Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 42))

Summary

Ecological optimization theory in combination with canopy modeling is increasingly being accepted as a powerful tool in various scientific fields including ecology, crop science and global change biology. However, the success of this approach critically depends on the adequate choice of optimization criteria and on the structure and assumptions of the canopy models to which it is linked. This chapter starts with the conventional optimization criterion, that of static plant simple optimization, whereby traits are assumed optimal when whole-canopy carbon gain is maximized. It shows how this approach has been widely and often successfully used but also how it often fails to capture key features of vegetation stands. It then lays out a number innovative steps by which optimization could be made more amenable to our understanding of real plant systems. These include: the introduction of evolutionary game theory that takes plant competition into account, the shift from static photosynthesis to dynamic growth models and expanding from simple fitness proxies such as photosynthesis to local population growth. Overall it is argued that future optimization models should employ combinations of these elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A D :

Daily leaf photosynthesis (mol CO2 d−1 m−2)

A max :

Light saturated leaf photosynthesis (μmol CO2 s−1 m−2)

A 0 :

Light saturated leaf photosynthesis of the top most leaf in the canopy (μmol CO2 s−1 m−2)

β :

Degree to which canopies of neighboring plants are mixed.

Cb :

Crown base of a plant (when r or m are added it refers to a resident or mutant).

f :

Cumulated amount of LAI above a given point (m2 m−2)

fr :

Frequency of a strategy in a population (dimensionless)

f st :

Fraction of NPP allocated to stem growth (dimensionless)

F :

General indicator of fitness (no units)

H max :

Maximum tree height

I(f):

Light intensity (photon flux density ) at depth f in the canopy (μmol s−1 m−2)

I 0 :

Light intensity (photon flux density ) above the canopy (μmol s−1 m−2)

k :

Extinction coefficient for light

λ :

A Lagrangian multiplier

LAI :

Leaf area index (m2 m−2)

LMA:

Leaf mass per unit area (g m−2)

M s :

Stem mass per unit length (g m−1)

NPP:

Net primary productivity (e.g. g plant−1 day−1 but definition per unit land area also possible)

N area :

Leaf nitrogen content per unit area (mmol m−2)

N o :

N area of the top most leaf in the canopy (mmol m−2)

p :

The fraction of the shading that plant experiences being caused by its own leaves

P :

General indicator of plant performance (no units) often used as fitness proxy (e.g. photosynthesis growth etc)

R :

General indicator for resources (no units)

r eff :

Fraction of nitrogen that plants resorb from senescing leaves

S d :

Solar beam

References

  • Aerts R, Chapin FS III (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    Article  CAS  Google Scholar 

  • Albaugh T, Allen H, Dougherty P, Kress L, King J (1998) Leaf area and above and belowground growth responses of loblolly pine to nutrient and water additions. For Sci 44:317–328

    Google Scholar 

  • Anten NPR (2002) Evolutionarily stable leaf area production in plant populations. J Theor Biol 217:15–32

    Article  PubMed  Google Scholar 

  • Anten NPR (2005) Optimal photosynthetic characteristics of individual plants in vegetation stands and implications for species coexistence. Ann Bot 95:495–506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anten NPR, Bastiaans L (2016) The use of canopy models to analyze light competition among plants. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 379–398

    Chapter  Google Scholar 

  • Anten NPR, During HJ (2011) Is analyzing nitrogen-use efficiency at the plant canopy level a matter of choosing the right optimization criterion. Oecologia 167:293–303

    Article  PubMed  PubMed Central  Google Scholar 

  • Anten NPR, Hirose T (1998) Biomass allocation and light partitioning among dominant and subordinate individuals in Xanthium canadense stands. Ann Bot 82:665–673

    Article  Google Scholar 

  • Anten NPR, Hirose T (2001) Limitations on photosynthesis of competing individuals in stands and the consequences for canopy structure. Oecologia 129:186–196

    Article  Google Scholar 

  • Anten NPR, Schieving F, Medina E, Werger MJA, Schuffelen P (1995a) Optimal leaf area indices in C3 and C4 mono- and dicotyledonous species at low and high nitrogen availability. Physiol Plant 95:541–550

    Article  CAS  Google Scholar 

  • Anten NPR, Schieving F, Werger MJA (1995b) Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C3 and C4 mono- and dicotyledonous species. Oecologia 101:504–513

    Article  Google Scholar 

  • Anten NPR, Werger MJA, Medina E (1998) Nitrogen distribution and leaf area indices in relation to photosynthetic nitrogen use efficiency in savanna grasses. Plant Ecol 138:63–75

    Article  Google Scholar 

  • Anten NPR, Hirose T, Onoda Y, Kinugasa T, Kim HY, Okada M, Kobayashi K (2004) Elevated CO2 and nitrogen availability have interactive effects on canopy carbon gain in rice. New Phytol 161:459–471

    Article  Google Scholar 

  • Caton BP, Foin TC, Hill JE (1999) A plant growth model for integrated weed management in direct- seeded rice. III. Interspecific competition for light. Field Crop Res 63:47–61

    Article  Google Scholar 

  • de Pury D, Farquhar GD (1997) Simple scaling of photosynthesis from leaves to canopies without the errors of big‐leaf models. Plant Cell Environ 20:537–557

    Article  Google Scholar 

  • de Wit M, Pierik R (2016) Photomorphogenesis and photoreceptors. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 171–186

    Chapter  Google Scholar 

  • de Wit M, Kegge W, Evers JB, Vergeer-van Eijk MH, Gankema P, Voesenek LACJ, Pierik R (2012) Plant neighbor detection through touching leaf tips precedes phytochrome signals. Proc Natl Acad Sci U S A 109:14705–14710

    Article  PubMed  PubMed Central  Google Scholar 

  • Dewar RC, Franklin O, Mäkelä A, McMurtrie RE, Valentine HT (2009) Optimal function explains forest responses to global change. Bioscience 59:127–139

    Article  Google Scholar 

  • Dudley SA, Schmitt J (1996) Testing the adaptive plasticity hypothesis: density dependent selection on manipulated stem length in Impatiens capensis. Am Nat 147:445–465

    Article  Google Scholar 

  • Dybzinski R, Farrior C, Wolf A, Reich PB, Pacala SW (2011) Evolutionary stable strategy carbon allocation to foliage wood and fine roots in trees competing for light and nitrogen: an analytically tractable individual-based model and quantitative comparisons to data. Am Nat 177:153–166

    Article  PubMed  Google Scholar 

  • Ennos AR (1997) Wind as an ecological factor. Trends Ecol Evol 12:108–111

    Article  PubMed  CAS  Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19

    Article  Google Scholar 

  • Evers JB (2016) Simulating crop growth and development using functional-structural plant modeling. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 219–236

    Chapter  Google Scholar 

  • Evers JB, Vos J, Chelle M, Andrieu B, Fournier C, Struik PC (2007) Simulating the effects of localized red:far-red ratio on tillering in spring wheat (Triticum aestivum) using a three-dimensional virtual plant model. New Phytol 176:325–336

    Article  PubMed  Google Scholar 

  • Evers JB, Vos J, Yin X, Romero P, van der Putten PEL, Struik PC (2010) Simulation of wheat growth and development based on organ-level photosynthesis and assimilate allocation. J Exp Bot 61:2203–2216

    Article  PubMed  CAS  Google Scholar 

  • Falster DS, Westoby M (2003) Plant height and evolutionary games. Trends Ecol Evol 18:337–343

    Article  Google Scholar 

  • Farquhar GD (1989) Models of integrated photosynthesis of cells and leaves. Philos Trans R Soc B 323:357–367

    Article  CAS  Google Scholar 

  • Field C (1983) Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program. Oecologia 56:341–347

    Article  Google Scholar 

  • Field C, Mooney HA (1986) The photosynthesis-nitrogen relationship in wild plants. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 25–55

    Google Scholar 

  • Fournier C, Andrieu B (1998) A 3D architectural and process-based model of maize development. Ann Bot 81:233–250

    Article  Google Scholar 

  • Franklin O (2007) Optimal nitrogen allocation controls tree responses to elevated CO2. New Phytol 174:811–822

    Article  PubMed  CAS  Google Scholar 

  • Franklin O, McMurtrie RE, Iversen CM, Crous KY, Finzi AC, Tissue DT, Ellsworth DS, Oren R, Norby RJ (2009) Forest fine-root production and nitrogen use under elevated CO2: contrasting responses in evergreen and deciduous trees explained by a common principle. Glob Chang Biol 15:132–144

    Article  Google Scholar 

  • Franklin O, Ågren GI (2002) Leaf senescence and resorption as mechanisms of maximizing photosynthetic production during canopy development at N limitation. Func Ecol 16:727–733

    Article  Google Scholar 

  • Franklin O, McMurtrie RE, Iversen CM, Crous KY, Finzi AC, Tissue DT, Ellsworth DS, …, Norby RJ (2009) Forest fine-root production and nitrogen use under elevated CO2: Contrasting responses in evergreen and deciduous trees explained by a common principle. Global Change Biol 15:132–144

    Google Scholar 

  • Franklin O, Johanson J, Dewar RC, Dieckman U, McMurtrie RE, Branstrom A, Dybzinski R (2012) Modelling carbon allocation in trees: a search for principles. Tree Physiol 32:648–666

    Article  PubMed  CAS  Google Scholar 

  • Geritz SAH, Kisdi E, Meszena G, Metz JAJ (1998) Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol Ecol 12:35–57

    Article  Google Scholar 

  • Givnish TJ (1982) On the adaptive significance of leaf height in forest herbs. Am Nat 120:353–381

    Article  Google Scholar 

  • Givnish TJ (1988) Adaptation to sun and shade: a whole-plant perspective. Aus J Plant Physiol 15:63–92

    Article  Google Scholar 

  • Goudriaan J (2016) Light distribution. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 3–22

    Chapter  Google Scholar 

  • Hikosaka K (2003) A model of dynamics of leaves and nitrogen in a canopy: an integration of canopy photosynthesis, leaf life-span and nitrogen-use efficiency. Am Nat 162:149–164

    Article  PubMed  Google Scholar 

  • Hikosaka K (2005) Leaf canopy as a dynamic system: ecophysiology and optimality in leaf turnover. Ann Bot 95:521–533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hikosaka K (2014) Optimal nitrogen distribution within a leaf canopy under direct and diffuse light. Plant Cell Environ 9:2077–2085

    Article  CAS  Google Scholar 

  • Hikosaka K, Anten NPR (2012) An evolutionary game of leaf dynamics and its consequences for canopy structure. Func Ecol 26:1024–1032

    Article  Google Scholar 

  • Hikosaka K, Hirose T (1997) Leaf angle as a strategy for light competition: optimal and evolutionary stable light-extinction coefficient within a leaf canopy. Ecoscience 4:501–507

    Google Scholar 

  • Hikosaka K, Nagashima H, Harada Y, Hirose T (2001) A simple formulation of interaction between individuals competing for light in a monospecific stand. Func Ecol 15:642–646

    Article  Google Scholar 

  • Hikosaka K, Kumagai T, Ito A (2016) Modeling canopy photosynthesis. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 239–268

    Chapter  Google Scholar 

  • Hirose T (2005) Development of the Monsi–Saeki theory: an introduction to the study of canopy structure and function. Ann Bot 95:483–494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirose T, Werger MJA (1987) Nitrogen use efficiency in instantaneous and daily photosynthesis of leaves in the canopy of Solidago altissima stand. Physiol Plant 70:215–222

    Article  CAS  Google Scholar 

  • Hirose T, Ackerly DD, Traw MB, Ramseier D, Bazzaz FA (1997) CO2 elevation, canopy photosynthesis and optimal leaf area index in annual plant stands. Ecology 78:2338–2350

    Google Scholar 

  • Iwasa Y, Cohen D, Leon DA (1984) Tree height and crown shape as a result of competitive games. J Theor Biol 112:279–298

    Article  Google Scholar 

  • King DA, Clark DA (2011) Allometry of emergent tree species from saplings to above-canopy adults in a Costa Rican rain forest. J Trop Ecol 27:573–579

    Article  Google Scholar 

  • Kira T (1991) Forest ecosystems of East and Southeast Asia in a global perspective. Ecol Res 6:185–200

    Article  Google Scholar 

  • Koyama K, Kikuzawa K (2010) Geometrical similarity analysis of photosynthetic light response curves, light saturation and light-use efficiency. Oecologia 164:53–63

    Article  PubMed  Google Scholar 

  • Kull O (2002) Acclimation of photosynthesis in canopies: models and limitations. Oecologia 133:267–279

    Article  Google Scholar 

  • Lambers H, Cambridge ML, Pons TL (1998) Physiological Ecology. Springer Verlag, New York

    Book  Google Scholar 

  • Lindroth A, Lagergren F, Aurela M et al (2008) Leaf area index is the principal scaling parameter for both gross photosynthesis and ecosystem respiration of northern deciduous and coniferous forests. Tellus B 60:129–142

    Article  Google Scholar 

  • Lloyd J, Patiño S, Paiva RQ, Nardoto GB, Quesada CA, Santos AJB, Baker TR, …, Mercado LM (2010) Optimization of photosynthetic carbon gain and within-canopy gradients of associated foliar traits for Amazon forest trees. Biogeosciences 7:1833–1859

    Google Scholar 

  • Lovett-Doust L (1981) Population dynamics and local specialization in a clonal perennial (Ranunculus repens). J Ecol 69:743–755

    Article  Google Scholar 

  • Mäkelä A, Valentine HT, Helmisaari H-S (2008) Optimal co-allocation of carbon and nitrogen in a forest stand at steady state. New Phytol 180:114–123

    Article  PubMed  CAS  Google Scholar 

  • Maynard-Smith J (1974) The theory of games and the evolution of animal conflicts. J Theor Biol 47:209–221

    Article  Google Scholar 

  • McGill B, Brown J (2007) Evolutionary game theory and adaptive dynamics of continuous traits. Annu Rev Ecol Evol Syst 38:403–435

    Article  Google Scholar 

  • McMahon T (1973) Size and shape in biology. Science 179:1201–1204

    Article  PubMed  CAS  Google Scholar 

  • McMurtrie RE, Norby RJ, Medlyn BE, Dewar RC, Pepper DA, Reich PB, Barton CVM (2008) Why is plant growth response to elevated CO2 amplified when water is limiting but reduced when nitrogen is limiting? Func Plant Biol 35:521–534

    Article  CAS  Google Scholar 

  • Monsi M, Saeki T (1953) Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. Jpn J Bot 14:22–52. Translated as: Monsi M, Saeki T (2005) On the factor light in plant communities and its importance for matter production. Ann Bot 95:549–567

    Google Scholar 

  • Monsi M, Uchijima Z, Oikawa T (1973) Structure of foliage canopies and photosynthesis. Annu Rev Ecol Syst 4:301–327

    Article  Google Scholar 

  • Nagashima H, Hikosaka K (2011) Plants in a crowded stand regulate their height growth so as to maintain similar heights to neighbours even when they have potential advantages in height growth. Ann Bot 108:207–214

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagashima H, Hikosaka K (2012) Not only light quality but also mechanical stimuli are involved in height convergence in crowded Chenopodium album stands. New Phytol 195:803–811

    Article  PubMed  Google Scholar 

  • Niinemets Ü (2007) Photosynthesis and resource distribution through plant canopies. Plant Cell Environ 30:1052–1071

    Article  PubMed  CAS  Google Scholar 

  • Niinemets Ü (2012) Optimization of foliage photosynthetic capacity in tree canopies: towards identifying missing constraints. Tree Physiol 32:505–509

    Article  PubMed  Google Scholar 

  • Oikawa S, Hikosaka K, Hirose T (2005) Dynamics of leaf area and nitrogen in the canopy of an annual herb, Xanthium canadense. Oecologia 143:517–526

    Article  PubMed  Google Scholar 

  • Oikawa S, Hikosaka K, Hirose T (2006) Leaf lifespan and lifetime carbon balance of individual leaves in a stand of an annual her, Xanthium canadense. New Phytol 172:104–116

    Article  PubMed  CAS  Google Scholar 

  • Parker GAJ, Maynard-Smith J (1990) Optimality theory in evolutionary biology. Nature 348:27–33

    Article  Google Scholar 

  • Poorter L (2005) Resource capture and use by tropical forest tree seedlings and their consequences for competition. In: Burslem DF, Pinard MA, Hartley SE (eds) Biotic Implication in the Tropics: Their Role in Maintenance of Species Diversity. Cambridge University Press, Cambridge, pp 35–64

    Chapter  Google Scholar 

  • Posada JM, Lechowicz MJ, Kitajima K (2009) Optimal photosynthetic use of light by tropical tree crowns achieved by adjusting of individual leaf angles and nitrogen contents. Ann Bot 103:795–805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pronk TE (2004) The role of plant traits in the regulation of diversity. PhD thesis, Utrecht University, Utrecht, The Netherlands

    Google Scholar 

  • Pronk TE, Schieving F, Anten NPR, Werger MJA (2007) Plants that differ in height investment can coexist if they are distributed non-uniformly within an area. Ecol Complex 4:182–191

    Article  Google Scholar 

  • Reich PB, Falster DS, Ellsworth DS, Wright IJ, Westoby M, Oleksyn J, Lee TD (2009) Controls on declining carbon balance with leaf age among 10 woody species in Australian woodland: do leaves have zero daily net carbon balances when they die? New Phytol 183:153–166

    Article  PubMed  CAS  Google Scholar 

  • Riechert SE, Hammerstein P (1983) Game theory in the ecological context. Annu Rev Ecol Syst 14:377–409

    Article  Google Scholar 

  • Ryan MG, Phillips N, Bond BJ (2006) The hydraulic limitation hypothesis revisited. Plant Cell Environ 29:367–381

    Article  PubMed  Google Scholar 

  • Sage RF, Pearcy RW (1987) The nitrogen use efficiency of C3 and C4 plants. II. Leaf nitrogen effects on the gas exchange characteristics of Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiol 84:959–963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saeki T (1960) Interrelationships between leaf amount, light distribution and total photosynthesis in a plant community. Bot Mag Tokyo 73:55–63

    Article  Google Scholar 

  • Sakai S (1991) A model analysis for the adaptive architecture of herbaceous plants. J Theor Biol 148:535–544

    Article  Google Scholar 

  • Schieving F (1998) Plato’s plant. Ph.D. thesis, Utrecht University, Backhuys Publ., Leiden

    Google Scholar 

  • Schieving F, Poorter H (1999) Carbon gain in a multispecies canopy: the role of specific leaf area and photosynthetic nitrogen-use efficiency in the tragedy of the commons. New Phytol 143:201–211

    Article  Google Scholar 

  • Schmitt J, Dudley SA, Pigliucci M (1999) Manipulative approaches to testing adaptive plasticity: phytochrome-mediated shade-avoidance responses in plants. Am Nat 154:S43–S54

    Article  Google Scholar 

  • Smith H (1982) Light quality, photoreception and plant strategy. Annu Rev Plant Physiol 33:481–518

    Article  CAS  Google Scholar 

  • Sterck F, Markesteijn L, Schieving F, Poorter L (2011) Functional traits determine trade-offs and niches in a tropical forest community. Proc Nat Ac Sci USA 108:20627–20632

    Article  Google Scholar 

  • Stockhoff BA (1994) Maximisation of daily canopy photosynthesis: effects of herbivory on optimal nitrogen distribution. J Theor Biol 169:209–220

    Article  Google Scholar 

  • Stutzel H, Charles-Edwards DA, Beech DF (1988) A model of the partitioning of new aboveground dry matter. Ann Bot 50:370–376

    Google Scholar 

  • Terborgh J (1985) The vertical component of plant species diversity in temperate and tropical forests. Am Nat 126:760–776

    Article  Google Scholar 

  • Tremmel DC, Bazzaz FA (1993) How neighbor canopy architecture affects target plant performance. Ecology 7:2114–2124

    Article  Google Scholar 

  • van den Hurk BJJM, Viterbo P, Los SO (2003) Impact of Leaf Area Index seasonality on the annual land surface evaporation in a global circulation model. J Geophys Res 108:4191–4199

    Article  Google Scholar 

  • van Ittersum MK, Leffelaar PA, van Keulen H, Kropff MJ, Bastiaans L, Goudriaan J (2003) On approaches and applications of the Wageningen crop models. Eur J Agron 18:204–231

    Google Scholar 

  • van Loon M, Schieving F, Rietkerk M, Dekker SC, Sterck F, Anten NPR (2014) How light competition between plants affects their response to climate change. New Phytol 203:1253–1265

    Article  PubMed  CAS  Google Scholar 

  • Vermeulen PJ (2014) Crown depth as a result of evolutionary games: decreasing solar elevation should lead to shallower not deeper crowns. New Phytol 202:1249–1256

    Article  PubMed  Google Scholar 

  • Vermeulen PJ, Anten NPR, Schieving F, Werger MJA, During HJ (2008) Height convergence in response to neighbor growth in the stoloniferous plant Potentilla reptans. New Phytol 177:688–697

    Article  PubMed  Google Scholar 

  • Vermeulen PJ, Anten NPR, Stuefer JF, During HJ (2013) Whole-canopy carbon gain as a result of selection on individual performance of ten genotypes of a clonal plant. Oecologia 172:327–337

    Article  PubMed  Google Scholar 

  • Vila-Guerau de Arellano J, van Heerwaarden CC, Lelieveld J (2012) Modelled suppression of boundary-layer clouds by plants in a CO2-rich atmosphere. Nat Geosci 5:701–704

    Article  CAS  Google Scholar 

  • Vos J, Evers JB, Buck-Sorlin GH, Andrieu B, Chelle M, de Visser PHB (2010) Functional-structural plant modelling: a new versatile tool in crop science. J Exp Bot 61:2102–2115

    Article  CAS  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavendar-Bares J, …, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Google Scholar 

  • Yasumura Y, Hikosaka K, Hirose T (2006) Resource allocation to vegetative and reproductive growth in relation to mast seeding in Fagus crenata. For Ecol Manag 229:228–233

    Article  Google Scholar 

  • Yin X, Struik PC (2010) Modeling the crop: from system dynamics to systems biology. J Exp Bot 61:2171–2183

    Article  PubMed  CAS  Google Scholar 

  • Zuidema PA, DeKroon H, Werger MJA (2007) Testing sustainability by prospective and retrospective demographic analyses: evaluation for palm leaf harvesting. Ecol Appl 17:118–128

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I thank, Kouki Hikosaka, Marloes van Loon, Peter Vermeulen and an anonymous reviewer for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels P. R. Anten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Anten, N.P.R. (2016). Optimization and Game Theory in Canopy Models. In: Hikosaka, K., Niinemets, Ü., Anten, N. (eds) Canopy Photosynthesis: From Basics to Applications. Advances in Photosynthesis and Respiration, vol 42. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7291-4_13

Download citation

Publish with us

Policies and ethics