Advertisement

Chemistry of zinc(II) fluorophore sensors

  • Eiichi Kimura
  • Shin Aoki
Chapter
  • 410 Downloads

Abstract

The biological role of the zinc(II) ion has been recognized in DNA and RNA synthesis, apoptosis, gene expression, or protein structure and function. Therefore, development of useful zinc(II) sensors has recently been attracting much interest. Chemistry for selective and efficient detection of trace Zn2+ is a central issue. Recently, various types of zinc-fluorophores are emerging, comprising bio-inspired aromatic sulfonamide derivatives, zinc-finger peptides attached to fluorescent dyes, or fluorophore-pendant macrocyclic polyamines. The chemical principles, properties and limitations of these Zn2+-fluorophores are discussed.

Key words

carbonic anhydrase fluorophore macrocyclic polyamine sensor sulfonamide zinc zinquin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akkaya EU, Huston MH, Czarnik AW. 1990 Chelation—enhanced fluorescence of anthrylazamacrocycle conjugate probes in aqueous solution. JAm Chem Soc 112, 3590–3593.CrossRefGoogle Scholar
  2. Aoki S, Honda Y, Kimura E. 1998a The first selective and efficient transport of imide-containing nucleosides and nucleotides by lipophilic cyclen—zinc(II) complexes (cyclen = 1,4,7,10tetraazacyclododecane). JAm Chem Soc 120, 10018–10026.CrossRefGoogle Scholar
  3. Aoki S, Sugimura C, Kimura E. 1998b Efficient inhibition of photo[2+2lcycloaddition of thymidilyl(3’-5’)thymidine and promotion of photosplitting of the cis-svn-cyclobutane thymine dimer by dimeric zinc(II)-cyclen complexes containing m-and p-xylyl spacers. JAm Chem Soc 120, 10094–10102.CrossRefGoogle Scholar
  4. Aoki S, Kimura E. 2000 Highly selective recognition of thymidine mono-and diphosphate nucleotides in aqueous solution by ditopic receptors zinc(II)-bis(cyclen) complexes (cyclen = 1,4,7,10-tetraazacyclododecane). J Am Chem Soc 122, 4542–4548.CrossRefGoogle Scholar
  5. Aoki S, Shiro M, Koike T, Kimura E. 2000 Three-dimensional supermolecules assembled from a tris(Zn2+-cyclen) complex and di-and trianionic cyanuric acid in aqueous solution (cyclen = I,4,7,10-tetraazacyclododecane). JAm Chem Soc 122, 576–584.CrossRefGoogle Scholar
  6. Berendji D, Kolb-Bachofen V, Meyer KL, Grapenthin 0, Weber H, Wahn V, Kröncke K-D. 1997 Nitric oxide mediates intracytoplasmic and intranuclear zinc release. FEBS Lett 405, 37–41.PubMedCrossRefGoogle Scholar
  7. Berg JM. 1995 Zinc finger domains: from predictions to design. Acc Chem Res 28, 14–19.CrossRefGoogle Scholar
  8. Chen RF, Kernohan JC. 1967 Combination of bovine carbonic anhydrase with a fluorescent sulfonamide. J Biol Chem 242, 5813–5823.PubMedGoogle Scholar
  9. Choi DW, Koh JY. 1998 Zinc and brain injury. Annu Rev Neurosci 21, 347–375.PubMedCrossRefGoogle Scholar
  10. Cox EH, McLendon GL. 2000 Zinc-dependent protein folding. Curr Opin Chem Biol 4, 162–165.PubMedCrossRefGoogle Scholar
  11. Coyle P, Zalewski PD, Philcox JC, Forbes IJ, Ward AD, Lincoln SF, Mahadevan I, Rofe AM. 1994 Measurement of zinc in hepatocytes by using a fluorescent probe, Zinquin: relationship to metallothionein and intracellular zinc. Biochem J 303, 781–786.PubMedGoogle Scholar
  12. Cuajungco MP, Lees GJ. 1997 Zinc metabolism in the brain: relevance to human neurodegenerative disorders. Neurobiol Disease 4, 137–169.CrossRefGoogle Scholar
  13. Czarnik AW. 1992 Fluorescent Chemosensor for Ion and Molecule Recognition. Washington, DC: American Chemical Society. Czarnik AW. 1994 Chemical communication in water using fluores-cent chemosensors. Acc Chem Res 27, 302–308.Google Scholar
  14. Czarnik AW. 1995 Desperately seeking sensors. Chem Biol 2, 423428.Google Scholar
  15. Elbaum D, Nair SK, Patchan MW, Thompson RB, Christianson DW. 1996 Structure-based design of a sulfonamide probe for fluorescence anisotropy detection of zinc with a carbonic anhydrase-based biosensor. JAm Chem Soc 118, 8381–8387.CrossRefGoogle Scholar
  16. Fahrni CJ, O’Halloran TV. 1999 Aqueous coordination chemistry of quinoline-based fluorescence probes for the biological chemistry of zinc. JAm Chem Soc 121, 11448–11458.CrossRefGoogle Scholar
  17. Fraústo da Silva J, Williams RJP. 1991 The Biological Chemistry of the Elements. Oxford: Clarendon Press.Google Scholar
  18. Fabbrizzi L, Francese G, Licchelli M, Perotti A, Taglietti A. 1997 Fluorescent sensor of imidazole and histidine. J Chem Soc Chem Comm 581–582.Google Scholar
  19. Frederickson CJ, Kasarskis EJ, Ringo D, Frederickson RE. 1987 A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain. J Neurosci Meth 20, 91–103.CrossRefGoogle Scholar
  20. Fujioka H, Koike T, Yamada N, Kimura E. 1996 A new bis(zinc(II)cyclen) complex as a novel chelator for barbiturates and phosphates. Heterocycles 42, 775–787.CrossRefGoogle Scholar
  21. Godwin HA, Berg JM. 1996 A fluorescent zinc probe based on metal-induced peptide folding. JAm Chem Soc 118, 6514–6515.CrossRefGoogle Scholar
  22. Greisman HA, Pabo CO. 1997 A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science 275, 657–661.PubMedCrossRefGoogle Scholar
  23. Grynkiewicz G, Poenie M, Tsien RY. 1985 A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260, 3440–3450.PubMedGoogle Scholar
  24. Haugland RP. 1996 Handbook of Fluorescent Probes and Research Chemicals, 6th edn. Eugene: Molecular Probes.Google Scholar
  25. Hendrickson KM, Rodopoulos T, Pittet P-A, Mahadevan I, Lincoln SF, Ward AD, Kurucsev T, Duckworth PA, Forbes IJ, Zalewski PD, Betts WH. 1997 Complexation of zinc(II) and other divalent metal ions by the fluorophore 2-methyl-8-(toluene-psulfonamido)-6-quinolyloxyacetic acid in 50% aqueous solution. J Chem Soc Dalton Trans 3879–3882.Google Scholar
  26. Hirano T, Kikuchi K, Urano Y, Higuchi T, Nagano T. 2000 Novel zinc fluorescent probes excitable with visible light for biological applications. Angew Chem Int Ed 39, 1052–1054.CrossRefGoogle Scholar
  27. Huston MH, Haider KW, Czarnik AW. 1988 Chelation-enhanced fluorescence in 9,10-bis(TMEDA)anthracene. J Am Chem Soc 110, 4460–4462.CrossRefGoogle Scholar
  28. Huston MH, Englem NC, Czarnik AW. 1990 Chelatoselective fluorescence perturbation in anthrylazamacrocycle conjugate probes. Electrophilic aromatic cadmiation. J Am Chem Soc 110, 70547056.Google Scholar
  29. Kiefer LL, Krebs JF, Paterno SA, Fierke CA. 1993 Engineering a cysteine ligand into the zinc binding site of human anhydrase. Biochemistry 32, 9896–9900.PubMedCrossRefGoogle Scholar
  30. Kikuta E, Murata M, Katsube N, Koike T, Kimura E. 1999 Novel recognition of thymine base in double-stranded DNA by zinc(II)-macrocyclic tetraamine complexes appended with aromatic groups. JAm Chem Soc 121, 5426–5436.CrossRefGoogle Scholar
  31. Kimura E, Shiota T, Koike T, Shiro M, Kodama M. 1990 A zinc(II) complex of 1,5,9-triazacyclododecane ([12]aneN3) as a model for carbonic anhydrase. J Am Chem Soc 112, 5805–5811.CrossRefGoogle Scholar
  32. Kimura, E. 1992 Macrocyclic polyamines with intelligent functions. Tetrahedron 48, 6175–6217.CrossRefGoogle Scholar
  33. Kimura E, Shionoya M, Hoshino A, Ikeda T, Yamada Y. 1992 A model for catalytically active zinc(II) ion in liver alcohol dehydrogenase: a novel “hydride transfer” reaction catalyzed by zinc(II)—macrocyclic polyamine complexes. JAm Chem Soc 114, 10134–10137.CrossRefGoogle Scholar
  34. Kimura E. 1994 Macrocyclic polyamine zinc(II) complexes as advanced models for zinc(II) enzymes. In: Karlin KD. ed. Progress in Inorganic Chemistry. Vol. 41. New York: John Wiley & Sons: 443–490.CrossRefGoogle Scholar
  35. Kimura E, Shionoya M. 1994 Macrocyclic polyamine complex beyond metalloenzyme models. In: Fabbrizzi L, Poggi A. eds. Transition Metals in Supramolecular Chemistry. Dordrecht, The Netherlands: Kluwer Academic Publishers, 245–259.CrossRefGoogle Scholar
  36. Kimura E, Shionoya M. 1996 Zinc complexes as targeting agents for nucleic acids. In: Sigel A, Sigel H. eds. Metal Ions in Biological Systems. Vol. 33. New York: Marcel Dekker: 29–52.Google Scholar
  37. Kimura E. 1997 A novel biomimetic zinc(II)-fluorophore, dansylamidoethyl-pendant macrocyclic tetraamine. South African J Chem 50, 240–248.Google Scholar
  38. Kimura E, Aoki S, Koike T, Shiro M. 1997a A tris(Zntt-1,4,7,10tetraazacyclododecane) complex as a new receptor for phosphate dianions in aqueous solution. JAm Chem Soc 119, 3068–3076.CrossRefGoogle Scholar
  39. Kimura E, Koike T, Aoki S. 1997b Why are zinc phosphatases multinuclear? J Synth Org Chem [Japan] 55, 1052–1061.Google Scholar
  40. Kimura E, Koike T. 1998 Recent development of zinc-fluorophores. Chem Soc Rev 27, I79–184.Google Scholar
  41. Kimura E, Ikeda T, Aoki S, Shionoya M. 1998 Macrocyclic zinc(II) complexes for selective recognition of nucleobases in single-and double-stranded polynucleotides. J Biol Inorg Chem 3, 259–267.CrossRefGoogle Scholar
  42. Kimura E, Gotoh T, Koike T, Shiro M. 1999 Dynamic enolate recognition in aqueous solution by zinc(II) in a phenacyl-pendant cyclen complex: implications for the role of zinc(II) in class II aldolases. JAm Chem Soc 121, 1267–1274.CrossRefGoogle Scholar
  43. Kimura E, Kitamura H, Ohtani K, Koike T. 2000 Elaboration of selective and efficient recognition of thymine base in dinucleotides (TpT, ApT, CpT, and GpT), single-stranded d(GTGACGCC), and double-stranded d(CGCTAGCG)2 by Zn2+-acridinylcyclen (acridinylcyclen = (9-acridinyl)methyl1,4,7,10-tetraazacyclododecane). J Am Chem Soc 122, 4668–4677.CrossRefGoogle Scholar
  44. Kimura E, Kikuta E. 2000 Why zinc in zinc enzymes? From biological roles to DNA base-selective recognition. J Biol Inorg Chem 5, 139–155.PubMedCrossRefGoogle Scholar
  45. Kimura E. 2001 Model studies for molecular recognition of carbonic anhydrase and carboxypeptidase. Acc Chem Res 34, 171179.Google Scholar
  46. Koike T, Kimura E. 1991. Roles of zinc(II) ion in phosphatases. A model study with zinc(II)-macrocyclic polyamine complexes. J Am Chem Soc 113, 8935–8941.CrossRefGoogle Scholar
  47. Koike T, Kimura E, Nakamura I, Hashimoto Y, Shiro M. 1992 The first anionic sulfonamide-binding zinc(II) complexes with a macrocyclic triamine: chemical verification of the sulfonamide inhibition of carbonic anhydrase. J Am Chem Soc 114, 7338–7345.CrossRefGoogle Scholar
  48. Koike T, Takashige M, Kimura E, Fujioka H, Shiro M. I996a Bis(Zntt-cyclen) complex as a novel receptor of barbiturates in aqueous solution. Chem Europ J 2, 617–623.Google Scholar
  49. Koike T, Watanabe T, Aoki S, Kimura E, Shiro M. 1996b. A novel biomimetic zinc(II)-fluorophore, dansylamidoethylpendant macrocyclic tetraamine 1,4,7,10-tetraazacyclododecane (cyclen). JAm Chem Soc 118, 12696–12703.CrossRefGoogle Scholar
  50. Lippard SJ, Berg JM. 1994 Principles of Bioinorganic Chemistry. Mill Valley: University Science Books.Google Scholar
  51. Lipscomb WN, Sträter N. 1996 Recent advances in zinc enzymology. Chem Rev 96, 2375–2433.PubMedCrossRefGoogle Scholar
  52. Mann T, Keilin D. 1940 Sulphanilamide as a specific inhibitor of carbonic anhydrase. Nature 146 164–165.CrossRefGoogle Scholar
  53. Maumera H, Hancock RD, Carlton L, Reibenspies JH, Wainwright KP. 1995 The amide oxygen as a donor group. Metal ion com-plexing properties of tetra-N-acetamide substituted cyclen: a crystallographic, NMR, molecular mechanics, and thermodynamic study. JAm Chem Soc 117, 6698–6707.CrossRefGoogle Scholar
  54. Nasir MS, Fahrni CJ, Suhy DA, Kolodsick KJ, Singe CP, O’Halloran TV. 1999 The chemical cell biology of zinc: structure and intracellular fluorescence of a zinc-quinolinesulfonamide complex. J Biol lnorg Chem 4, 775–783.CrossRefGoogle Scholar
  55. Prasanna de Silva A, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE. 1997 Signaling recognition events with fluorescent sensors and switches. Chem Rev 97, 1515–1566.PubMedCrossRefGoogle Scholar
  56. Prodi L, Bolletta F, Montalti M, Zaccheroni N. 1999. Searching for new luminescent sensors: synthesis and photophysical properties of a tripodal ligand incorporating the dansyl chromophore and of its metal complexes. Eur J lnorg Chem 455–460.Google Scholar
  57. Reany O, Gunnlaugsson T, Parker D. 2000 Selective signalling of zinc ions by modulation of terbium luminescence. J Chem Soc Chem Comm 473–474.Google Scholar
  58. Shionoya M, Kimura E, Shiro M. 1993 A new ternary zinc(II) complex with [12] and N4 (=1,4,7–10-tetraazacyclododecane) and AZT (=3’-azido-3’-deoxythymidine). Highly selective recognition of thymidine and its related nucleosides by a zinc(II) macrocyclic tetraamine complex with novel complementary associations. JAm Chem Soc 115, 6730–6737.CrossRefGoogle Scholar
  59. Shionoya M, Ikeda T, Kimura E, Shiro M. 1994 Novel “multipoint” molecular recognition of nucleobases by a new zinc(II) complex of acridine-pendant cyclen (cyclen = 1,4,7,10tetraazacyclododecane). JAm Chem Soc 116, 3848–3859.CrossRefGoogle Scholar
  60. Sträter N, Lipscomb WN, Klabunde T, Krebs B. 1996 Two-metal ion catalysis in enzymatic acyl-and phosphoryl-transfer reactions Angew Chem Int Ed 35, 2024–2055.CrossRefGoogle Scholar
  61. Thompson RB, Jones ER. 1993 Enzyme-based fiber optic zinc biosensor. Anal Chem 65, 730–734.CrossRefGoogle Scholar
  62. Thompson RB, Patchan MW. 1995 Lifetime-based fluorescence energy transfer biosensing of zinc. Anal Biochem 227, 123–128.PubMedCrossRefGoogle Scholar
  63. Thompson RB, Maliwal BP. 1998 Expanded dynamic range of free zinc ion determination by fluorescence anisotropy. Anal Chem 70, 1749–1754.PubMedCrossRefGoogle Scholar
  64. Thompson RB, Maliwal BP, Feliccia VL, Fierke CA, McCall K. 1998 Determination of picomolar concentrations of metal ionsGoogle Scholar
  65. using fluorescence anisotropy: biosensing with a “reagentless” enzyme transducer. Anal Chem 70 4717–4723.Google Scholar
  66. Thompson RB, Maliwal BP, Zeng H-H. 1999 Improved fluorophores for zinc biosensing using carbonic anhydrase. Proc SPIE-Int Soc Opt Engin 3603, 14–22.CrossRefGoogle Scholar
  67. Tsien R. 1989 Fluorescent indicator of ion concentrations. Meth Cell Biol30, 127–156.Google Scholar
  68. Tsien R, Pozzan T. 1989 Measurement of cytosolic free Cat+ with Quin2. Methods Enzvmol 172, 230–262.CrossRefGoogle Scholar
  69. Vallee BL, Falchuk KH. 1993 The biochemical basis of zinc physiology. Physiol Rev 73, 79–118.PubMedCrossRefGoogle Scholar
  70. Walkup GK, Imperiali B. 1996 Design and evaluation of a peptidyl fluorescent chemosensor for divalent zinc. J Am Chem Soc 118, 3053–3054.CrossRefGoogle Scholar
  71. Walkup GK, Imperiali B. 1997 Fluorescent chemosensors of divalent zinc based on zinc finger domains. Enhanced oxidative stability, metal binding affinity, and structural and functional characterization. JAm Chem Soc 119, 3443–3450.CrossRefGoogle Scholar
  72. Walkup GK, Imperiali B. 1998 Stereoselective synthesis of fluorescent a-amino acids containing oxine (8-hydroxyquinoline) and their peptide incorporation in chemosensors for divalent zinc. J Org Chem 63, 6727–6731.CrossRefGoogle Scholar
  73. Walkup GK, Burdette SC, Lippard SJ, Tsien RY. 2000 A new cell-permeable fluorescent probe for Zn2+. J Am Chem Soc 122, 5644–5645.CrossRefGoogle Scholar
  74. Zalewski PD, Forbes IJ, Betts WH. 1993 Correlation of apoptosis with change in intracellular labile Zn(II) using Zinquin [(2methyl-8-p-toluenesulphonamido-6-quinolyloxy)acetic acid], a new specific fluorescent probe for Zn(II). Biochem J 296, 403–408.PubMedGoogle Scholar
  75. Zalewski, PD, Forbes IJ, Seamark RF, Borlinghaus R, Betts WH, Lincoln SF, Ward AD. 1994a Flux of intracellular labile zinc during apoptosis (gene-directed cell death) revealed by a specific chemical probe, Zinquin. Chem Biol 3, 153–161.CrossRefGoogle Scholar
  76. Zalewski PD, Millard SH, Forbes IJ, Kapaniris O, Slavotinek A, Betts WH, Ward AD, Lincoln SF, Mahadevan 1. 1994b Video image analysis of labile zinc in viable pancreatic islet cells using a specific fluorescent probe for zinc. J Histochem Cvtochem 42, 877–884.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Eiichi Kimura
    • 1
  • Shin Aoki
    • 1
  1. 1.Department of Medicinal Chemistry, Faculty of MedicineHiroshima UniversityMinami-ku, HiroshimaJapan

Personalised recommendations