Skip to main content

Signal Transduction Pathways of TNAP: Molecular Network Analyses

  • Chapter
  • First Online:
Neuronal Tissue-Nonspecific Alkaline Phosphatase (TNAP)

Part of the book series: Subcellular Biochemistry ((SCBI,volume 76))

Abstract

Despite the growing body of evidence pointing on the involvement of tissue non-specific alkaline phosphatase (TNAP) in brain function and diseases like epilepsy and Alzheimer’s disease, our understanding about the role of TNAP in the regulation of neurotransmission is severely limited. The aim of our study was to integrate the fragmented knowledge into a comprehensive view regarding neuronal functions of TNAP using objective tools. As a model we used the signal transduction molecular network of a pyramidal neuron after complementing with TNAP related data and performed the analysis using graph theoretic tools. The analyses show that TNAP is in the crossroad of numerous pathways and therefore is one of the key players of the neuronal signal transduction network. Through many of its connections, most notably with molecules of the purinergic system, TNAP serves as a controller by funnelling signal flow towards a subset of molecules. TNAP also appears as the source of signal to be spread via interactions with molecules involved among others in neurodegeneration. Cluster analyses identified TNAP as part of the second messenger signalling cascade. However, TNAP also forms connections with other functional groups involved in neuronal signal transduction. The results indicate the distinct ways of involvement of TNAP in multiple neuronal functions and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bányai M, Négyessy L, Bazsó F (2011) Organisation of signal flow in directed networks. J Stat Mech Theory Exp P06001

    Google Scholar 

  • Battaglioli G, Liu H, Martin DL (2003) Kinetic differences between the isoforms of glutamate decarboxylase: implications for the regulation of GABA synthesis. J Neurochem 86:879–887

    Article  CAS  PubMed  Google Scholar 

  • Chang EH, Savage MJ, Flood DG, Thomas JM, Levy RB, Mahadomrongkul V, Shirao T, Aoki C, Huerta PT (2006) AMPA receptor downscaling at the onset of Alzheimer’s disease pathology in double knockin mice. Proc Natl Acad Sci USA 103:3410–3415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chang PK, Verbich D, McKinney RA (2012) AMPA receptors as drug targets in neurological disease–advantages, caveats, and future outlook. Eur J Neurosci 35:1908–1916

    Article  PubMed  Google Scholar 

  • Christensen C, Thakar J, Albert R (2007) Systems-level insights into cellular regulation: inferring, analysing, and modelling intracellular networks. IET Syst Biol 1:61–77

    Article  CAS  PubMed  Google Scholar 

  • Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70:066111

    Article  Google Scholar 

  • Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, Caudy M, Garapati P, Gillespie M, Kamdar MR, Jassal B, Jupe S, Matthews L, May B, Palatnik S, Rothfels K, Shamovsky V, Song H, Williams M, Birney E, Hermjakob H, Stein L, D’Eustachio P (2014) The Reactome pathway knowledgebase. Nucleic Acids Res 42(Database issue):D472-D477

    Google Scholar 

  • Csermely P, Korcsmáros T, Kiss HJ, London G, Nussinov R (2013) Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol Ther 138:333–408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Díaz-Hernández M, Gómez-Ramos A, Rubio A, Gómez-Villafuertes R, Naranjo JR, Miras-Portugal MT, Avila J (2010) Tissue-nonspecific alkaline phosphatase promotes the neurotoxicity effect of extracellular tau. J Biol Chem 285:32539–32548

    Article  PubMed Central  PubMed  Google Scholar 

  • Erlander MG, Tobin AJ (1991) The structural and functional heterogeneity of glutamic acid decarboxylase: a review. Neurochem Res 16:215–226

    Article  CAS  PubMed  Google Scholar 

  • Ermonval M, Baudry A, Baychelier F, Pradines E, Pietri M, Oda K, Schneider B, Mouillet-Richard S, Launay JM, Kellermann O (2009) The cellular prion protein interacts with the tissue non-specific alkaline phosphatase in membrane microdomains of bioaminergic neuronal cells. PLoS ONE 4:e6497

    Article  PubMed Central  PubMed  Google Scholar 

  • Fonta C, Négyessy L, Renaud L, Barone P (2004) Areal and subcellular localization of the ubiquitous alkaline phosphatase in the primate cerebral cortex: evidence for a role in neurotransmission. Cereb Cortex 14:595–609

    Article  PubMed  Google Scholar 

  • Fukunaka A, Kurokawa Y, Teranishi F, Sekler I, Oda K, Ackland ML, Faundez V, Hiromura M, Masuda S, Nagao M, Enomoto S, Kambe T (2011) Tissue nonspecific alkaline phosphatase is activated via a two-step mechanism by zinc transport complexes in the early secretory pathway. J Biol Chem 286:16363–16373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang da W, Sherman BT, Lempicki RA (2009a) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  • Huang da W, Sherman BT, Lempicki RA (2009b) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13

    Article  PubMed Central  Google Scholar 

  • Kim SO, Houtman JC, Jiang J, Ruppert JM, Bertics PJ, Frank SJ (1999) Growth hormone-induced alteration in ErbB-2 phosphorylation status in 3T3-F442A fibroblasts. J Biol Chem 274:36015–36024

    Article  CAS  PubMed  Google Scholar 

  • Leugers CJ, Koh JY, Hong W, Lee G (2013) Tau in MAPK activation. Front Neurol 4:161

    PubMed  Google Scholar 

  • Ma’ayan A (2008) Network integration and graph analysis in mammalian molecular systems biology. IET Syst Biol 2:206–221

    Article  PubMed Central  PubMed  Google Scholar 

  • Ma’ayan A (2009) Insights into the organization of biochemical regulatory networks using graph theory analyses. J Biol Chem 284:5451–5455

    Article  PubMed Central  PubMed  Google Scholar 

  • Ma’ayan A, Jenkins SL, Neves S, Hasseldine A, Grace E, Dubin-Thaler B, Eungdamrong NJ, Weng G, Ram PT, Rice JJ, Kershenbaum A, Stolovitzky GA, Blitzer RD, Iyengar R (2005) Formation of regulatory patterns during signal propagation in a Mammalian cellular network. Science 309:1078–1083

    Article  PubMed Central  PubMed  Google Scholar 

  • McCall KA, Huang C, Fierke CA (2000) Function and mechanism of zinc metalloenzymes. J Nutr 130:1437S–1446S

    CAS  PubMed  Google Scholar 

  • Négyessy L, Nepusz T, Zalányi L, Bazsó F (2008) Convergence and divergence are mostly reciprocated properties of the connections in the network of cortical areas. Proc Biol Sci 275:2403–2410

    Article  PubMed Central  PubMed  Google Scholar 

  • Newman MEJ (2001) The structure and function of complex networks. SIAM Review 45:167–256

    Article  Google Scholar 

  • Osyczka AM, Leboy PS (2005) Bone morphogenetic protein regulation of early osteoblast genes in human marrow stromal cells is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase signaling. Endocrinology 146:3428–3437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Percudani R, Peracchi A (2003) A genomic overview of pyridoxal-phosphate-dependent enzymes. EMBO Rep 4:850–854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Redegeld FA, Caldwell CC, Sitkovsky MV (1999) Ecto-protein kinases: ecto-domain phosphorylation as a novel target for pharmacological manipulation? Trends Pharmacol Sci 20:453–459

    Article  CAS  PubMed  Google Scholar 

  • Shaw CA, Lanius RA (1992) Reversible kinase and phosphatase regulation of brain amino acid receptors in postnatal development. Brain Res Dev Brain Res 70:153–161

    Article  CAS  PubMed  Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410:268–276

    Article  CAS  PubMed  Google Scholar 

  • Surtees R, Mills P, Clayton P (2006) Inborn errors affecting B6 metabolism. Future Neurol 1:615–620

    Article  CAS  Google Scholar 

  • Ulitsky I, Shamir R (2007) Identification of functional modules using network topology and high-throughput data. BMC Syst Biol 1:8

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Dongen S (2008) Graph clustering via a discrete uncoupling process. SIAM J Matrix Anal Appl 30:121–141

    Article  Google Scholar 

  • Watts DJ (2004) The “new” science of networks. Annu Rev Sociol 30:243–270

    Article  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

    Article  CAS  PubMed  Google Scholar 

  • Wong RW, Guillaud L (2004) The role of epidermal growth factor and its receptors in mammalian CNS. Cytokine Growth Factor Rev 15:147–156

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Shimizu E, Zhang X, Partridge NC, Qin L (2011) EGFR signaling suppresses osteoblast differentiation and inhibits expression of master osteoblastic transcription factors Runx2 and Osterix. J Cell Biochem 112:1749–1760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr M. Ermonval and Dr O. Kántor for suggestions on the manuscript.

Conflict of Interest The authors state no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Négyessy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Négyessy, L., Györffy, B., Hanics, J., Bányai, M., Fonta, C., Bazsó, F. (2015). Signal Transduction Pathways of TNAP: Molecular Network Analyses. In: Fonta, C., Négyessy, L. (eds) Neuronal Tissue-Nonspecific Alkaline Phosphatase (TNAP). Subcellular Biochemistry, vol 76. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7197-9_10

Download citation

Publish with us

Policies and ethics