Skip to main content

Abstract

The biological role of the zinc(II) ion has been recognized in DNA and RNA synthesis, apoptosis, gene expression, or protein structure and function. Therefore, development of useful zinc(II) sensors has recently been attracting much interest. Chemistry for selective and efficient detection of trace Zn2+ is a central issue. Recently, various types of zinc-fluorophores are emerging, comprising bio-inspired aromatic sulfonamide derivatives, zinc-finger peptides attached to fluorescent dyes, or fluorophore-pendant macrocyclic polyamines. The chemical principles, properties and limitations of these Zn2+-fluorophores are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akkaya EU, Huston MH, Czarnik AW. 1990 Chelation—enhanced fluorescence of anthrylazamacrocycle conjugate probes in aqueous solution. JAm Chem Soc 112, 3590–3593.

    Article  CAS  Google Scholar 

  • Aoki S, Honda Y, Kimura E. 1998a The first selective and efficient transport of imide-containing nucleosides and nucleotides by lipophilic cyclen—zinc(II) complexes (cyclen = 1,4,7,10tetraazacyclododecane). JAm Chem Soc 120, 10018–10026.

    Article  CAS  Google Scholar 

  • Aoki S, Sugimura C, Kimura E. 1998b Efficient inhibition of photo[2+2lcycloaddition of thymidilyl(3’-5’)thymidine and promotion of photosplitting of the cis-svn-cyclobutane thymine dimer by dimeric zinc(II)-cyclen complexes containing m-and p-xylyl spacers. JAm Chem Soc 120, 10094–10102.

    Article  CAS  Google Scholar 

  • Aoki S, Kimura E. 2000 Highly selective recognition of thymidine mono-and diphosphate nucleotides in aqueous solution by ditopic receptors zinc(II)-bis(cyclen) complexes (cyclen = 1,4,7,10-tetraazacyclododecane). J Am Chem Soc 122, 4542–4548.

    Article  CAS  Google Scholar 

  • Aoki S, Shiro M, Koike T, Kimura E. 2000 Three-dimensional supermolecules assembled from a tris(Zn2+-cyclen) complex and di-and trianionic cyanuric acid in aqueous solution (cyclen = I,4,7,10-tetraazacyclododecane). JAm Chem Soc 122, 576–584.

    Article  CAS  Google Scholar 

  • Berendji D, Kolb-Bachofen V, Meyer KL, Grapenthin 0, Weber H, Wahn V, Kröncke K-D. 1997 Nitric oxide mediates intracytoplasmic and intranuclear zinc release. FEBS Lett 405, 37–41.

    Article  PubMed  CAS  Google Scholar 

  • Berg JM. 1995 Zinc finger domains: from predictions to design. Acc Chem Res 28, 14–19.

    Article  CAS  Google Scholar 

  • Chen RF, Kernohan JC. 1967 Combination of bovine carbonic anhydrase with a fluorescent sulfonamide. J Biol Chem 242, 5813–5823.

    PubMed  CAS  Google Scholar 

  • Choi DW, Koh JY. 1998 Zinc and brain injury. Annu Rev Neurosci 21, 347–375.

    Article  PubMed  CAS  Google Scholar 

  • Cox EH, McLendon GL. 2000 Zinc-dependent protein folding. Curr Opin Chem Biol 4, 162–165.

    Article  PubMed  CAS  Google Scholar 

  • Coyle P, Zalewski PD, Philcox JC, Forbes IJ, Ward AD, Lincoln SF, Mahadevan I, Rofe AM. 1994 Measurement of zinc in hepatocytes by using a fluorescent probe, Zinquin: relationship to metallothionein and intracellular zinc. Biochem J 303, 781–786.

    PubMed  CAS  Google Scholar 

  • Cuajungco MP, Lees GJ. 1997 Zinc metabolism in the brain: relevance to human neurodegenerative disorders. Neurobiol Disease 4, 137–169.

    Article  CAS  Google Scholar 

  • Czarnik AW. 1992 Fluorescent Chemosensor for Ion and Molecule Recognition. Washington, DC: American Chemical Society. Czarnik AW. 1994 Chemical communication in water using fluores-cent chemosensors. Acc Chem Res 27, 302–308.

