513–27.CrossRefPubMedGoogle Scholar
  49. 49.
    McCaughey SA, Scott TR. The taste of sodium. Neurosci Biobehav Rev. 1998;22(5):663–76.CrossRefPubMedGoogle Scholar
  50. 50.
    Rosen AM, Victor JD, Di Lorenzo PM. Temporal coding of taste in the parabrachial nucleus of the pons of the rat. J Neurophysiol. 2011;105(4):1889–96.PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Shimura T, Tanaka H, Yamamoto T. Salient responsiveness of parabrachial neurons to the conditioned stimulus after the acquisition of taste aversion learning in rats. Neuroscience. 1997;81(1):239–47.CrossRefPubMedGoogle Scholar
  52. 52.
    Stapleton JR, Lavine ML, Wolpert RL, et al. Rapid taste responses in the gustatory cortex during licking. J Neurosci. 2006;26(15):4126–38.CrossRefPubMedGoogle Scholar
  53. 53.
    Chen JY, Victor JD, Di Lorenzo PM. Temporal coding of intensity of NaCl and HCl in the nucleus of the solitary tract of the rat. J Neurophysiol. 2011;105(2):697–711.PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Terry LA, White SF, Tigwell LJ. The application of biosensors to fresh produce and the wider food industry. J Agric Food Chem. 2005;53(5):1309–16.CrossRefPubMedGoogle Scholar

Copyright information

© Science Press, Beijing and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Zhejiang UniversityHangzhouChina

Personalised recommendations