Skip to main content

Use of Plant Virus-Based Expression Systems for the Production of HIV Vaccines

  • Chapter
Molecular Farming of Plants and Animals for Human and Veterinary Medicine

Abstract

The number of patients carrying acquired immune deficiency syndrome (AIDS) keeps increasing as new infections with human immunodeficiency virus (HIV) continue to occur. Although anti-retroviral drug therapies are capable of reducing viral load of infected patients, it is clear that the effective and ultimate solution to control AIDS is vaccination against HIV infection. Recent development of HIV vaccines has shown great promise and different stages of HIV vaccine clinical trials in humans are currently being conducted worldwide. However, vaccines produced using traditional production systems are costly and future products may be unaffordable in developing counties, where most HIV infections occur. Several plant-based systems have been developed and are being optimized for cost effective production of vaccines. RNA plant viruses have attracted great interest because of their utility in over expressing vaccine antigens. In addition, plant virus-derived products have been shown to be effective in inducing immunoresponses when administered to animals. Results from these studies support the further development of plant virus-based expression systems for the production of cost effective HIV vaccines. This chapter focuses on the recent development of RNA plant virus-based expression systems and the immunogenicity and potential clinical applications of plant virus-derived HIV vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arakawa T, Chong DKX, and Langridge WHR, 1998. Efficacy of a food plant-based oral cholera toxin B subunit vaccine. Nat Biotechnol, 16: 292–297

    Article  PubMed  CAS  Google Scholar 

  • Arakawa T, Chong DKX, Merritt JL and Langridge WHR, 1997. Expression of cholera toxin B subunit oligomers in transgenic potato plants. Transgenic Res, 6: 403–413

    Article  PubMed  CAS  Google Scholar 

  • Arendrup M, Sonnerborg A, Svennerholm B, Akerblom L, Nielsen C, Clausen H, Olofsson S, Nielsen JO and Hansen J-ES, 1993. Neutralizing antibody response during human immunodeficiency virus type I infection: type and group specificity and viral escape. J Gen Virol, 74: 855–863

    Article  PubMed  CAS  Google Scholar 

  • Beachy RN, Fitchen JH and Hein MB, 1996. Use of plant viruses for delivery of vaccine epitopes. Ann N Y Acad Sci, 792: 43–49

    Article  PubMed  CAS  Google Scholar 

  • Benson EM, Clarkson J, Law M, Marshall P, Kelleher AD, Smith DE, Patou G, Stewart GJ, Cooper DA and French RA, 1999. Therapeutic vaccination with p24-VLP and zidovudine augments HIV-specific cytotoxic T lymphocyte activity in asymptomatic HIV-infected individuals. AIDS Res Hum Retroviruses, 15: 105–113

    Article  PubMed  CAS  Google Scholar 

  • Bol JF, van Vloten-Doting L and Jaspars EM, 1971. A functional equivalence of top component RNA and coat protein in the initiation of infection by alfalfa mosaic virus. Virology, 46: 73–85

    Article  PubMed  CAS  Google Scholar 

  • Broliden PA, Von Gegerfelt A, Clapham P, Rosen J, Fenyo E-M Wahren B and Brodien K, 1992. Identification of human neutralization-inducing regions of the human immunodeficiency virus type 1 envelope glycoproteins. Proc Natl Acad Sci USA, 89: 461–465

    CAS  Google Scholar 

  • Buratti E, McLain L, Tisminetzky S, Cleveland SM, Dimmock NJ and Baralle E, 1998. The neutralizing antibody response against a conserved region of human immunodeficiency virus

    Google Scholar 

  • type 1 gp41 (amino acid residues 731–752) is uniquely directed against a conformational epitope. J Gen Virol, 79:2709–2716

    Google Scholar 

  • Chen YH and Dierich MP, 1996. Identification of a second site in HIV-1 gp41 mediating binding to cells. Immunol Lett, 52: 153–156

    Article  PubMed  CAS  Google Scholar 

  • Cohen J, 2000. Ground zero: AIDS research in Africa. Science, 288: 2150–2153

    Article  PubMed  CAS  Google Scholar 

  • Dawson WO, Bubrick P and Grantham GL, 1988. Modification of the tobacco mosaic virus coat protein gene affecting replication, movement, and symptomatology. Phytopathology, 78: 783–789

    Article  CAS  Google Scholar 

  • Durrani Z, McInerney TL, McLain L, Jones T, Bellaby T, Brennan FR and Dimmock NJ, 1998. Intranasal immunization with a plant virus expressing a peptide from HIV-1 gp41 stimulates better mucosal and systemic HIV-1-specific IgA and IgG than oral immunization. J Immunol Methods, 220: 93–103

    Article  PubMed  CAS  Google Scholar 

  • Emini EA, Schleif WA, Nunberg JH, Conley AJ, Eda Y, Tokiyoshi S, Putney SD, Matsushita S, Cobb KE, Jett CM, Eichberg JW and Murphy KK, 1992. Prevention of HIV-1 infection in chimpanzees by gp 120 V3 domain-specific monoclonal antibody. Nature, 355: 728–730

    Article  PubMed  CAS  Google Scholar 

  • Featherstone C, 1996. Vaccine by agriculture. Mol Med Today, 2:278–281 Gallagher DM, 1992. HIV/AIDS: the epidemic continues. Imprint, 39: 64–65

    Google Scholar 

  • Haq TA, Mason HS, Clements JD and Arntzen CJ, 1995. Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science, 268: 714–715

    Article  PubMed  CAS  Google Scholar 

  • Haynes JR, Cunningham J, von Seefried A, Lennick M, Garvin T and Shen S, 1998. Development of a genetically-engineered, candidate polio vaccine employing the self-assembling properties of the tobacco mosaic virus coat protein. Bio/Technology, 4: 637–641

    Article  Google Scholar 

  • Harrison SC, Olson AJ, Schutt CE, Winkler FK and Bricogne G, 1978. Tomato bushy stunt virus at 2.9 Â resolution. Nature, 276: 368–373

    Article  PubMed  CAS  Google Scholar 

  • Hearne PQ, Knorr DA, Hillman BI and Morris TJ, 1990. The complete genome structure and synthesis of infectious RNA from clones of tomato bushy stunt virus. Virology, 177: 141–151

    Article  PubMed  CAS  Google Scholar 

  • Hiatt AC, Cafferkey R and Bowdish K, 1989. Production of antibodies in transgenic plants. Nature, 342: 76–78

    Article  PubMed  CAS  Google Scholar 

  • Ho DD, McKeating JA, Li XL, Moudgil T, Daar ES, Sun NC and Robinson JE, 1991. Conformational epitope on gp 120 important in CD4 binding and human immunodeficiency virus type 1 neutralization identified by a human monoclonal antibody. J Virol, 65: 489–493

    PubMed  CAS  Google Scholar 

  • Jagadish MN, Edwards SJ, Hayden MB, Grusovin J, Vandenberg K, Schoofs P, Hamilton RC, Shukla DD, Kalnins H, McNamara M, Haynes J, Nisbet IT, Ward CW and Pye D, 1996. Chimeric potyvirus-like particles as vaccine carriers. Intervirology, 39: 85–92

    PubMed  CAS  Google Scholar 

  • Joelson T, Akerblom L, Oxelfelt P, Strandberg B, Tomenius K and Morris TJ, 1997. Presentation of a foreign peptide on the surface of tomato bushy stunt virus. J Gen Virol, 78: 1213–1217

    PubMed  CAS  Google Scholar 

  • Kennedy RC, Henkel RD, Pauletti D, Allan JS, Lee TH, Essex M and Dreesman GR, 1986. Antiserum to a synthetic peptide recognised the HTLV-III envelope glycoprotein. Science, 231: 1556–1559

    Article  PubMed  CAS  Google Scholar 

  • LaRosa GJ, David JP, Weinhold K, Waterbury JA, Profy AT, Lewis JA, Langlois AJ, Dreesman GR, Boswell NR, Shadduck P, Holley HL, Karplus M, Bolognesi DP, Matthews TJ, Emini EA and Putney SD, 1990. Conserved sequence and structural elements in the HIV-1 principal neutralizing determinant. Science, 249: 932–935

    Article  PubMed  CAS  Google Scholar 

  • Lefrere J-J, Courouce A-M, Rouger P, Duedari N and Elghouzzi M-H, 1992. P24 antigen and HIV screening. Lancet, 339: 999–1000

    Article  PubMed  CAS  Google Scholar 

  • Letvin NL, 1998. Progress in the development of an HIV-1 vaccine. Science, 280: 1875–1880

    Article  PubMed  CAS  Google Scholar 

  • Lomonossoff GP and Hamilton WD, 1999. Cowpea mosaic virus-based vaccines. Curr Top Microbiol Immunol, 240: 177–189

    PubMed  CAS  Google Scholar 

  • Lomonossoff GP and Johnson JF, 1991. The synthesis and structure of comovirus capsids. Prog Biophys Mol Biol, 55: 107–137

    Article  PubMed  CAS  Google Scholar 

  • Lomonossoff GP and Johnson JE, 1996. Use of macromolecular assemblies as expression systems for peptides and synthetic vaccines. Curr Opin Struct Biol, 6: 176–182

    Article  PubMed  CAS  Google Scholar 

  • Ma JK, Hiatt A, Hein M, Vine ND, Wang F, Stabila P, van Dolleweerd C, Mostov K and Lehner T, 1995. Generation and assembly of secretory antibodies in plants. Science, 268: 716–719

    Article  PubMed  CAS  Google Scholar 

  • Ma J K-C and Vine ND, 1999. Plant expression systems for the production of vaccines. Curr Top Microbiol Immunol, 236: 275–292

    Article  PubMed  CAS  Google Scholar 

  • Martin SJ, Vyakarnam A, Cheingsong-Popov R, Callow D, Jones KL, Senior JM, Adams SE, Kingsman AJ, Mater P, Gotch FM, McMichael AJ, Roitt IM and Weber JN, 1993. Immunization of human HIV-seronegative volunteers with recombinant p17/p24:Ty virus-like particles elicits HIV-1 p24-specific cellular and humoral immune responses. AIDS, 7: 1315–1323

    Article  PubMed  CAS  Google Scholar 

  • Mason HS and Arntzen CJ, 1995. Transgenic plants as vaccine production systems. TIBTech, 13: 388–392

    Article  CAS  Google Scholar 

  • Mason HS, Ball JM, Shi J-J, Jian X, Estes MK and Arntzen CJ, 1996. Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proc Natl Acad Sci USA, 93: 5335–5340

    Article  PubMed  CAS  Google Scholar 

  • Mason HS, Lam DM-K and Arntzen CJ, 1992. Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci USA, 89: 11745–11749

    Article  PubMed  CAS  Google Scholar 

  • McInerney TL, Brennan FR, Jones TD and Dimmock NJ, 1999. Analysis of the ability of five adjuvants to enhance immune responses to a chimeric plant virus displaying an HIV-1 peptide. Vaccine, 17: 1359–1368

    Article  PubMed  CAS  Google Scholar 

  • McLain L, Durrani Z, Wisniewski A, Port C, Lomonossoff GP and Dimmock NJ, 1996. Stimulation of neutralizing antibodies to human immunodeficiency virus type 1 in three strains of mice immunized with a 22-mer amino acid peptide expressed on the surface of a plant virus. Vaccine, 14: 799–810

    Article  PubMed  CAS  Google Scholar 

  • McLain L, Durrani Z, Dimmock NJ, Wisniewski LA, Port C and Lomonossoff GP, 1996. A plant virus-HIV-1 chimera stimulates antibody that neutralized HIV-1. In Vaccine 96, Eds. Brown

    Google Scholar 

  • F, Burton DR, Collier J, Mekalanos J and Norrby E. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 311–316

    Google Scholar 

  • McLain L, Porta C, Lomonossoff GP, Durrani Z and Dimmock NJ, 1995. Human immuno-deficiency virus type 1 neutralizing antibodies raised to a gp41 peptide expressed on the surface of a plant virus. AIDS Res Hum Retroviruses, 11: 327–334

    Article  PubMed  CAS  Google Scholar 

  • Meloen RH, Hamilton WD, Casa! JI, Dalsgaard K and Langeveld JP, 1998. Edible vaccines. Vet Q, 20 suppl 3: S92 - S95

    Article  Google Scholar 

  • Modrow S, Hahn BH, Shaw GM, Gallo RC, Wong-Staal F and Wolf H, 1987. Computer assisted analysis of envelope protein sequences of seven human immunodeficiency virus isolates: prediction of antigenic epitopes in conserved and variable regions. J Virol, 61: 570–578

    PubMed  CAS  Google Scholar 

  • Montroni M, Silvestri G, Butini L, Bartocci C, Regnery C and Danieli G, 1992. p24 antigenaemia as a predictor of good immunological responsiveness to zidovudine therapy in asymptomatic HIV infection (letter). AIDS, 6: 338–339

    Google Scholar 

  • Moore JP, Sattentau QJ, Wyatt R and Sodroski J, 1994. Mapping the topology of the human immunodeficiency virus glycoprotein gp 120 with a panel of monoclonal antibodies. J Virol, 68: 469–484

    PubMed  CAS  Google Scholar 

  • Muster T, Steindl F, Purtscher M, Trkola A, Klima A, Himmler G, Ruker F and Katinger H, 1993. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J Virol, 67: 6642–6647

    PubMed  CAS  Google Scholar 

  • Olson AJ, Bricogne G and Harrison SC, 1983. Structure of tomato bushy stunt virus. IV. The virus particle at 2.9 A resolution. J Mol Biol, 171: 61–93

    Article  PubMed  CAS  Google Scholar 

  • Oster SK, Wu B and White KA, 1998. Uncoupled expression of p33 and p92 permit amplification of tomato bushy stunt virus RNAs. J Virol, 72: 5845–5851

    PubMed  CAS  Google Scholar 

  • Palmer KE, Amtzen CJ, and Lomonossoff GP, 1999. Antigen delivery systems: transgenic plants and recombinant plant viruses. In Mucosal immunity, 2nd Edition, Eds. Ogra PI, Mestecky J, Lamm ME, Stober W, McGhee JR and Bienenstock J. Academic Press, Orlando, pp 793–807

    Google Scholar 

  • Port C and Lomonossoff GP, 1996. Use of viral replicons for the expression of genes in plants. Mol Biotechnol, 5: 209–221

    Article  Google Scholar 

  • Porta C, Spall VE, Lin T, Johnson JE and Lomonossoff GP, 1996. The development of cowpea mosaic virus as a potential source of novel vaccines. Intervirology, 39: 79–84

    PubMed  CAS  Google Scholar 

  • Porta C, Spall VE, Loveland J, Johnson JE, Baker PJ and Lomonossoff GP, 1994. Development of cowpea mosaic virus as a high-yielding system for the presentation of foreign peptides. Virology, 202: 949–955

    Article  PubMed  CAS  Google Scholar 

  • Prince AM, Reesink H, Pascual D, Horowitz B, Hewlett I, Murphy KK, Cobb KE and Eichberg JW, 1991. Prevention of HIV infection by passive immunization with HIV immunoglobulin. AIDS Res Hum Retroviruses, 7: 971–973

    Article  PubMed  CAS  Google Scholar 

  • Putney SD, LaRosa GJ, Profy AT, Silver S, Scott CF, Javaherian K, Robinson J, Langlois AJ, Matthews TJ, Bolognesi DP, Lewis JA and Emini EA, 1991. The HIV-1 principal neutralization determinant elicits broadly neutralizing antibodies. In Vaccines 91. Eds.

    Google Scholar 

  • Chanock R, Ginsberg H, Brown F and Lerner R. Cold Spring Harbor Laboratory Press, Cold Spring Harbour, NY, pp 9–13

    Google Scholar 

  • Putkonen P, Thorstensson R, Ghavamzadeh L, Albert J, Hild K, Biberfeld G and Norrby E, 1991. Prevention of HIV-2 and SIVsm infection by passive immunization in cynomolgus monkeys. Nature, 352: 436–438

    Article  PubMed  CAS  Google Scholar 

  • Reddy MM, Winger EE, Hargrove D, McHugh T, McKinley GF and Grieco MH, 1992. An improved method for monitoring efficacy of anti-retroviral therapy in HIV-infected individuals; a highly sensitive HIV p24 antigen assay. J Clinic Lab Anal, 6: 125–129

    Article  CAS  Google Scholar 

  • Rencher SD, Slobod KS, Dawson DH, Lockey TD and Hurwits JL, 1995. Does the key to a successful HIV type 1 vaccine lie among the envelope sequences of infected individuals? AIDS Res Hum Retroviruses, 11: 1131–1133

    Article  PubMed  CAS  Google Scholar 

  • Robert-Guroff M, Brown M and Gallo RC, 1985. HTLV-III-neutralizing antibodies in patients with AIDS and AIDS-related complex. Nature, 316: 72–74

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama Y, Hamamoto H, Takemoto S, Watanabe Y and Okada Y, 1995. Systemic production of foreign peptides on the particle surface of tobacco mosaic virus. FEBS Lett, 359: 247–250

    Article  PubMed  CAS  Google Scholar 

  • Sattentau QJ, Zolla-Pazner S and Poignard P, 1995. Epitope exposure on functional, oligomeric HIV-1 gp41 molecules. Virology, 206: 713–717

    Article  PubMed  CAS  Google Scholar 

  • Scholthof HB, Morris TJ and Jackson AO, 1993. The capsid protein gene of tomato bushy stunt virus is dispensable for systemic movement and can be replaced for localized expression of foreign genes. Mol Plant-Microbe Interact, 6: 309–322

    Article  CAS  Google Scholar 

  • Scholthof HB, Scholthof KB and Jackson AO, 1996. Plant virus gene vector for transient expression of foreign genes in plants. Ann Rev Phytopathol, 34: 299–323

    Article  CAS  Google Scholar 

  • Shaw GM, Broder S, Essex M and Gallo RC, 1984. Human T-cell leukemia virus: its discovery and role in leukemogenesis and immunosuppression. Adv Intern Med, 30: 1–27

    PubMed  CAS  Google Scholar 

  • Sherry B, Mosser AG, Colonno RJ and Ruecker RR, 1986. Use of monoclonal antibodies to identify four neutralisation immunogens on a common cold picornavirus, human rhinovirus 14. J Virol, 57: 246–257

    PubMed  CAS  Google Scholar 

  • Spall VE, Porta C, Taylor KM, Lin T, Johnson JE and Lomonossoff GP, 1997. Antigen expression on the surface of a plant virus for vaccine production. In Engineering crop plants for industrial end uses. Eds. Shewry PR, Napier JA and Davis PJ. Portland, London, pp 35–46

    Google Scholar 

  • Spector SA, Kennedy C, McCutchan JA, Straube RG, Connor JD and Richman DD, 1989. The antiviral effect of zidovudine and ribavirin in clinical trails and the use of p24 antigen levels as a virologie marker. J Infect Dis, 159: 822–828

    Article  PubMed  CAS  Google Scholar 

  • Stiehm ER, Fletcher CV, Mofenson LM, Palumbo PE, Kang M, Fenton T, Sapan CV, Meyer WA, Shearer WT, Hawkins E, Fowler MG, Bouquin P, Purdue L, Sloand EM, Nemo GJ, Wara D, Bryson YJ, Starr SE, Petru A and Burchett S, 2000. Use of human immunodeficiency virus (HIV) human hyperimmune immunoglobulin in HIV type 1-infected children (Pediatric AIDS clinical trials group protocol 271). J Infect Dis, 181: 548–554

    Article  PubMed  CAS  Google Scholar 

  • Tacket CO, Mason HS, Lonsonsky G, Clements JD, Levine MM and Arntzen CJ, 1998. Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. Nat Med, 4: 607–609

    Article  PubMed  CAS  Google Scholar 

  • Takamatsu N, Ishidawa M, Meshi T and Okada Y, 1987. Expression of bacterial chloramphenicol acetyltransferase gene in tobacco plants mediated by TMV-RNA. EMBO J, 6: 307–311

    PubMed  CAS  Google Scholar 

  • Thanavala Y, Yang YF, Lyons P, Mason HS and Arntzen CJ, 1995. Immunogenicity of transgenic plant-derived hepatitis B surface antigen. Proc Natl Acad Sci USA, 92: 3358–3361

    Article  PubMed  CAS  Google Scholar 

  • Tsoukas CM and Bernard NF, 1994. Markers predicting progression of human immunodeficiency virus-related disease. Clinical Microbiol Rev, 7: 14–28

    CAS  Google Scholar 

  • Usha R, Rohll JB, Spall VE, Shanks M, Maule AJ, Johnson JE and Lomonossoff GP, 1993. Expression of an animal virus antigenic site on the surface of a plant virus particle. Virology, 197: 366–374

    Article  PubMed  CAS  Google Scholar 

  • Weiss RA, 1993. How does HIV cause AIDS? Science, 260: 1273–1279

    Article  PubMed  CAS  Google Scholar 

  • Weiss RA, Clapham PR, Cheingsong-Popov R, Dalgleish AG, Carne CA, Weller IV and Tedder RS, 1985. Neutralization of human T-lymphotropic virus type III by sera of AIDS and AIDS-risk patients. Nature, 316: 69–72

    Article  PubMed  CAS  Google Scholar 

  • Wyatt R and Sordroski J, 1998. The HIV envelope glycoproteins: fusogens, antigens, and immunogens. Science, 280: 1884–1888

    Article  PubMed  CAS  Google Scholar 

  • Yusibov V, Modelska A, Steplewski K, Agadjanyan M, Weiner D, Hooper DC and Koprowski H, 1997. Antigens produced in plants by infection with chimeric plant viruses immunize against rabies virus and HIV-1. Proc Natl Acad Sci USA, 94: 5784–5788

    Article  PubMed  CAS  Google Scholar 

  • Yusibov V, Shivprasad S, Turpen TH, Dawson W and Koprowski H, 1999. Plant viral vectors based on tobamoviruses. Curr Top Microbiol Immunol, 240: 81–94

    PubMed  CAS  Google Scholar 

  • Xu F, Jones TD and Rodgers PB, 1996. Potential of chimeric plant virus particle as novel stable vaccine. Dev Biol Stand, 87: 201–205

    PubMed  CAS  Google Scholar 

  • Zhang G, Slowinski V and White KA, 1999. Subgenomic mRNA regulation by a distal RNA element in a (+)-strand RNA virus. RNA, 5: 550–561

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Leung C, Murdin L, Rovinski B and White KA, 2000. In planta expression of HIV-1 p24 protein using an RNA plant virus-based expression vector. Mol Biotechnol, 14: 99–107

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhang, G.G. (2002). Use of Plant Virus-Based Expression Systems for the Production of HIV Vaccines. In: Erickson, L., Yu, WJ., Brandle, J., Rymerson, R. (eds) Molecular Farming of Plants and Animals for Human and Veterinary Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2317-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2317-6_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6110-2

  • Online ISBN: 978-94-017-2317-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics