Gustatoty Epithelium-Based Taste Sensors



For sensors mimicking biological taste sensory, many achievements have been made in liquid detection with special-sensitive lipid/polymer membrane [1, 2, 3, 4, 5, 6]. Notably, a series of sensors were developed by Toko’s group to evaluate beer, tea, and food by discriminating several basic tastants [7, 8]. However, the sensitivity and selectivity of detection using these electronic tongues were lower than those of biological taste sensation, which mainly lies in the biological receptor structures and information coding mechanisms. Thus with advancements in tissue culture protocols, tissue-based biosensors were developed to mimic biological taste sense for analyzing the functional information of taste substances by treating living units as sensing elements [9, 10, 11]. Recently, Ozdener and Rawson proposed a method for primary culture of mammalian gustatory epithelium, which provides a useful model for molecular studies of the proliferation, differentiation, and physiological function of mammalian gustatory receptor cells [12]. The cultured tissue can keep taste sensitivity and electrophysiological activity, which can be recorded and analyzed in pattern recognitions. Although the cultured gustatory tissue loss the three-dimensional structure of the intact taste bud, the study opens a great starting for potential application of gustatory tissue in biosensor for taste detections.


Gustatory Cell Microelectrode Array Taste Quality Taste Stimulus Electrophysiological Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Vlasov Y, Legin A, Rudnitskaya A, Di Natale C. D’amico A. Nonspecific sensor arrays (“electronic tongue”) for chemical analysis of liquids (IUPAC Technical Report). Pure Appl Chem. 2005;77(11):1965–83.CrossRefGoogle Scholar
  2. 2.
    Gallardo J, Alegret S, del Valle M. Application of a potentiometric as a classification tool in food analysis. Talanta. 2005;66(5):1303–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Winquist F, Bjorklund R, Krantz-Rülcker C, Lundström I, Östergren K, Skoglund T. An in the dairy industry. Sens Actuators B: Chem. 2005;111299–304.Google Scholar
  4. 4.
    Gutierrez M, Alegret S, del Valle M. Potentiometric for the analysis of urea and alkaline ions in clinical samples. Biosens Bioelectron. 2007;22(9):2171–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Gómez-Gutiérrez A, Garnacho E, Bayona JM, Albaigés J. Assessment of the Mediterranean sediments contamination by persistent organic pollutants. Environ Pollut. 2007;148(2):396–408.CrossRefPubMedGoogle Scholar
  6. 6.
    Leonte I, Sehra G, Cole M, Hesketh P, Gardner JW. Taste sensors utilizing high-frequency SH-SAW devices. Sens Actuators B: Chem. 2006;118(1):349–55.CrossRefGoogle Scholar
  7. 7.
    Toko K, Habara M. Taste sensor. Chem Sens. 2005;30(suppl 1):i256–7.CrossRefGoogle Scholar
  8. 8.
    Tahara Y, Toko K. Electronic tongues–A review. Sens J IEEE. 2013;13(8):3001–11.CrossRefGoogle Scholar
  9. 9.
    Bousse L. Whole cell biosensors. Sens Actuators B: Chem. 1996;34(1):270–5.CrossRefGoogle Scholar
  10. 10.
    Rudolph AS, Reasor J. Cell and tissue based technologies for environmental detection and medical diagnostics. Biosens Bioelectron. 2001;16(7):429–31.CrossRefPubMedGoogle Scholar
  11. 11.
    Liu Q, Wang P. Cell-based biosensors: principles and applications. 2009: Artech House.Google Scholar
  12. 12.
    Ozdener MH, Rawson NE. Primary culture of mammalian taste epithelium, in Epithelial Cell Culture Protocols. 2013, Springer. pp. 95–107.Google Scholar
  13. 13.
    Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W, Tränkner D, Ryba NJ, Zuker CS. The cells and logic for mammalian taste detection. Nature. 2006;442(7105):934–8.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Liu Q, Zhang F, Zhang D, Hu N, Hsia KJ, Wang P. Extracellular potentials recording in intact taste epithelium by microelectrode array for a taste sensor. Biosens Bioelectron. 2013;43186–192.Google Scholar
  15. 15.
    Chen X, Gabitto M, Peng Y, Ryba NJ, Zuker CS. A gustotopic map of taste qualities in the mammalian brain. Science. 2011;333(6047):1262–6.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Rolls ET. Taste, olfactory, and food texture processing in the brain, and the control of food intake. Physiol Behav. 2005;85(1):45–56.CrossRefPubMedGoogle Scholar
  17. 17.
    Scott K. Taste recognition: food for thought. Neuron. 2005;48(3):455–64.CrossRefPubMedGoogle Scholar
  18. 18.
    El-Yassimi A, Hichami A, Besnard P, Khan NA. Linoleic acid induces calcium signaling, Src kinase phosphorylation, and neurotransmitter release in mouse CD36-positive gustatory cells. J Biol Chem. 2008;283(19):12949–59.CrossRefPubMedGoogle Scholar
  19. 19.
    Liu Q, Zhang D, Zhang F, Zhao Y, Hsia KJ, Wang P. Biosensor recording of extracellular potentials in the taste epithelium for detection. Sens Actuators B: Chem. 2013;176497–504.Google Scholar
  20. 20.
    Bear MF, Connors BW, Paradiso MA. Neuroscience, vol. 2. 2007: Lippincott Williams & Wilkins.Google Scholar
  21. 21.
    Chandrashekar J, Kuhn C, Oka Y, Yarmolinsky DA, Hummler E, Ryba NJ, Zuker CS. The cells and peripheral representation of sodium taste in mice. Nature. 2010;464(7286):297–301.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate taste receptor. Proc Natl Acad Sci. 2006;103(33):12569–74.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Mueller KL, Hoon MA, Erlenbach I, Chandrashekar J, Zuker CS, Ryba NJ. The receptors and coding logic for taste. Nature. 2005;434(7030):225–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS. A novel family of mammalian taste receptors. Cell. 2000;100(6):693–702.CrossRefPubMedGoogle Scholar
  25. 25.
    Matsunami H, Montmayeur J-P, Buck LB. A family of candidate taste receptors in human and mouse. Nature. 2000;404(6778):601–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ. Coding of, and tastes: different receptor cells sharing similar signaling pathways. Cell. 2003;112(3):293–301.CrossRefPubMedGoogle Scholar
  27. 27.
    Lin W, Kinnamon SC. Physiological evidence for ionotropic and metabotropic glutamate receptors in rat taste cells. J Neurophysiol. 1999;82(5):2061–9.PubMedGoogle Scholar
  28. 28.
    Chaudhari N, Yang H, Lamp C, Delay E, Cartford C, Than T, Roper S. The taste of monosodium glutamate: membrane receptors in taste buds. The Journal of Neuroscience. 1996;16(12):3817–26.PubMedGoogle Scholar
  29. 29.
    Chandrashekar J, Hoon MA, Ryba NJ, Zuker CS. The receptors and cells for mammalian taste. Nature. 2006;444(7117):288–94.CrossRefPubMedGoogle Scholar
  30. 30.
    Lindemann B. Receptors and transduction in taste. Nature. 2001;413(6852):219–25.CrossRefPubMedGoogle Scholar
  31. 31.
    Elliott NT, Yuan F. A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci. 2011;100(1):59–74.CrossRefPubMedGoogle Scholar
  32. 32.
    Xu T, Molnar P, Gregory C, Das M, Boland T, Hickman JJ. Electrophysiological characterization of embryonic hippocampal neurons cultured in a 3D collagen hydrogel. Biomaterials. 2009;30(26):4377–83.CrossRefPubMedGoogle Scholar
  33. 33.
    Ten Tusscher KH, Bernus O, Panfilov AV. Comparison of electrophysiological models for human ventricular cells and tissues. Prog Biophys Mol Biol. 2006;90(1):326–45.CrossRefPubMedGoogle Scholar
  34. 34.
    Ribeiro MC, Tertoolen LG, Guadix JA, Bellin M, Kosmidis G, D’Aniello C, Monshouwer-Kloots J, Goumans M-J, Wang Y-l, Feinberg AW. Functional maturation of human pluripotent stem cell derived cardiomyocytes in vitro–Correlation between contraction force and electrophysiology. Biomaterials. 2015;51138–150.Google Scholar
  35. 35.
    Day B, Pomerleau F, Burmeister J, Huettl P, Gerhardt G. Microelectrode array studies of basal and potassium-evoked release of L-glutamate in the anesthetized rat brain. J Neurochem. 2006;96(6):1626–35.CrossRefPubMedGoogle Scholar
  36. 36.
    Gross GW. High throughput microelectrode array platforms for quantitative pharmacology, toxicology, and drug development using spontaneously active neural tissue. 2009. Springer Verlag.Google Scholar
  37. 37.
    Quintero JE, Pomerleau F, Huettl P, Johnson KW, Offord J, Gerhardt GA. Methodology for rapid measures of glutamate release in rat brain slices using ceramic-based microelectrode arrays: Basic characterization and drug pharmacology. Brain Res. 2011, 14011–9.Google Scholar
  38. 38.
    Hogberg HT, Sobanski T, Novellino A, Whelan M, Weiss DG, Bal-Price AK. Application of micro-electrode arrays () as an emerging technology for developmental neurotoxicity: evaluation of domoic acid-induced effects in primary cultures of rat cortical neurons. Neurotoxicology. 2011;32(1):158–68.CrossRefPubMedGoogle Scholar
  39. 39.
    Robinson JT, Jorgolli M, Shalek AK, Yoon M-H, Gertner RS, Park H. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat Nanotechnol. 2012;7(3):180–4.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Thomas C, Springer P, Loeb G, Berwald-Netter Y, Okun L. A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp Cell Res. 1972;74(1):61–6.CrossRefPubMedGoogle Scholar
  41. 41.
    Spira ME, Hai A. Multi-electrode array technologies for neuroscience and cardiology. Nat Nanotechnol. 2013;8(2):83–94.CrossRefPubMedGoogle Scholar
  42. 42.
    Fee MS, Mitra PP, Kleinfeld D. Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-Gaussian variability. J Neurosci Methods. 1996;69(2):175–88.CrossRefPubMedGoogle Scholar
  43. 43.
    Brown EN, Kass RE, Mitra PP. Multiple neural spike train data analysis: state-of-the-art and future challenges. Nature Neurosci. 2004;7(5):456–461.Google Scholar
  44. 44.
    Fendyur A, Spira ME. Toward on-chip, in-cell recordings from cultured cardiomyocytes by arrays of gold mushroom-shaped microelectrodes. Front Neuroeng. 2012;5.Google Scholar
  45. 45.
    Huys R, Braeken D, Wouters J, Loo J, Severi S, Vleugels F, Bartic C, Borghs G, Eberle W. A novel 16 k micro-nail CMOS-chip for in-vitro single-cell recording, stimulation and impedance measurements. In: Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE. 2010. IEEE.Google Scholar
  46. 46.
    Liu Q, Zhang F, Zhang D, Hu N, Wang H, Hsia KJ, Wang P. Bioelectronic tongue of taste buds on microelectrode array for salt sensing. Biosens Bioelectron. 2013;40(1):115–120.Google Scholar
  47. 47.
    Qiao L, Jiao L, Pang G, Xie J. A novel pungency biosensor prepared with fixing taste-bud tissue of rats. Biosens Bioelectron. 2015;68:454–61.CrossRefPubMedGoogle Scholar
  48. 48.
    Miller RL, Stein MK, Loewy AD. Serotonergic inputs to FoxP2 neurons of the pre-locus coeruleus and parabrachial nuclei that project to the ventral tegmental area. Neuroscience. 2011;193229–240.Google Scholar
  49. 49.
    Accolla R, Bathellier B, Petersen CC, Carleton A. Differential spatial representation of taste modalities in the rat gustatory cortex. J Neurosci. 2007;27(6):1396–404.CrossRefPubMedGoogle Scholar
  50. 50.
    Zhang D, Zhang F, Zhang Q, Lu Y, Liu Q, Wang P. Umami evaluation in taste epithelium on microelectrode array by extracellular. Biochem Biophys Res Commun. 2013;438(2):334–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Zhang F, Zhang Q, Zhang D, Lu Y, Liu Q, Wang P. Biosensor analysis of natural and artificial sweeteners in intact taste epithelium. Biosens Bioelectron. 2014;54385–392.Google Scholar

Copyright information

© Science Press, Beijing and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Zhejiang UniversityHangzhouChina

Personalised recommendations