    Google Scholar 

  • Czarnik AW. 1995 Desperately seeking sensors. Chem Biol 2, 423428.

    Google Scholar 

  • Elbaum D, Nair SK, Patchan MW, Thompson RB, Christianson DW. 1996 Structure-based design of a sulfonamide probe for fluorescence anisotropy detection of zinc with a carbonic anhydrase-based biosensor. JAm Chem Soc 118, 8381–8387.

    Article  CAS  Google Scholar 

  • Fahrni CJ, O’Halloran TV. 1999 Aqueous coordination chemistry of quinoline-based fluorescence probes for the biological chemistry of zinc. JAm Chem Soc 121, 11448–11458.

    Article  CAS  Google Scholar 

  • Fraústo da Silva J, Williams RJP. 1991 The Biological Chemistry of the Elements. Oxford: Clarendon Press.

    Google Scholar 

  • Fabbrizzi L, Francese G, Licchelli M, Perotti A, Taglietti A. 1997 Fluorescent sensor of imidazole and histidine. J Chem Soc Chem Comm 581–582.

    Google Scholar 

  • Frederickson CJ, Kasarskis EJ, Ringo D, Frederickson RE. 1987 A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain. J Neurosci Meth 20, 91–103.

    Article  CAS  Google Scholar 

  • Fujioka H, Koike T, Yamada N, Kimura E. 1996 A new bis(zinc(II)cyclen) complex as a novel chelator for barbiturates and phosphates. Heterocycles 42, 775–787.

    Article  CAS  Google Scholar 

  • Godwin HA, Berg JM. 1996 A fluorescent zinc probe based on metal-induced peptide folding. JAm Chem Soc 118, 6514–6515.

    Article  CAS  Google Scholar 

  • Greisman HA, Pabo CO. 1997 A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science 275, 657–661.

    Article  PubMed  CAS  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY. 1985 A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260, 3440–3450.

    PubMed  CAS  Google Scholar 

  • Haugland RP. 1996 Handbook of Fluorescent Probes and Research Chemicals, 6th edn. Eugene: Molecular Probes.

    Google Scholar 

  • Hendrickson KM, Rodopoulos T, Pittet P-A, Mahadevan I, Lincoln SF, Ward AD, Kurucsev T, Duckworth PA, Forbes IJ, Zalewski PD, Betts WH. 1997 Complexation of zinc(II) and other divalent metal ions by the fluorophore 2-methyl-8-(toluene-psulfonamido)-6-quinolyloxyacetic acid in 50% aqueous solution. J Chem Soc Dalton Trans 3879–3882.

    Google Scholar 

  • Hirano T, Kikuchi K, Urano Y, Higuchi T, Nagano T. 2000 Novel zinc fluorescent probes excitable with visible light for biological applications. Angew Chem Int Ed 39, 1052–1054.

    Article  CAS  Google Scholar 

  • Huston MH, Haider KW, Czarnik AW. 1988 Chelation-enhanced fluorescence in 9,10-bis(TMEDA)anthracene. J Am Chem Soc 110, 4460–4462.

    Article  CAS  Google Scholar 

  • Huston MH, Englem NC, Czarnik AW. 1990 Chelatoselective fluorescence perturbation in anthrylazamacrocycle conjugate probes. Electrophilic aromatic cadmiation. J Am Chem Soc 110, 70547056.

    Google Scholar 

  • Kiefer LL, Krebs JF, Paterno SA, Fierke CA. 1993 Engineering a cysteine ligand into the zinc binding site of human anhydrase. Biochemistry 32, 9896–9900.

    Article  PubMed  CAS  Google Scholar 

  • Kikuta E, Murata M, Katsube N, Koike T, Kimura E. 1999 Novel recognition of thymine base in double-stranded DNA by zinc(II)-macrocyclic tetraamine complexes appended with aromatic groups. JAm Chem Soc 121, 5426–5436.

    Article  CAS  Google Scholar 

  • Kimura E, Shiota T, Koike T, Shiro M, Kodama M. 1990 A zinc(II) complex of 1,5,9-triazacyclododecane ([12]aneN3) as a model for carbonic anhydrase. J Am Chem Soc 112, 5805–5811.

    Article  CAS  Google Scholar 

  • Kimura, E. 1992 Macrocyclic polyamines with intelligent functions. Tetrahedron 48, 6175–6217.

    Article  CAS  Google Scholar 

  • Kimura E, Shionoya M, Hoshino A, Ikeda T, Yamada Y. 1992 A model for catalytically active zinc(II) ion in liver alcohol dehydrogenase: a novel “hydride transfer” reaction catalyzed by zinc(II)—macrocyclic polyamine complexes. JAm Chem Soc 114, 10134–10137.

    Article  CAS  Google Scholar 

  • Kimura E. 1994 Macrocyclic polyamine zinc(II) complexes as advanced models for zinc(II) enzymes. In: Karlin KD. ed. Progress in Inorganic Chemistry. Vol. 41. New York: John Wiley & Sons: 443–490.

    Chapter  Google Scholar 

  • Kimura E, Shionoya M. 1994 Macrocyclic polyamine complex beyond metalloenzyme models. In: Fabbrizzi L, Poggi A. eds. Transition Metals in Supramolecular Chemistry. Dordrecht, The Netherlands: Kluwer Academic Publishers, 245–259.

    Chapter  Google Scholar 

  • Kimura E, Shionoya M. 1996 Zinc complexes as targeting agents for nucleic acids. In: Sigel A, Sigel H. eds. Metal Ions in Biological Systems. Vol. 33. New York: Marcel Dekker: 29–52.

    Google Scholar 

  • Kimura E. 1997 A novel biomimetic zinc(II)-fluorophore, dansylamidoethyl-pendant macrocyclic tetraamine. South African J Chem 50, 240–248.

    CAS  Google Scholar 

  • Kimura E, Aoki S, Koike T, Shiro M. 1997a A tris(Zntt-1,4,7,10tetraazacyclododecane) complex as a new receptor for phosphate dianions in aqueous solution. JAm Chem Soc 119, 3068–3076.

    Article  CAS  Google Scholar 

  • Kimura E, Koike T, Aoki S. 1997b Why are zinc phosphatases multinuclear? J Synth Org Chem [Japan] 55, 1052–1061.

    Google Scholar 

  • Kimura E, Koike T. 1998 Recent development of zinc-fluorophores. Chem Soc Rev 27, I79–184.

    Google Scholar 

  • Kimura E, Ikeda T, Aoki S, Shionoya M. 1998 Macrocyclic zinc(II) complexes for selective recognition of nucleobases in single-and double-stranded polynucleotides. J Biol Inorg Chem 3, 259–267.

    Article  CAS  Google Scholar 

  • Kimura E, Gotoh T, Koike T, Shiro M. 1999 Dynamic enolate recognition in aqueous solution by zinc(II) in a phenacyl-pendant cyclen complex: implications for the role of zinc(II) in class II aldolases. JAm Chem Soc 121, 1267–1274.

    Article  CAS  Google Scholar 

  • Kimura E, Kitamura H, Ohtani K, Koike T. 2000 Elaboration of selective and efficient recognition of thymine base in dinucleotides (TpT, ApT, CpT, and GpT), single-stranded d(GTGACGCC), and double-stranded d(CGCTAGCG)2 by Zn2+-acridinylcyclen (acridinylcyclen = (9-acridinyl)methyl1,4,7,10-tetraazacyclododecane). J Am Chem Soc 122, 4668–4677.

    Article  CAS  Google Scholar 

  • Kimura E, Kikuta E. 2000 Why zinc in zinc enzymes? From biological roles to DNA base-selective recognition. J Biol Inorg Chem 5, 139–155.

    Article  PubMed  CAS  Google Scholar 

  • Kimura E. 2001 Model studies for molecular recognition of carbonic anhydrase and carboxypeptidase. Acc Chem Res 34, 171179.

    Google Scholar 

  • Koike T, Kimura E. 1991. Roles of zinc(II) ion in phosphatases. A model study with zinc(II)-macrocyclic polyamine complexes. J Am Chem Soc 113, 8935–8941.

    Article  CAS  Google Scholar 

  • Koike T, Kimura E, Nakamura I, Hashimoto Y, Shiro M. 1992 The first anionic sulfonamide-binding zinc(II) complexes with a macrocyclic triamine: chemical verification of the sulfonamide inhibition of carbonic anhydrase. J Am Chem Soc 114, 7338–7345.

    Article  CAS  Google Scholar 

  • Koike T, Takashige M, Kimura E, Fujioka H, Shiro M. I996a Bis(Zntt-cyclen) complex as a novel receptor of barbiturates in aqueous solution. Chem Europ J 2, 617–623.

    Google Scholar 

  • Koike T, Watanabe T, Aoki S, Kimura E, Shiro M. 1996b. A novel biomimetic zinc(II)-fluorophore, dansylamidoethylpendant macrocyclic tetraamine 1,4,7,10-tetraazacyclododecane (cyclen). JAm Chem Soc 118, 12696–12703.

    Article  CAS  Google Scholar 

  • Lippard SJ, Berg JM. 1994 Principles of Bioinorganic Chemistry. Mill Valley: University Science Books.

    Google Scholar 

  • Lipscomb WN, Sträter N. 1996 Recent advances in zinc enzymology. Chem Rev 96, 2375–2433.

    Article  PubMed  CAS  Google Scholar 

  • Mann T, Keilin D. 1940 Sulphanilamide as a specific inhibitor of carbonic anhydrase. Nature 146 164–165.

    Article  CAS  Google Scholar 

  • Maumera H, Hancock RD, Carlton L, Reibenspies JH, Wainwright KP. 1995 The amide oxygen as a donor group. Metal ion com-plexing properties of tetra-N-acetamide substituted cyclen: a crystallographic, NMR, molecular mechanics, and thermodynamic study. JAm Chem Soc 117, 6698–6707.

    Article  Google Scholar 

  • Nasir MS, Fahrni CJ, Suhy DA, Kolodsick KJ, Singe CP, O’Halloran TV. 1999 The chemical cell biology of zinc: structure and intracellular fluorescence of a zinc-quinolinesulfonamide complex. J Biol lnorg Chem 4, 775–783.

    Article  CAS  Google Scholar 

  • Prasanna de Silva A, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE. 1997 Signaling recognition events with fluorescent sensors and switches. Chem Rev 97, 1515–1566.

    Article  PubMed  Google Scholar 

  • Prodi L, Bolletta F, Montalti M, Zaccheroni N. 1999. Searching for new luminescent sensors: synthesis and photophysical properties of a tripodal ligand incorporating the dansyl chromophore and of its metal complexes. Eur J lnorg Chem 455–460.

    Google Scholar 

  • Reany O, Gunnlaugsson T, Parker D. 2000 Selective signalling of zinc ions by modulation of terbium luminescence. J Chem Soc Chem Comm 473–474.

    Google Scholar 

  • Shionoya M, Kimura E, Shiro M. 1993 A new ternary zinc(II) complex with [12] and N4 (=1,4,7–10-tetraazacyclododecane) and AZT (=3’-azido-3’-deoxythymidine). Highly selective recognition of thymidine and its related nucleosides by a zinc(II) macrocyclic tetraamine complex with novel complementary associations. JAm Chem Soc 115, 6730–6737.

    Article  CAS  Google Scholar 

  • Shionoya M, Ikeda T, Kimura E, Shiro M. 1994 Novel “multipoint” molecular recognition of nucleobases by a new zinc(II) complex of acridine-pendant cyclen (cyclen = 1,4,7,10tetraazacyclododecane). JAm Chem Soc 116, 3848–3859.

    Article  CAS  Google Scholar 

  • Sträter N, Lipscomb WN, Klabunde T, Krebs B. 1996 Two-metal ion catalysis in enzymatic acyl-and phosphoryl-transfer reactions Angew Chem Int Ed 35, 2024–2055.

    Article  Google Scholar 

  • Thompson RB, Jones ER. 1993 Enzyme-based fiber optic zinc biosensor. Anal Chem 65, 730–734.

    Article  CAS  Google Scholar 

  • Thompson RB, Patchan MW. 1995 Lifetime-based fluorescence energy transfer biosensing of zinc. Anal Biochem 227, 123–128.

    Article  PubMed  CAS  Google Scholar 

  • Thompson RB, Maliwal BP. 1998 Expanded dynamic range of free zinc ion determination by fluorescence anisotropy. Anal Chem 70, 1749–1754.

    Article  PubMed  CAS  Google Scholar 

  • Thompson RB, Maliwal BP, Feliccia VL, Fierke CA, McCall K. 1998 Determination of picomolar concentrations of metal ions

    Google Scholar 

  • using fluorescence anisotropy: biosensing with a “reagentless” enzyme transducer. Anal Chem 70 4717–4723.

    Google Scholar 

  • Thompson RB, Maliwal BP, Zeng H-H. 1999 Improved fluorophores for zinc biosensing using carbonic anhydrase. Proc SPIE-Int Soc Opt Engin 3603, 14–22.

    Article  CAS  Google Scholar 

  • Tsien R. 1989 Fluorescent indicator of ion concentrations. Meth Cell Biol30, 127–156.

    Google Scholar 

  • Tsien R, Pozzan T. 1989 Measurement of cytosolic free Cat+ with Quin2. Methods Enzvmol 172, 230–262.

    Article  CAS  Google Scholar 

  • Vallee BL, Falchuk KH. 1993 The biochemical basis of zinc physiology. Physiol Rev 73, 79–118.

    Article  PubMed  CAS  Google Scholar 

  • Walkup GK, Imperiali B. 1996 Design and evaluation of a peptidyl fluorescent chemosensor for divalent zinc. J Am Chem Soc 118, 3053–3054.

    Article  CAS  Google Scholar 

  • Walkup GK, Imperiali B. 1997 Fluorescent chemosensors of divalent zinc based on zinc finger domains. Enhanced oxidative stability, metal binding affinity, and structural and functional characterization. JAm Chem Soc 119, 3443–3450.

    Article  CAS  Google Scholar 

  • Walkup GK, Imperiali B. 1998 Stereoselective synthesis of fluorescent a-amino acids containing oxine (8-hydroxyquinoline) and their peptide incorporation in chemosensors for divalent zinc. J Org Chem 63, 6727–6731.

    Article  CAS  Google Scholar 

  • Walkup GK, Burdette SC, Lippard SJ, Tsien RY. 2000 A new cell-permeable fluorescent probe for Zn2+. J Am Chem Soc 122, 5644–5645.

    Article  CAS  Google Scholar 

  • Zalewski PD, Forbes IJ, Betts WH. 1993 Correlation of apoptosis with change in intracellular labile Zn(II) using Zinquin [(2methyl-8-p-toluenesulphonamido-6-quinolyloxy)acetic acid], a new specific fluorescent probe for Zn(II). Biochem J 296, 403–408.

    PubMed  CAS  Google Scholar 

  • Zalewski, PD, Forbes IJ, Seamark RF, Borlinghaus R, Betts WH, Lincoln SF, Ward AD. 1994a Flux of intracellular labile zinc during apoptosis (gene-directed cell death) revealed by a specific chemical probe, Zinquin. Chem Biol 3, 153–161.

    Article  Google Scholar 

  • Zalewski PD, Millard SH, Forbes IJ, Kapaniris O, Slavotinek A, Betts WH, Ward AD, Lincoln SF, Mahadevan 1. 1994b Video image analysis of labile zinc in viable pancreatic islet cells using a specific fluorescent probe for zinc. J Histochem Cvtochem 42, 877–884.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kimura, E., Aoki, S. (2001). Chemistry of zinc(II) fluorophore sensors. In: Maret, W. (eds) Zinc Biochemistry, Physiology, and Homeostasis. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3728-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3728-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5916-1

  • Online ISBN: 978-94-017-3728-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics