Skip to main content

Structured Total Least Squares

Analysis, Algorithms and Applications

  • Chapter
Total Least Squares and Errors-in-Variables Modeling

Abstract

In this paper an overview is given of the Structured Total Least Squares (STLS) approach and its recent extensions. The Structured Total Least Squares (STLS) problem is a natural extension of the Total Least Squares (TLS) problem when constraints on the matrix structure need to be imposed. Similar to the ordinary TLS approach, the STLS approach can be used to determine the parameter vector of a linear model, given some noisy measurements. In many signal processing applications, the imposition of this matrix structure constraint is necessary for obtaining Maximum Likelihood (ML) estimates of the parameter vector.

A basic algorithmic scheme leading to fast implementations of the STLS approach through the exploitation of the low displacement rank structure is presented. An example illustrates the possible benefit of using the STLS approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. J. Abatzoglou and J. M. Mendel. Constrained total least squares. In Proceedings of IEEE International Conf. on Acoustics, Speech éY Signal Processing, pages 1485–1488, Dallas, 1987.

    Google Scholar 

  2. T. J. Abatzoglou, J. M. Mendel, and G. A. Harada. The constrained total least squares technique and its applications to harmonic superresolution. IEEE Transactions on Signal Processing, 39: 1070–1086, 1991.

    Article  MATH  Google Scholar 

  3. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, 1995.

    Google Scholar 

  4. E. Anderson, Z. Bai, and J. J. Dongarra. Generalized QR factorization and its applications. Technical Report CS-91–131 (LAPACK Working Note 31 ), Computer Science Dept., University of Tennessee, Knoxville, 1991.

    Google Scholar 

  5. D.V. Bhaskar Rao and K.S. Arun. Model based processing of signals: A state space approach. Proceedings IEEE, 80: 1277–1308, February 1992.

    Google Scholar 

  6. B. De Moor. Structured total least squares and l2 approximation problems. Linear Algebra and its Applications, Special Issue on Numerical Linear Algebra Methods in Control, Signals and Systems, (Van Dooren, Ammar, Nichols, and Mehrmann, eds.), 188–189:163–207, July 1993.

    Google Scholar 

  7. B. De Moor. Total least squares for affinely structured matrices and the noisy realization problem. IEEE Transactions on Signal Processing, 42: 3004–3113, November 1994.

    Google Scholar 

  8. P.D. Fiore and G.C. Verghese. Constrained maximum likelihood solution of linear equations. IEEE Trans. on Signal Processing, 48 (3): 671–679, 2000.

    Article  MATH  Google Scholar 

  9. J.S. Fleming and B.A. Goddard. A technique for the deconvolution of the renogram. Phys. Med. Biol., 19: 546–549, 1974.

    Article  Google Scholar 

  10. R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, New York, 1987.

    MATH  Google Scholar 

  11. P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, London, 1981.

    MATH  Google Scholar 

  12. G. H. Golub and C.F. Van Loan. An analysis of the total least squares problem. SIAM J. Numer. Anal., 17: 883–893, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Lemmerling, I. Dologlou, and S. Van Huffel. Speech compression based on exact modeling and structured total least norm optimization. In Proceedings of ICASSP 98, volume I, pages 353–356, Seattle, Washington, U.S.A., May 1998.

    Google Scholar 

  14. P. Lemmerling, S. Van Huffel, and B. De Moor. The structured total least squares approach for nonlinearly structured matrices. Numerical Linear Algebra with Applications, 2001. to appear.

    Google Scholar 

  15. P. Lemmerling and B. De Moor. Misfit versus latency. Automatica, 37(12):to appear, 2001.

    Google Scholar 

  16. P. Lemmerling and S. Van Huffel. Analysis of the structured total least squares problem for Hankel/Toeplitz matrices. Numerical Algorithms, 27: 89–114, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  17. N. Mastronardi, P. Lemmerling, and S. Van Huffel. Fast structured total least squares algorithms via exploitation of the displacement structure. in this volume.

    Google Scholar 

  18. N. Mastronardi, P. Lemmerling, and S. Van Huffel. Fast structured total least squares algorithm for solving the basic deconvolution problem. SIAM Journal on Matrix Anal. Appl., 22 (2): 533–553, 2000.

    Article  MATH  Google Scholar 

  19. A. Paulraj, R. Roy, and T. Kailath. A subspace rotation approach to signal parameter estimation. Proceedings IEEE, pages 1044–1045, July 1986.

    Google Scholar 

  20. J. B. Rosen, H. Park, and J. Glick. Structured total least norm for nonlinear problems. SIAM Journal on Matrix Analysis and Applications, 20 (1): 14–30, 1999.

    Article  MathSciNet  Google Scholar 

  21. J.B. Rosen, H. Park, and J. Glick. Total least norm formulation and solution for structured problems. SIAM Journal on Matrix Anal. Appl., 17 (1): 110–128, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Roy and T. Kailath. Esprit—estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, Signal Processing, 37 (7): 984–995, July 1989.

    Article  Google Scholar 

  23. A.J van der Veen, E. F. Deprettere, and A. L. Swindlehurst. Subspace based signal analysis using singular value decompostion. Proceedings IEEE, 81: 1277 1308, September 1993.

    Google Scholar 

  24. S. Van Huffel, H. Park, and J. B. Rosen. Formulation and solution of structured total least norm problems for parameter estimation. IEEE Trans. on Signal Processing, 44 (10): 2464–2474, 1996.

    Article  Google Scholar 

  25. S. Van Huffel and J. Vandewalle. The Total Least Squares Problem: computational aspects and analysis, volume 9. SIAM, Philadelphia, 1991.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lemmerling, P., Van Huffel, S. (2002). Structured Total Least Squares. In: Van Huffel, S., Lemmerling, P. (eds) Total Least Squares and Errors-in-Variables Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3552-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3552-0_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5957-4

  • Online ISBN: 978-94-017-3552-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics