Skip to main content

Haploid production of potatoes by anther culture

  • Chapter
Doubled Haploid Production in Crop Plants

Abstract

The major cultivated species of the potato, Solanum tuberosum L. ssp. tuberosum is an autotetraploid (2n=4x=48). Other cultivated species often used in genetics and breeding are: the tetraploid species andigena (S. tuberosum L. spp. andigena Hawkes), the diploid species (2n=2x=24) stenotomum (S. stemotomum Juz. Et Buk.) and phureja (S. phureja Juz. Et Buk.). Chacoense (S. chacoense Bitt.), a wild diploid species, is often used in genetic studies and anther culture. There are a large number of wild species with ploidy levels ranging from diploid to hexaploid (2n=6x=72). Of the 176 species surveyed by chromosome counts, 73% are diploid, 15% are tetraploid, and 6% are hexaploid. The rest are hybrid species that are triploid or pentaploid. Several major gene banks maintain the world collections of potato species and varieteis. The German-Netherlands Potato Genebank in Braunschweig, Germany, and the USA Inter-regional Potato Introduction Project have published up-to-date inventories. Systematic evaluation of germplasm collections are carried out by the International Potato Center, the German-Netherlands Potato Genebank, and the USA Inter-regional Potato Introduction Project. The tetraploid varieties can be used to produce dihaploid progenies (2n=2x=24). Dihaploids provide many advantages for genetic analysis and breeding work. They are used to mate with cultivated or wild diploid species. The diploid hybrid progenies are screened for superior performance of agronomic traits and, more importantly, for their ability to produce unreduced 2n gametes. The 2n gametes are formed due to the failure of either the first or the second division during meiosis. The first division restitution (FDR) and second division restitution (SDR) gametes have fundamentally different consequences on genetic segregation. The FDR gametes are capable of maintaining about 80% of the heterozygosity of a parent and thus are beneficial in maintaining heterosis in the progenies when it is used to cross with other tetraploid parents. Hybrid progenies from 4x x 2x matings are now produced in many breeding programs. Monohaploids (2n=x=12) of potato can also be obtained from the tetraploid varieteies. Two successive cycles of chromosome number reductions are involved. A tetraploid is reduced to a dihaploid. The dihaploid is further reduced to a monohaploid. Monohaploids are also obtained from diploid species and interspecific hybrids. Monohaploids are useful tools for critical genetic analysis of the diploid S. tuberosum species (Jacobsen and Ramanna, 1994). Monoploids provide the cytological evidence of the basic chromosome number (x=12) of the potato genome. Monohaploid progenies are used to screen out undesirable and lethal genes and identify beneficial mutants. Doubling chromosomes of monohaploids lead to the production homozygous diploids and tetraploids. The hemizygous condition of monohaploids also facilitate mapping of molecular markers due to the simple (1:1) segregation ratio. Both di- and monohaploids can be produced by two methods: parthenogenesis and androgenesis. Production of dihaploids by parthenogenesis is a well established procedure and used in potato breeding to generate parents for 4x x 2x crosses. Anther or microspare culture appears to be the preferred procedure to obtain a large number of monohaploids because the number of microspores far exceeds the number of ovules in an ovary (Jacobsen and Ramanna, 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aziz, A.N., J.E.A. Seabrook, G.C.C. Tai and H. De Jong, 1999. Screening diploid Solanum genotypes responsive to different anther culture conditions and ploidy assessment of anther-derived roots and plantlets. Amer.J.Potato Research 76: 9–16.

    Article  Google Scholar 

  • Cappadocia, M., D.S.K. Cheng and R. Ludlum-Simonette, 1984. Plant regeneration from in vitro culture of anthers of Solanum chacoense Bitt. and interspecific diploid hybrids S. tuberosum L. x S. chacoense Bitt. Theor.Appl.Genet. 69: 139–143.

    Google Scholar 

  • Jacobsen, E. and M.S. Ramanna, 1994. Production of monohaploids of Solanum tuberosum L. and their use in genetics, molecular biology and breeding. In: Potato Genetics. Bradshaw, J.E. and G.R. Mackay (Eds.), CAB International, Cambridge, pp. 155–170.

    Google Scholar 

  • Meyer, R., F. Salamini and H. Uhrig, 1993. Isolation and characterization of potato diploid clones generating a high frequency of monohaploid or homozygous diploid androgenic plants. Theor.Appl.Genet. 85: 905–912.

    Article  Google Scholar 

  • Murashige, T. and F. Skoog, 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol.Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  • Rokka, V.M., J.P.T. Valkonen and E. Pehu, 1995. Production and characterion of haploids derived from somatic hybrids between Solanum brevidens and S. tuberosum through anther culture. Plant Sci. 112: 85–95.

    Article  CAS  Google Scholar 

  • Shen, L.Y. and R.E. Veilleux, 1995. Effect of temperature shock and elevated incubation temperature on androgenic embryos yield of diploid potato. Plant Cell Tiss.Org.Cult. 43: 29–35.

    Article  Google Scholar 

  • Tiainen, T., 1993. The influence of hormones on anther culture response of tetraploid potato (Solanum tuberosum L.). Plant Sci. 88: 83–93.

    Article  CAS  Google Scholar 

  • Uhrig, H., 1985. Genetic selection and liquid medium conditions improve the yield of androgenetic plants from diploid potatoes. Theor.Appl.Genet. 71: 455–460.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tai, G.C.C., Xiong, X.Y. (2003). Haploid production of potatoes by anther culture. In: Maluszynski, M., Kasha, K.J., Forster, B.P., Szarejko, I. (eds) Doubled Haploid Production in Crop Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1293-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1293-4_34

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6393-9

  • Online ISBN: 978-94-017-1293-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics