Skip to main content

Abstract

Although astronomers have been involved with the development and use of least squares, they have made insufficient use of total least squares. Astronomers, however, have examined alternatives that also permit error in the equations of condition. There exist, nevertheless, problems of astronomical data reduction for which total least squares represents the ideal mathematical tool. Among these problems are the differential correction of an orbit and the determination of parameters of Galactic kinematics. Total least squares, although more computationally demanding than ordinary least squares, can be used in any situation where the latter is applicable. But care must be paid to the proper scaling of the data matrix. The method merits greater attention by the astronomical community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Chauvenet. A Manual of Spherical and Practical Astronomy. Dover, New York, 1960.

    Google Scholar 

  2. H. Eichhorn. Generalized least-squares adjustment, a timely but much neglected tool. Celest. Mech., 56: 337–351, 1993.

    Article  MATH  Google Scholar 

  3. ESA. The hipparcos and tycho catalogues. Technical Report SP-1200, European Space Agency, 1997.

    Google Scholar 

  4. K. F. Gauss. Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections. Dover, New York, 1963.

    MATH  Google Scholar 

  5. C. S. Gum, F. J. Kerr, and G. A. Westerhout. 21-cm determination of the principal plane of the galaxy. Not. R. Astron. Soc., 121: 132–149, 1960.

    Google Scholar 

  6. W. H. Jeffreys. On the method of least squares. Astron. Jour., 85: 177–181, 1980.

    Article  Google Scholar 

  7. W. H. Jeffreys. On the method of least squares ii. Astron. Jour., 86: 149–155, 1981.

    Article  Google Scholar 

  8. P. S. Laplace. Celestial Mechanics. Celsea, New York, 1966.

    Google Scholar 

  9. A. M. Legendre.Nouvelles Méthodes pour la Détermination des Orbites des Comètes. Courcier, Paris, 1805.

    Google Scholar 

  10. S. Newcomb.A Compendium of Spherical Astronomy. Dover, New York, 1960.

    Google Scholar 

  11. F. Pont, M. Mayor, and G. Burki. New radial velocities for classical cepheids. local galactic rotation revisited. Astron. and Astrophys., 285: 415–439, 1994.

    Google Scholar 

  12. W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. Flannery. Numerical Recipes in C: the Art of Scientific Computing, 2nd ed. Cambridge U. Press, Cambridge, 1992.

    Google Scholar 

  13. R. L. Branham, Jr. Total least squares in astronomy. In S. Van Huffel and J. Wandewalle, editors, Total Least Squares and Errors-in-Variables Modeling, pages 371–377. SIAM, Philadelphia, 1996.

    Google Scholar 

  14. R. L. Branham, Jr. Total least squares: an ideal mathematical tool for galactic kinematics. Astrophys. and Space Sc. 257:107–121, 1998.

    Google Scholar 

  15. R. L. Branham, Jr. A covariance matrix for total least squares with heteroscedastic data. Astron. Jour., 117: 1942–1948, 1999.

    Article  Google Scholar 

  16. R. L. Branham, Jr. The parameters of galactic kinematics determined from total least squares. Rev. Mer. Astron. and. Astrophys. 36:97–112, 2000.

    Google Scholar 

  17. R. L. Branham, Jr. The sun’s distance from the galactic plane. Astrophys. and Space. Sc., 2001. submitted.

    Google Scholar 

  18. W.M. Smart. Stellar Kinematics. Wiley, New York, 1967.

    Google Scholar 

  19. G. Strömberg. Accidental and systematic errors in spectroscopic absolute magnitudes for dwarf g0-k2 stars. Astrophys. Jour., 92: 156–169, 1940.

    Article  Google Scholar 

  20. R. J. Trumpler and H. Weaver.Statistical Astronomy. Dover, New York, 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Branham, R.L. (2002). Total Least Squares in Astronomy. In: Van Huffel, S., Lemmerling, P. (eds) Total Least Squares and Errors-in-Variables Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3552-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3552-0_33

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5957-4

  • Online ISBN: 978-94-017-3552-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics