Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 76))

Abstract

Chronic pain is one of the most debilitating and expensive diseases, yet current therapies are often insufficient in bringing about long-term relief. Further, many treatments for chronic pain also carry significant side effects. The molecule adenosine has long been identified as a potent inhibitor of nociceptive circuits in the spinal cord; however, the widespread expression of adenosine receptors in many organ systems has limited its use as an analgesic. Recently several 5′ ectonucleotidases, including tissue non-specific alkaline phosphatase (TNAP), have been characterized for their ability to generate endogenous adenosine in nociceptive circuitry of the dorsal spinal cord. These ectonucleotidases have the ability to hydrolyze the endogenous pronociceptive nucleotides like adenosine triphosphate (ATP) into the antinociceptive nucleoside adenosine. This chapter discusses the role of TNAP and other ectonucleotidases in nociceptive circuits, and their potential as future targets of new therapeutics to treat chronic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32(1):19–29

    CAS  PubMed  Google Scholar 

  • Aley KO, Green PG, Levine JD (1995) Opioid and adenosine peripheral antinociception are subject to tolerance and withdrawal. J Neurosci 15(12):8031–8038

    CAS  PubMed  Google Scholar 

  • Arcuino G, Lin JH, Takano T, Liu C, Jiang L, Gao Q, Kang J, Nedergaard M (2002) Intercellular calcium signaling mediated by point-source burst release of ATP. Proc Natl Acad Sci USA 99(15):9840–9845

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aumeerally N, Allen G, Sawynok J (2004) Glutamate-evoked release of adenosine and regulation of peripheral nociception. Neuroscience 127(1):1–11

    CAS  PubMed  Google Scholar 

  • Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139(2):267–284

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burgess PR, Perl ER (1967) Myelinated afferent fibres responding specifically to noxious stimulation of the skin. J Physiol 190(3):541–562

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87(2):659–797

    CAS  PubMed  Google Scholar 

  • Burnstock G (2009) Purinergic receptors and pain. Curr Pharm Des 15(15):1717–1735

    CAS  PubMed  Google Scholar 

  • Campbell JN, Meyer RA, LaMotte RH (1979) Sensitization of myelinated nociceptive afferents that innervate monkey hand. J Neurophysiol 42(6):1669–1679

    CAS  PubMed  Google Scholar 

  • Carruthers AM, Sellers LA, Jenkins DW, Jarvie EM, Feniuk W, Humphrey PP (2001) Adenosine A(1) receptor-mediated inhibition of protein kinase A-induced calcitonin gene-related peptide release from rat trigeminal neurons. Mol Pharmacol 59(6):1533–1541

    CAS  PubMed  Google Scholar 

  • Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288(5464):306–313

    CAS  PubMed  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389(6653):816–824

    CAS  PubMed  Google Scholar 

  • Cavanaugh DJ, Lee H, Lo L, Shields SD, Zylka MJ, Basbaum AI, Anderson DJ (2009) Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proc Natl Acad Sci USA 106(22):9075–9080

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Y, Zhang YH, Zhao ZQ (2001) Novel purinergic sensitivity develops in injured sensory axons following sciatic nerve transection in rat. Brain Res 911(2):168–172

    CAS  PubMed  Google Scholar 

  • Chrinc Pain in America: Roadblocks to Relief (1999) R.S. Worldwide. American Pain Society and Janssen Pharmeceutica

    Google Scholar 

  • Ciancaglini P, Yadav MC, Simao AM, Narisawa S, Pizauro JM, Farquharson C, Hoylaerts MF, Millán JL (2010) Kinetic analysis of substrate utilization by native and TNAP-, NPP1-, or PHOSPHO1-deficient matrix vesicles. J Bone Miner Res 25(4):716–723

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dahl R, Sergienko EA, Su Y, Mostofi YS, Yang L, Simao AM, Narisawa S, Brown B, Mangravita-Novo A, Vicchiarelli M, Smith LH, O’Neill WC, Millan JL, Cosford ND (2009) Discovery and validation of a series of aryl sulfonamides as selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP). J Med Chem 52(21):6919–6925

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dai Y, Fukuoka T, Wang H, Yamanaka H, Obata K, Tokunaga A, Noguchi K (2004) Contribution of sensitized P2X receptors in inflamed tissue to the mechanical hypersensitivity revealed by phosphorylated ERK in DRG neurons. Pain 108(3):258–266

    CAS  PubMed  Google Scholar 

  • Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, Hughes SA, Rance K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A, Sheardown SA (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405(6783):183–187

    CAS  PubMed  Google Scholar 

  • DeVries SH (2001) Exocytosed protons feedback to suppress the Ca2+ current in mammalian cone photoreceptors. Neuron 32(6):1107–1117

    CAS  PubMed  Google Scholar 

  • Dickenson A, Suzuki R, Reeve AJ (2000) Adenosine as a potential analgesic target in inflammatory adn neuropathic pains. CNS Drugs 13:77–85

    CAS  Google Scholar 

  • Diez-Zaera M, Diaz-Hernandez JI, Hernandez-Alvarez E, Zimmermann H, Diaz-Hernandez M, Miras-Portugal MT (2011) Tissue-nonspecific alkaline phosphatase promotes axonal growth of hippocampal neurons. Mol Biol Cell 22(7):1014–1024

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dowd E, McQueen DS, Chessell IP, Humphrey PP (1998) P2X receptor-mediated excitation of nociceptive afferents in the normal and arthritic rat knee joint. Br J Pharmacol 125(2):341–346

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dubner R, Hu JW (1977) Myelinated (A-delta) nociceptive afferents innervating the monkey’s face. J Dental Res 56

    Google Scholar 

  • Dunwiddie TV, Diao L, Proctor WR (1997) Adenine nucleotides undergo rapid, quantitative conversion to adenosine in the extracellular space in rat hippocampus. J Neurosci 17(20):7673–7682

    CAS  PubMed  Google Scholar 

  • Fitzgerald M (2005) The development of nociceptive circuits. Nat Rev Neurosci 6(7):507–520

    CAS  PubMed  Google Scholar 

  • Fonta C, Negyessy L, Renaud L, Barone P (2004) Areal and subcellular localization of the ubiquitous alkaline phosphatase in the primate cerebral cortex: evidence for a role in neurotransmission. Cereb Cortex 14(6):595–609

    PubMed  Google Scholar 

  • Gerevich Z, Muller C, Illes P (2005) Metabotropic P2Y1 receptors inhibit P2X3 receptor-channels in rat dorsal root ganglion neurons. Eur J Pharmacol 521(1–3):34–38

    CAS  PubMed  Google Scholar 

  • Gerevich Z, Zadori Z, Muller C, Wirkner K, Schroder W, Rubini P, Illes P (2007) Metabotropic P2Y receptors inhibit P2X3 receptor-channels via G protein-dependent facilitation of their desensitization. Br J Pharmacol 151(2):226–236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldman N, Chen M, Fujita T, Xu Q, Peng W, Liu W, Jensen TK, Pei Y, Wang F, Han X, Chen JF, Schnermann J, Takano T, Bekar L, Tieu K, Nedergaard M (2010) Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nat Neurosci 13(7):883–888

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gourine AV, Kasymov V, Marina N, Tang F, Figueiredo MF, Lane S, Teschemacher AG, Spyer KM, Deisseroth K, Kasparov S (2010) Astrocytes control breathing through pH-dependent release of ATP. Science 329(5991):571–575

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haas HL, Selbach O (2000) Functions of neuronal adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol 362(4–5):375–381

    CAS  PubMed  Google Scholar 

  • Hamilton SG, McMahon SB, Lewin GR (2001) Selective activation of nociceptors by P2X receptor agonists in normal and inflamed rat skin. J Physiol 534(Pt. 2):437–445

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamilton SG, Wade A, McMahon SB (1999) The effects of inflammation and inflammatory mediators on nociceptive behaviour induced by ATP analogues in the rat. Br J Pharmacol 126(1):326–332

    CAS  PubMed Central  PubMed  Google Scholar 

  • Health, United States 2006 With chartbook of trends in the health of Americans (2006) National Center for Health Statistics, Hyattsville, MD

    Google Scholar 

  • Hilliges M, Weidner C, Schmelz M, Schmidt R, Orstavik K, Torebjork E, Handwerker H (2002) ATP responses in human C nociceptors. Pain 98(1–2):59–68

    CAS  PubMed  Google Scholar 

  • Hunt SP, Mantyh PW (2001) The molecular dynamics of pain control. Nat Rev Neurosci 2(2):83–91

    CAS  PubMed  Google Scholar 

  • Hurt JK, Coleman JL, Fitzpatrick BJ, Taylor-Blake B, Bridges AS, Vihko P, Zylka MJ (2012) Prostatic acid phosphatase is required for the antinociceptive effects of thiamine and benfotiamine. PLoS ONE 7(10):e48562

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hurt JK, Zylka MJ (2012) PAPupuncture has localized and long-lasting antinociceptive effects in mouse models of acute and chronic pain. Mol Pain 8:28

    CAS  PubMed Central  PubMed  Google Scholar 

  • Inoue M, Rashid MH, Fujita R, Contos JJ, Chun J, Ueda H (2004) Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling. Nat Med 10(7):712–718

    CAS  PubMed  Google Scholar 

  • Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5(3):247–264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johansson B, Halldner L, Dunwiddie TV, Masino SA, Poelchen W, Gimenez-Llort L, Escorihuela RM, Fernandez-Teruel A, Wiesenfeld-Hallin Z, Xu XJ, Hardemark A, Betsholtz C, Herlenius E, Fredholm BB (2001) Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc Natl Acad Sci USA 98(16):9407–9412

    CAS  PubMed Central  PubMed  Google Scholar 

  • Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413(6852):203–210

    CAS  PubMed  Google Scholar 

  • Karlsten R, Gordh T, Post C (1992) Local antinociceptive and hyperalgesic effects in the formalin test after peripheral administration of adenosine analogues in mice. Pharmacol Toxicol 70(6 Pt 1):434–438

    CAS  PubMed  Google Scholar 

  • Langer D, Hammer K, Koszalka P, Schrader J, Robson S, Zimmermann H (2008) Distribution of ectonucleotidases in the rodent brain revisited. Cell Tissue Res 334(2):199–217

    CAS  PubMed  Google Scholar 

  • Lao LJ, Kumamoto E, Luo C, Furue H, Yoshimura M (2001) Adenosine inhibits excitatory transmission to substantia gelatinosa neurons of the adult rat spinal cord through the activation of presynaptic A(1) adenosine receptor. Pain 94(3):315–324

    CAS  PubMed  Google Scholar 

  • Li J, Perl ER (1994) Adenosine inhibition of synaptic transmission in the substantia gelatinosa. J Neurophysiol 72(4):1611–1621

    CAS  PubMed  Google Scholar 

  • Li J, Perl ER (1995) ATP modulation of synaptic transmission in the spinal substantia gelatinosa. J Neurosci 15(5 Pt 1):3357–3365

    CAS  PubMed  Google Scholar 

  • Lin MF, DaVolio J, Garcia-Arenas R (1992) Expression of human prostatic acid phosphatase activity and the growth of prostate carcinoma cells. Cancer Res 52(17):4600–4607

    CAS  PubMed  Google Scholar 

  • Lin MF, Garcia-Arenas R, Xia XZ, Biela B, Lin FF (1994) The cellular level of prostatic acid phosphatase and the growth of human prostate carcinoma cells. Differentiation 57(2):143–149

    CAS  PubMed  Google Scholar 

  • Lin MF, Lee MS, Zhou XW, Andressen JC, Meng TC, Johansson SL, West WW, Taylor RJ, Anderson JR, Lin FF (2001) Decreased expression of cellular prostatic acid phosphatase increases tumorigenicity of human prostate cancer cells. J Urol 166(5):1943–1950

    CAS  PubMed  Google Scholar 

  • Liu XJ, White TD, Sawynok J (2000) Potentiation of formalin-evoked adenosine release by an adenosine kinase inhibitor and an adenosine deaminase inhibitor in the rat hind paw: a microdialysis study. Eur J Pharmacol 408(2):143–152

    CAS  PubMed  Google Scholar 

  • MacGregor GR, Zambrowicz BP, Soriano P (1995) Tissue non-specific alkaline phosphatase is expressed in both embryonic and extraembryonic lineages during mouse embryogenesis but is not required for migration of primordial germ cells. Development 121(5):1487–1496

    CAS  PubMed  Google Scholar 

  • Matsuka Y, Ono T, Iwase H, Mitrirattanakul S, Omoto KS, Cho T, Lam YY, Snyder B, Spigelman I (2008) Altered ATP release and metabolism in dorsal root ganglia of neuropathic rats. Mol Pain 4:66

    PubMed Central  PubMed  Google Scholar 

  • McCoy ES, Taylor-Blake B, Zylka MJ (2012) CGRPalpha-expressing sensory neurons respond to stimuli that evoke sensations of pain and itch. PLoS ONE 7(5):e36355

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer RA, Ringkamp M, Campbell JN, Raja SN (2006) Peripheral mechanisms of cutaneous nocieption. In: McMahon SB, Koltzenburg M (eds) Wall and melzack’s textbook of pain. Elsevier, London, pp 3–29

    Google Scholar 

  • Millán JL, Narisawa S, Lemire I, Loisel TP, Boileau G, Leonard P, Gramatikova S, Terkeltaub R, Camacho NP, McKee MD, Crine P, Whyte MP (2008) Enzyme replacement therapy for murine hypophosphatasia. J Bone Miner Res 23(6):777–787

    PubMed Central  PubMed  Google Scholar 

  • Moolenaar WH, Kranenburg O, Postma FR, Zondag GC (1997) Lysophosphatidic acid: G-protein signalling and cellular responses. Curr Opin Cell Biol 9(2):168–173

    CAS  PubMed  Google Scholar 

  • Moriyama T, Iida T, Kobayashi K, Higashi T, Fukuoka T, Tsumura H, Leon C, Suzuki N, Inoue K, Gachet C, Noguchi K, Tominaga M (2003) Possible involvement of P2Y2 metabotropic receptors in ATP-induced transient receptor potential vanilloid receptor 1-mediated thermal hypersensitivity. J Neurosci 23(14):6058–6062

    CAS  PubMed  Google Scholar 

  • Murthy KS, Makhlouf GM (1995) Adenosine A1 receptor-mediated activation of phospholipase C-beta 3 in intestinal muscle: dual requirement for alpha and beta gamma subunits of Gi3. Mol Pharmacol 47(6):1172–1179

    CAS  PubMed  Google Scholar 

  • Nakagawa T, Wakamatsu K, Zhang N, Maeda S, Minami M, Satoh M, Kaneko S (2007) Intrathecal administration of ATP produces long-lasting allodynia in rats: differential mechanisms in the phase of the induction and maintenance. Neuroscience 147(2):445–455

    CAS  PubMed  Google Scholar 

  • Nakamura F, Strittmatter SM (1996) P2Y1 purinergic receptors in sensory neurons: contribution to touch-induced impulse generation. Proc Natl Acad Sci USA 93(19):10465–10470

    CAS  PubMed Central  PubMed  Google Scholar 

  • Narisawa S, Frohlander N, Millán JL (1997) Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev Dyn 208(3):432–446

    CAS  PubMed  Google Scholar 

  • Narisawa S, Hasegawa H, Watanabe K, Millán JL (1994) Stage-specific expression of alkaline phosphatase during neural development in the mouse. Dev Dyn 201(3):227–235

    CAS  PubMed  Google Scholar 

  • Novakovic SD, Kassotakis LC, Oglesby IB, Smith JA, Eglen RM, Ford AP, Hunter JC (1999) Immunocytochemical localization of P2X3 purinoceptors in sensory neurons in naive rats and following neuropathic injury. Pain 80(1–2):273–282

    CAS  PubMed  Google Scholar 

  • Okada M, Nakagawa T, Minami M, Satoh M (2002) Analgesic effects of intrathecal administration of P2Y nucleotide receptor agonists UTP and UDP in normal and neuropathic pain model rats. J Pharmacol Exp Ther 303(1):66–73

    CAS  PubMed  Google Scholar 

  • Patel MK, Pinnock RD, Lee K (2001) Adenosine exerts multiple effects in dorsal horn neurones of the adult rat spinal cord. Brain Res 920(1–2):19–26

    CAS  PubMed  Google Scholar 

  • Paukert M, Osteroth R, Geisler HS, Brandle U, Glowatzki E, Ruppersberg JP, Grunder S (2001) Inflammatory mediators potentiate ATP-gated channels through the P2X(3) subunit. J Biol Chem 276(24):21077–21082

    CAS  PubMed  Google Scholar 

  • Peng YB, Ringkamp M, Meyer RA, Campbell JN (2003) Fatigue and paradoxical enhancement of heat response in C-fiber nociceptors from cross-modal excitation. J Neurosci 23(11):4766–4774

    CAS  PubMed  Google Scholar 

  • Perry MJ, Lawson SN (1998) Differences in expression of oligosaccharides, neuropeptides, carbonic anhydrase and neurofilament in rat primary afferent neurons retrogradely labelled via skin, muscle or visceral nerves. Neuroscience 85(1):293–310

    CAS  PubMed  Google Scholar 

  • Picher M, Burch LH, Hirsh AJ, Spychala J, Boucher RC (2003) Ecto 5′-nucleotidase and nonspecific alkaline phosphatase. Two AMP-hydrolyzing ectoenzymes with distinct roles in human airways. J Biol Chem 278(15):13468–13479

    CAS  PubMed  Google Scholar 

  • Quintero IB, Araujo CL, Pulkka AE, Wirkkala RS, Herrala AM, Eskelinen EL, Jokitalo E, Hellstrom PA, Tuominen HJ, Hirvikoski PP, Vihko PT (2007) Prostatic acid phosphatase is not a prostate specific target. Cancer Res 67(14):6549–6554

    CAS  PubMed  Google Scholar 

  • Relieving Pain in America: A blueprint for transforming prevention, care, education and research (2011) Institute of Medicine of the National Academies

    Google Scholar 

  • Ringkamp M, Peng YB, Wu G, Hartke TV, Campbell JN, Meyer RA (2001) Capsaicin responses in heat-sensitive and heat-insensitive A-fiber nociceptors. J Neurosci 21(12):4460–4468

    CAS  PubMed  Google Scholar 

  • Rittiner JE, Korboukh I, Hull-Ryde EA, Jin J, Janzen WP, Frye SV, Zylka MJ (2012) AMP is an adenosine A1 receptor agonist. J Biol Chem 287(8):5301–5309

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rohacs T, Lopes CM, Michailidis I, Logothetis DE (2005) PI (4, 5) P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8(5):626–634

    CAS  PubMed  Google Scholar 

  • Ruscheweyh R, Sandkuhler J (2000) Differential actions of spinal analgesics on mono-versus polysynaptic Adelta-fibre-evoked field potentials in superficial spinal dorsal horn in vitro. Pain 88(1):97–108

    CAS  PubMed  Google Scholar 

  • Salter MW, Henry JL (1985) Effects of adenosine 5′-monophosphate and adenosine 5′-triphosphate on functionally identified units in the cat spinal dorsal horn. Evidence for a differential effect of adenosine 5′-triphosphate on nociceptive vs non-nociceptive units. Neuroscience 15(3):815–825

    CAS  PubMed  Google Scholar 

  • Santicioli P, Del Bianco E, Maggi CA (1993) Adenosine A1 receptors mediate the presynaptic inhibition of calcitonin gene-related peptide release by adenosine in the rat spinal cord. Eur J Pharmacol 231(1):139–142

    CAS  PubMed  Google Scholar 

  • Sawynok J (2007) Adenosine and ATP receptors. Handb Exp Pharmacol 177:309–328

    CAS  PubMed  Google Scholar 

  • Sawynok J, Liu XJ (2003) Adenosine in the spinal cord and periphery: release and regulation of pain. Prog Neurobiol 69(5):313–340

    CAS  PubMed  Google Scholar 

  • Sawynok J, Reid A (1997) Peripheral adenosine 5′-triphosphate enhances nociception in the formalin test via activation of a purinergic p2X receptor. Eur J Pharmacol 330(2–3):115–121

    CAS  PubMed  Google Scholar 

  • Sawynok J, Reid A, Meisner J (2006) Pain behaviors produced by capsaicin: influence of inflammatory mediators and nerve injury. J Pain 7(2):134–141

    CAS  PubMed  Google Scholar 

  • Scheibe RJ, Kuehl H, Krautwald S, Meissner JD, Mueller WH (2000) Ecto-alkaline phosphatase activity identified at physiological pH range on intact P19 and HL-60 cells is induced by retinoic acid. J Cell Biochem 76(3):420–436

    CAS  PubMed  Google Scholar 

  • Schulte G, Robertson B, Fredholm BB, DeLander GE, Shortland P, Molander C (2003) Distribution of antinociceptive adenosine A1 receptors in the spinal cord dorsal horn, and relationship to primary afferents and neuronal subpopulations. Neuroscience 121(4):907–916

    CAS  PubMed  Google Scholar 

  • Sergienko E, Su Y, Chan X, Brown B, Hurder A, Narisawa S, Millán JL (2009) Identification and characterization of novel tissue-nonspecific alkaline phosphatase inhibitors with diverse modes of action. J Biomol Screen 14(7):824–837

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sherrington CS (1906) The integrative action of the nervous system. Scribner, New York

    Google Scholar 

  • Silverman JD, Kruger L (1988a) Acid phosphatase as a selective marker for a class of small sensory ganglion cells in several mammals: spinal cord distribution, histochemical properties, and relation to fluoride-resistant acid phosphatase (FRAP) of rodents. Somatosens Res 5(3):219–246

    CAS  PubMed  Google Scholar 

  • Silverman JD, Kruger L (1988b) Lectin and neuropeptide labeling of separate populations of dorsal root ganglion neurons and associated “nociceptor” thin axons in rat testis and cornea whole-mount preparations. Somatosens Res 5(3):259–267

    CAS  PubMed  Google Scholar 

  • Sjolund KF, Sollevi A, Segerdahl M, Lundeberg T (1997) Intrathecal adenosine analog administration reduces substance P in cerebrospinal fluid along with behavioral effects that suggest antinociception in rats. Anesth Analg 85(3):627–632

    CAS  PubMed  Google Scholar 

  • Snider WD, McMahon SB (1998) Tackling pain at the source: new ideas about nociceptors. Neuron 20(4):629–632

    CAS  PubMed  Google Scholar 

  • Sowa NA, Street SE, Vihko P, Zylka MJ (2010a) Prostatic acid phosphatase reduces thermal sensitivity and chronic pain sensitization by depleting phosphatidylinositol 4, 5-bisphosphate. J Neurosci 30(31):10282–10293

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sowa NA, Taylor-Blake B, Zylka MJ (2010b) Ecto-5′-nucleotidase (CD73) inhibits nociception by hydrolyzing AMP to adenosine in nociceptive circuits. J Neurosci 30(6):2235–2244

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sowa NA, Vadakkan KI, Zylka MJ (2009) Recombinant mouse PAP has pH-dependent ectonucleotidase activity and acts through A(1)-adenosine receptors to mediate antinociception. PLoS One 4(1):e4248

    PubMed Central  PubMed  Google Scholar 

  • Sowa NA, Voss MK, Zylka MJ (2010c) Recombinant ecto-5′-nucleotidase (CD73) has long lasting antinociceptive effects that are dependent on adenosine A1 receptor activation. Mol Pain 6:20

    PubMed Central  PubMed  Google Scholar 

  • St Hilaire C, Ziegler SG, Markello TC, Brusco A, Groden C, Gill F, Carlson-Donohoe H, Lederman RJ, Chen MY, Yang D, Siegenthaler MP, Arduino C, Mancini C, Freudenthal B, Stanescu HC, Zdebik AA, Chaganti RK, Nussbaum RL, Kleta R, Gahl WA, Boehm M (2011) NT5E mutations and arterial calcifications. N Engl J Med 364(5):432–442

    CAS  PubMed Central  PubMed  Google Scholar 

  • Street SE, Kramer NJ, Walsh PL, Taylor-Blake B, Yadav MC, King IF, Vihko P, Wightman RM, Millan JL, Zylka MJ (2013) Tissue-nonspecific alkaline phosphatase acts redundantly with PAP and NT5E to generate adenosine in the dorsal spinal cord. J Neurosci 33(27):11314–11322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Street SE, Walsh PL, Sowa NA, Taylor-Blake B, Guillot TS, Vihko P, Wightman RM, Zylka MJ (2011) PAP and NT5E inhibit nociceptive neurotransmission by rapidly hydrolyzing nucleotides to adenosine. Mol Pain 7:80

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suh BC, Hille B (2005) Regulation of ion channels by phosphatidylinositol 4, 5-bisphosphate. Curr Opin Neurobiol 15(3):370–378

    CAS  PubMed  Google Scholar 

  • Swamy BE, Venton BJ (2007) Subsecond detection of physiological adenosine concentrations using fast-scan cyclic voltammetry. Anal Chem 79(2):744–750

    CAS  PubMed  Google Scholar 

  • Sykova E, Svoboda J (1990) Extracellular alkaline-acid-alkaline transients in the rat spinal cord evoked by peripheral stimulation. Brain Res 512(2):181–189

    CAS  PubMed  Google Scholar 

  • Taiwo YO, Levine JD (1990) Direct cutaneous hyperalgesia induced by adenosine. Neuroscience 38(3):757–762

    CAS  PubMed  Google Scholar 

  • Tanaka M, Kishi Y, Takanezawa Y, Kakehi Y, Aoki J, Arai H (2004) Prostatic acid phosphatase degrades lysophosphatidic acid in seminal plasma. FEBS Lett 571(1–3):197–204

    CAS  PubMed  Google Scholar 

  • Tominaga M, Wada M, Masu M (2001) Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc Natl Acad Sci USA 98(12):6951–6956

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tozaki-Saitoh H, Tsuda M, Miyata H, Ueda K, Kohsaka S, Inoue K (2008) P2Y12 receptors in spinal microglia are required for neuropathic pain after peripheral nerve injury. J Neurosci 28(19):4949–4956

    CAS  PubMed  Google Scholar 

  • Treede RD, Meyer RA, Campbell JN (1998) Myelinated mechanically insensitive afferents from monkey hairy skin: heat-response properties. J Neurophysiol 80(3):1082–1093

    CAS  PubMed  Google Scholar 

  • Tsuda M, Inoue K, Salter MW (2005) Neuropathic pain and spinal microglia: a big problem from molecules in “small” glia. Trends Neurosci 28(2):101–107

    CAS  PubMed  Google Scholar 

  • Tsuda M, Koizumi S, Kita A, Shigemoto Y, Ueno S, Inoue K (2000) Mechanical allodynia caused by intraplantar injection of P2X receptor agonist in rats: involvement of heteromeric P2X2/3 receptor signaling in capsaicin-insensitive primary afferent neurons. J Neurosci 20 (15):RC90

    Google Scholar 

  • Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424(6950):778–783

    CAS  PubMed  Google Scholar 

  • Vongtau HO, Lavoie EG, Sevigny J, Molliver DC (2011) Distribution of ecto-nucleotidases in mouse sensory circuits suggests roles for nucleoside triphosphate diphosphohydrolase-3 in nociception and mechanoreception. Neuroscience 193:387–398

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vulchanova L, Riedl MS, Shuster SJ, Stone LS, Hargreaves KM, Buell G, Surprenant A, North RA, Elde R (1998) P2X3 is expressed by DRG neurons that terminate in inner lamina II. Eur J Neurosci 10(11):3470–3478

    CAS  PubMed  Google Scholar 

  • Waymire KG, Mahuren JD, Jaje JM, Guilarte TR, Coburn SP, MacGregor GR (1995) Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6. Nat Genet 11(1):45–51

    CAS  PubMed  Google Scholar 

  • Wemmie JA, Zha XM, Welsh MJ (2008) Acid-sensing ion channels (ASICs) and pH in synapse physiology. In: Hell JW, Ehlers MD (eds) Structural and functional organization of the synapse. Springer, New York, pp 661–681

    Google Scholar 

  • Whyte MP, Greenberg CR, Salman NJ, Bober MB, McAlister WH, Wenkert D, Van Sickle BJ, Simmons JH, Edgar TS, Bauer ML, Hamdan MA, Bishop N, Lutz RE, McGinn M, Craig S, Moore JN, Taylor JW, Cleveland RH, Cranley WR, Lim R, Thacher TD, Mayhew JE, Downs M, Millán JL, Skrinar AM, Crine P, Landy H (2012) Enzyme-replacement therapy in life-threatening hypophosphatasia. N Engl J Med 366(10):904–913

    CAS  PubMed  Google Scholar 

  • Woolf CJ, Ma Q (2007) Nociceptors–noxious stimulus detectors. Neuron 55(3):353–364

    CAS  PubMed  Google Scholar 

  • Wu WP, Hao JX, Halldner L, Lovdahl C, DeLander GE, Wiesenfeld-Hallin Z, Fredholm BB, Xu XJ (2005) Increased nociceptive response in mice lacking the adenosine A1 receptor. Pain 113(3):395–404

    CAS  PubMed  Google Scholar 

  • Xu GY, Huang LY (2002) Peripheral inflammation sensitizes P2X receptor-mediated responses in rat dorsal root ganglion neurons. J Neurosci 22(1):93–102

    CAS  PubMed  Google Scholar 

  • Zhang D, Xiong W, Chu S, Sun C, Albensi BC, Parkinson FE (2012) Inhibition of hippocampal synaptic activity by ATP, hypoxia or oxygen-glucose deprivation does not require CD73. PLoS One 7(6):e39772

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou J, Chung K, Chung JM (2001) Development of purinergic sensitivity in sensory neurons after peripheral nerve injury in the rat. Brain Res 915(2):161–169

    CAS  PubMed  Google Scholar 

  • Zimmermann H (2006) Ectonucleotidases in the nervous system. Novartis Found Symp 276:113–128; discussion 128–130, 233–117, 275–181

    Google Scholar 

  • Zylka MJ (2011) Pain-relieving prospects for adenosine receptors and ectonucleotidases. Trends Mol Med 17(4):188–196

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zylka MJ, Rice FL, Anderson DJ (2005) Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron 45(1):17–25

    CAS  PubMed  Google Scholar 

  • Zylka MJ, Sowa NA, Taylor-Blake B, Twomey MA, Herrala A, Voikar V, Vihko P (2008) Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine. Neuron 60(1):111–122

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah E. Street .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Street, S.E., Sowa, N.A. (2015). TNAP and Pain Control. In: Fonta, C., Négyessy, L. (eds) Neuronal Tissue-Nonspecific Alkaline Phosphatase (TNAP). Subcellular Biochemistry, vol 76. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7197-9_13

Download citation

Publish with us

Policies and ethics